Interactive machine-language programming”

BUTLER W. LAMPSON

University of California, Berkeley

INTRODUCTION

The problems of machine language programming, in
the broad sense of coding in which it is possible to
write each instruction out explicitly, have been curious-
. ly neglected in the literature. There are still many
problems which must be coded in the hardware lan-
guage of the computer on which they are to run, either
because of stringent time and space requirements or
because no suitable higher level language is available.

It is a sad fact, however, that a large number of
these problems never run at all because of the inordi-
nate amount of effort required to write and debug
machine language programs. On those that are under-
taken in spite of this obstacle, a great deal of time is
wasted in struggles between programmer and computer
which might be avoided if the proper systems were
available. Some of the necessary components of these
systems,. both hardware and software, have been de-
veloped and intensively used at a few installations. To
most programmers, however, they remain as unfamiliar
as other tools which are presented for the first time
below.

In the former category fall the most important fea-
tures of a good assembler:'-? macro-instructions imple-
mented by character substitution, conditional assembly
instructions, and reasonably free linking of indepen-
dently assembled programs. The basic components of
a debugging system are also known but relatively un-
familiar.>* For these the essential prerequisite is an
interactive environment, in which the power of the
computer is available at a console for long periods of
time. The batch processing mode in which large sys-
tems are operated today of course precludes interac-
tion, but programs for small machines are normally

*This research was supported in part by the Advanced Re-
search Projects Agency of the Dep'irtment of Defense under
contract SD-185.- LroLn - . | e

debugged in this way, and as time-sharing becomes
more widespread the interactive environment will be-
come common.

It is clcar that interactive debugging syst>ms must
have abilities very different from those of off-line sys-
tems. Large volumes of output are intolerable, so that
dumps and traces are to be avoided at all costs. To
take the place of dumps, selective examination and
alteration of memory locations are provided. Traces
give way to breakpoints, which cause control to return
to the system at selected instructions, It is also essential
to escape from the switches-and-lights console de-
bugging common on small machines without adequate
software. To this end, type-in and type-out of informa-
tion must be symbolic rather than octal where this
is convenient. The goal, which can be very nearly
achieved, is to make the symbolic representation of an
instruction produced by the system identical to the
original symbolic written by the user. The emphasis
is on convenience to the user and rapidity of com-
munication.

The combination of an assembler and a debugger
of this kind is a powerful one which can reduce by a
factor of perhaps five the time required to write and
debug a machine language program. A full system
for interactive machine language programming (IMP),
however, can do much more and, if properly designed,
need not be more difficult to implement. The basic
ideas behind this system are these:

1. Complete integration of the assembler and the
dcbugging system, so that all input goes through
the same processor. Much redundant coding is
thus climinated, together with one of two differ-
ent languages serving the same purpose: to
specify instructions in symbolic form. This con-
cept requires that code be assembled directly

- - Into core—or into a core image on, secondary

142 Interactive machine-language programming

storage. Relocatable output and relocatable load-
ers are thereby done away with. (A remark on
terminology: It will be convenient in the sequel
to speak of the “assembler” and the “debugger”
in the IMP system. These terms should be un-
derstood in the light of the foregoing: different
parts of the same language are being referred
to, rather than distinct languages.)

2. Commands for editing the symbolic source pro-
gram. The edit commands simultaneously modify
the binary program in core and the symbolic on
secondary storage. Corrections made during de-
bugging are thus automatically incorporated into
the symbolic, and the labor of keeping the latter
current is almost eliminated.

3. A powerful string-handling capability in the as-
sembler, which makes- it quite easy to write
macros for compiling algebraic expressions, to
take a popular example, which can be handled
in a few other systems but rather clumsily. The
point is not that one wants to write such macros,
but that in particular applications one may want
macros of a similar degree of complexity.

These matters are discussed in more detail below. We
consider the assembler first and then the debugger
since the command language of the latter makes heavy
use of the assembler’s features.

Before beginning the discussion it may be well to
describe briefly the machine on which this system is
implemented. It is a Scientific Data Systems 930, a 2-
microsecond, single-address computer with indirect
addressing and one index register. Our system ircludss
a drum which is large enough to hold for each user all
the symbolic for a program being debugged, together
with the system, a core image of the program and some
tables. Backup storage of at least this size is essential
for the editing features of the IMP system. The rest of
the system could be implemented after a fashion with
tapes.

THE BASIC ASSEMBLER

The input format of the assembler was originated on
the TX-O at M.LT. It has been adopted by DEC for
most of its machines, but is unknown or unpopular
elsewhere in the industry. Although it looks strange
at first, it has substantial advantages in terms of sim-
plicity, both for the user and for the system. The latter
is a nonnegligible consideration, equally often ignored
and overemphasized.

The basic idea is that the assembler processes cach

lme of mput as an expresuon (unless it'is a derCtl\C .

RS

or macro call).® The expression is evaluated and the
value is put into core at the word addressed by the
location counter, after which the location counter is
advanced by 1. Expressions are made up of operands,
which may be symbols, constants, numeric or alpha-
numeric and parenthesized subexpressions; and opera-
tors. Available operators are +, —, *, /, .AND, .OR,
.NOT with their usual meaning and precedence; .E
(equals), .G (greater), .GE, .L, .LE, .NE, which are
binary operators with precedence less than -+, and
yield 1 or O depending on whether the indicated rela-
tion holds between the operands or not; and #, a unary
operator with lowest precedence which causes its oper-
and to be taken as a literal. This means that it is as-
signed a storage location, which is the same as the
location assigned to other literals with the same value,
and the address of this location is the value of the
literal. Blanks have the following significance: Any
string of blanks not at the beginning or end of an ex-
pression is taken as a single plus sign. An expression is
terminated by carriage return or semicolon. Several
instructions may therefore be written on one physical
line. This trivial feature proves in practice to have
significant advantages.

It is not immediately clear how instructions are con-
veniently written as expressions, and in fact the scheme
used depends on the fact that thz object machine is a
single-address, word-oriented computer with a reason-
able number of modifiers in a single instruction. It would
work on the PDP-6, but not on the IBM 7030.

The idea is simple: all operation code mnemonics are
predefined symbols with values equal to the octal en-
codings of the instructions. On the SDS 930, for in-
stance, LDA (load A) is defined as 7600000 (all num-
bers are in octal). The expression LDA+200 then
evaluates to 7600200. When the convention about
spaces is invoked, the expression

LDA 200
evaluates to the same thing, which is just the instruc-
tion we expect from this symbolic line in a conventional
assembler.

Modifiers are handled in the same spirit. -In the 24
bit word of the 930 there is an index bit, which is the
second from the left, and an indirect bit, which is the
tenth. With the predefined symbols '

1=40000
X=20000000
the expression
LDA I 200 X
evaluates to 27640200. In more comcntlonal form it
would look like this:
LDA* 200,2
'Therc xs htt]c to choo:e bptween them for brevny

Interactive machine-langnage programming 143

clarity. Note that the order of the terms in the expression
is arbitrary.

The greatest advantages of the uniform use of ex-
pressions accrue to the assembler, but the programmer
gains a good deal of flexibility. Examples will readily
occur to the reader.

Using this convention the implementation of the
basic assembler is very simple. Essentially all that is
required is an expression analyzer and evaluator, which
will not run to more than three or four hundred in-
structions on any machine. Because all assembly is into
core, there is no such thing as relocatability.

Two rather conventional methods are provided for
defining symbols. A symbol appearing at the beginning
of a line and followed by a comma is defined to be the
current value of the location counter. Such a symbol
may not be redefined. In addition, a line such as

SYM=4600
defines SYM. Any earlier definition is simply overridden.
The right side may of course be any expression which
can be evaluated.

The special symbol . refers to the location counter.
It may appear on the left of a = sign. Thus, the line

A, =. 40
is equivalent to
A BSS 40

in a conventional assembler.

Note that the first punctuation character in a line of
input to the assembler must be comma or space. The
character . is not a punctuation character, but behaves
exactly like a letter. Symbols reserved by the system
begin with dot ordinarily. For convenience in forming
negative addresses, the symbol .. is provided with a
permanent value such that ..—1 is —1 truncated to
the address field. On the 930, a two’s complement ma-
chine with a 14 bit address field, .. is 40000.

Strings of characters encoded in ASCII may be writ-
ten surrounded by single or double quotes, ‘ * or “ ”.
If the string is less than 4 characters in length, it is
equivalent to the number obtained by left-justifying it
in a 24-bit word. Otherwise, it must appear alone on a
line and generates enough words to accommodate all
its characters. Strings in single quotes are scanned for
: and & (see below); those in double quotes are taken
literally.

The characters space * signal a comment, which is
ignored up to the next carriage return. An initial *
also has this cffect.

There remains one point about the basic assembler
which is crucially important to the implementation: the
treatment of undefined symbols. When an expression is
encountered during assembly, there is no guarantee that

~ it can be evaluated, since all the symbols in it may not

be defined. This is the reason why most assemblers are
two pass: the first pass serves to define the symbols.
The increase in speed obtained by looking at the sym-
bolic only once is so great, however, that it is worth a
good deal of trouble. Even if every expression contains
an undefined symbol on the first pass, it still takes only
one-fifth as long to evaluate the already analyzed ex-
pressions as to read the input again, and this for a pro-
gram with no macros. The assembler therefore keeps
track of undefined expressions explicitly.

There is a general way of doing this, in which the
undefined expression, translated for convenience into
reverse Polish, is added to a list of such expressions,
together with the address of the word it is to occupy.
At suitable intervals this list is scanned and all the
newly defined expressions are evaluated and inserted in
the proper locations. For complex expressions there
is no avoiding some such mechanism, and it has the
advantage of simplicity. It is, however, wasteful of
storage and also of time, since an expression may be
examined many times while it is on the list before it
can be evaluated. One important case can be treated
much more efficiently, and this is the case of an in-
struction with an undefined address, which includes
perhaps 90% of the occurrences of undefined expres-
sions.

For example, when the assembler sees this code:

X, BRU A *BRANCH UNCONDITIONAL
LDA B
A, STAC

the instruction at X has an undefined address which
becomes defined when the label A is encountered. This
situation can be kept track of by putting in the symbol
table entry for A the location of the first word contain-
ing A as an address. In the address of this word we
put the location of the second such word, and so build
a list through all the words containing the undefined
symbol A as an address. The list is terminated by mak-
ing the address field point to itself. When the symbol
is defined we simply run down the chain and fill in
the proper value. This scheme will work as long as the

~address field contains only A, since there is then no

other information which must be preserved. Note that
no storage is wasted and that when A is defined the
correct address can be filled in very quickly.
STRINGS AND MACROS

The description of the basic assembler is now com-
plete, except for a few nonessential details, and we turn
to the macro and string handling facility. There is a
uniform method for delimiting strings of characters,
which may be illustrated by the assignment of such a
string as the value of a symbol: -
A =<B,(CD)EF> '

144 Interactive machine-language programming

In order to describe the result of using A after this
assignment, we introduce a distinction between the ap-
pearance of a symbol in a literal and in a normal context.

A symbol inside string brackets < > or single quotes
or in a macro argument is in a literal context; all other
contexts but one are normal. In a normal context, the
value of the symbol, whether a string or a number, is
substituted for the symbol. In a literal context, on the
other hand, the characters of the symbol are passed on
unaltered. The case of a symbol on the left side of an
assignment is an exceptional one; such a symbol is of
course not normally evaluated.

To permit the value of a symbol to be obtained in a
literal context, the convention is introduced that a colon
preceding the symbol causes it to be evaluated if the
colon is at the top level of parentheses, brackets, and
quotes. If its value is a string, the characters of the
string replace the symbol; if it is a number the shortest
string of digits which can represent the number in the
prevailing radix replaces the symbol. Colon in a normal
context is illegal.

For convenience in delimiting string names a second
colon may follow a name preceded by a colon. This
second colon serves only to delimit the name and is
otherwise ignored. Thus if

AB = <XYZ>

then
<:AB> = <XYZ> and <:AB:CD> = <XYZCD>

There are times when it is desirable to force evalua-

~tion of a symbol in a normal context when it would

normally pass unevaluated. The character & preceding
the symbol has this effect; it is exactly like : except
that it acts only in a normal context. Continuing the
previous example:
) VW&AB = VWXYZ and

&AB = 12 is equivalent to XYZ = 12.

A string may be thought of as having two kinds of
structure:

1. It is composed of a sequence of characters.

2. It is composed of a sequence of substrings de-
limited by commas not enclosed in parentheses,
brackets, or quotes. :

With reference to the first structure, a single character
may be selected by a subscript cnclosed in brackets.
Referring to the string assigned to A, we note that
A[2] is <,>, A[6] is <D>, and A[7] is <)>.
By an obvious extension of this notation,
A[3,7] is <(C,D)> and A[9,11] is <E,F>.
Subscripts which reference thc substring structure
are enclosed in parentheses. Thus
i A(l) = and A(2)= <C,D>.
. Note that a single pair of parentheses surrounding a sub-

string is removed. Subscripting may be iterated:
A(2)(2) =<D>.

Subscripting is applied only to a string-valued symbol
which is in a normal context or is evaluated by a colon.
Subscripting of a name on the left side of an assignment
forces it to be evaluated even if it is not preceded by
a colon.

Two operations, .L and .LC, determine respectively
the number of substrings and the number of characters
in their arguments. Thus

.L(A) =4, L(A(2)) =2 and .LC(A) = 11.

Having dealt with the general machinery for handling
strings, we now turn to the slight refinement which adds
macros with arguments to the system. This takes the
form of a modification to the ordinary line assigning a
string to a symbol, which permits an argument string to
be specified. Thus

STORE <ARG> =

<.RPT.FOR T =1, .L(ARG(2)),1

<ST&ARG(1) ARG(2)(T)>>
defines a macro with two arguments, the first a string
which, when appended to <ST>, creates a store in-
struction, and the second a list of locations to be stored
into. Whenever STORE is used, the string of char-
acters beginning with the first following nonblank char-
acter and ending with a line delimiter or unmatched
right parenthesis is made the value of ARG. The string
which is the value of STORE is then substituted for it
as usual.

STORE might be called with

STORE A,(S1,52,S3)

which is, because of the definition, equivalent to
RPT.FOR T =1,3,1
<STA <S81,582,83> (T)>

To complete the expansion we must con51der the
RPT directive which has been.used above. This di-
rective causes the string which follows to be scanned
repeatedly. It takes one of two forms:

1. .RPT N <..>
which causes N repetitions, or

2. .RPT.FOR J =nl,n2,n3 <...>
which causes (n2—nl)/n3 + 1 repetitions with J ini-
tially set to nl, and then incremented by n3 until it ex-
ceeds n2. Zero repetitions are possible. The n3 may be
elided if it is 1.

The STORE macro call above may now be seen to

expand into
STA S1
STA S2
STA S3

We illustrate with two further examples. The first is
a generalized MOVE macro which takes as its argu-
ments a_sequence of .pairs of lists. The first list of each

Interactive machine-language programming 145

pair specifies the locations to load from, while the sec-
ond gives the corresponding locations to store into. A
list may of course have only one element.

MOVE <ARG> =
<.RPT.FOR S1 =1, .L(ARG),2
*THIS LINE STEPS THROUGH THE PAIRS OF
LISTS
<.RPT.FOR S2 = 1, .L(ARG(S1)) .
*THIS LINE STEPS THROUGH THE ELEMENTS
OF ONE PAIR OF LISTS

< LDA ARG(S1)(S2)
< STA ARG(S1 + 1)(82) >>>

thus

MOVE AB,CD
becomes

LDA A

STA B

LDA C

STA D
So does

MOVE (A,C),(B,D)

Suppose that we have some two-word data structures
to manipulate. We can attach to the name of each struc-
ture a string of the form <A,B>. A is the address of
the first word of the structure, B of the second. A
macro can do this and assign the storage.

TW <ARG> = -
< TWS1 =TWS 4 1
ARG(1) = <TW:TWS, TW:TWS1>
TWETWS, 0
TW&TWSI, 0
TWS=TWS +2 >
Now, if we call TW twice after setting TWS to 1:
W A
TW B
we will have given A the value <TW1,TW2> and B
the value <TW3,TW4> and defined the four TW sym-
bols.

We can now use A and B in the MOVE macro. In

fact
‘MOVE AB

expands to
LDA TWI
STA TW3
LDA Tw2
STA Tw4

With the addition of one more device we can proceed
to the definition of a very grandiose macro. The di-
rectives .IF and .ELSF, used thus:

JF E, <.>
- .ELSF. E, <.>-

= -<ELSP 1 <WBROR> >

.ELSF En <..>
cause each E, in turn to be evaluated until one is greater
than zero. The string following this one is then scanned
and the rest of the structure ignored.

*THIS MACRO COMPILES AN ARITHMETIC EXPRESSION CONSISTING OF SINGLE=-
*LETTER VARIABLES, BINARY + AND = AND PARENTHESES, [T CALLS THZ
*HACRO ERROR IF THE EXPRESSION IS BOT WELL PORMED,

ARITH <ARG> =

< EXPRe<:ARG(1).> *APPEND . TO THE EXPRESSION

STXKmc*> *INITIALIZE THR STACK WHICH HANDLES
*PARZNTHRSLS

J=1 *INITIALIZE THE CHARACTEY POINTER

T1=0 *INITIALIZE THR TEMPORARY STORAGE COUNTER

*17 TEMPCRARY STORACL IS REQUIRED IT IS ASSIGNED AS TRMP1,
*TEMP2, ETC,, AND T1 XEEPS TRACK OF THX NEXT AVAILABLE LOCATION.

x1 #TRIS 1S THE MACRO WHICK DOES THE WORK
LJIF T NE 'L <ERROR> >

*CHECK THAT EXPRESSION WAS NOT TERMINATED BY A RIGHT PARKNTHESIS,
®THIS MACRO COLLECTS A SUB-EXPRESSION CONSISTING OF OPERANDS
#STRUNG TOGETHER WITH + AND ~. 1P THE SUBEXPRESSION IS A SINGLE
“VARTABLE, COP (CURRENT OPEMAND) WILL BE THAT VARLABLE O EXIT.
SOTHERWISE 1T VILL BE EMPTY,
Xl -

< COP = <¥¥o> WENSURE THAT COP 1S NOT EMPTY INITIALLY
AAN EMPTY COP MEANS THAT CODE HAS BEEN ASSEMBLED LEAVING A VALUE
*IN THE A RECISTER, IF COP IS A LETTER, IT IS THE VARLABLR
*WHICH 1S THE CURRENT OPERAND,

OPERAND
-RPT .FOR E=1,1,0

*GET THE FIAST OPERAND

#Z IS SET TO 2 WHEN THERX ARK NO MORE + OR «
*SIGNS

< T=':EXPR[JC' STXPECTING AN OPERATOR OR TERNIMATION
Jm=lel

LIPT LE'Y ORTE') E-2>

*SET E TO TERMINATE THE LOOP IN THIS CASE,

ELSF T .E '+’ <COMPILE ADD,ADD>
CELSF T .E '-' <COMPILE SUB, (CNA;ADD)>

*IF A + OR - IS PRESENT, GET THE SECOND OPERAND AND COMPILE CODE,

-ELSF 1 <ERROR> *OTHERWISE, ERROR
>> *CLOSE LOOP AND MACRO

*THIS MACRO COLLECTS THE SECOND OPERAND OF A BINARY OPERATOR AND
*CONSTRUCTS CODE TO PERPORM THE SPECIFIED OPERATION. IT USES ITS
*FIRST ARGUMENT 1F THE PIRST OPERAND IS IN THE A REGISTER, ITS
#SECOND ARGUMENT IF THE SECOND OPERAND MUST BE IN A AND THE PIRST
*TAKEN FROM MEMORY.

EONPILE <CARG> =
< OPERAND
«IF ,LC(COP) .G O

*GET THE SECOND OPERAND

*IN TBIS CASE THE SECOMD OFERAND IS A SIMGLE VARTABLE.
< .IF .LC (FREVOP) .G O <IDA PREVOP>

*IF THR PIRST OPIRAND IS ALSO A VARIAMLE (OR A TRNP LOCATION)
*BRING IT INTO A

CAXG(1) coP > *AND COPILX CODE
RSy 1 <CARG(2) FRXVOP>

*OTHEAWISK THX SECOMD OPERAND MUST BX IN A, AND THE FIXST I¥ MEMORY
Core< > >
*SET COP TO INDICATE A VALUE IN A AXD CLOSE THE MACRO,

*TH1S MACRO COLLECTS AN OPERAND, WHICH MAY BE A PARENTHES IZED
*SUREXPRESS ION

#CET THE NEXT CHARACTER
J=3+1 *IT SHOULD BX A LETTER OR (
- Jdr T B R

< .Ir .Lc(coP) .E O

OPERAND~
< T~ ':exer{J)’

*IF WE ALREADY HAVE A VALUE IN A IT MUST BE SAVED IN TEMPORARY
*STORACE WHILE THE SUBZXPRESSION IS EVALUATED.

< TI =TI +1:

~ STA TERMPSTI
COP=<TEMP: TI> >
STK=<:COP,:STX>
x1
JIF T UNE ‘(' <ERROR>
-1 *RESET THE TERMINATION SWITCH FOR X1
PREVOP~<:STX(1)> *SET PREVOP TO THE OLD COP WHICH WAS SAVED
STK=<:5TX(2,.L(5TK))> >

SCONSTRUCT A TEMP LOCATION TO SAVE IT IN
*AND REMFMBER IT IN COP
*STICK COP ON THE FRONT OF STX

*RIHOVE OLD COP PROM STK AND TERMINATE THIS CASE, X1 HAS SXT COP
WELSF T .GZ A’ AND T B °Z°
TAIF T IS A LETTER (RECALL THAT THE CHARACTER CODZ IS ASCII)

< PREVOP=<:COP> N -
cop=<:pxpr{J-1}> > =~ .. S Lo

146 Interactive machine-language programming

This macro, called by
ARITH ((A + B) — (C—D))
would generate
LDA A
ADD B
STA TEMPI
LDA C
SUB D
CNA
ADD TEMPI

Note that there are only three lines in the definition
which actually generate code. The temporary storage
location TEMP1 must be defined elsewhere.

The implementation of all this is quite straightfor-
ward. When a string is encountered, it is collected
character by character, due attention being paid to
colons, ampersands, brackets, and quotes, and stored
away. When it is referenced, the routine which delivers
characters to the assembler, which we will call CHAR,
is switched from the input medium to the saved string.
This process is of course recursive. When the string
which is the current source of characters ends, CHAR
is switched back to the string it was working on before.
All the various occurrences of strings are treated per-
fectly uniformly, except that in the case of macro
definitions the substrings of the argument string are
delimited when the latter is collected to improve the
cfficiency. Perfectly arbitrary nesting of the various con-
structs is possible because of the recursiveness of the
string collection and reference routines.

In the interests of efficiency the .IF directive is not
handled in this way, since its subject string is scanned
cither once or not at all. All that is necessary is a flag
which indicates whether an .ELSF directive is to be
-considered or ignored.

THE DEBUGGING SYSTEM

An interactive debugging system should not be de-
signed for the occasional user. Its emphasis must be on
completeness, convenience, and conciseness, not on
highly mnemonic commands and self-explanatory out-
put. The basic capabilities required are quite simple in
the main, but the form is all important because each
command will be given so many times.

One essential, completely symbolic input and output
is half taken care of by the assembler. The other half
is easier than it might seem: given a word to be printed
in symbolic form, the symbol table is scanned for an
exact match on the opcode bits. If no match is found,
the word is printed as a number. Otherwise the opcode
mnemonic is printed, indirect and index bits are checked,

. -the prope._rr_symbols printed, and the table is scanned for

the largest symbol not greater than the remainder of
the word. This symbol is printed out, followed if neces-
sary by a + and a constant.

The most fundamental commands are single char-
acters, possibly preceded by modifiers. Thus to examine
a register the user types

/x1-3; LDA I NUTS + 2
where the system’s response is printed in capitals. This
command may be preceded by any combination of
modifiers:
for printout in constant form
for printout in symbolic form
for octal radix
for decimal radix
for relative (symbolic) address
for absolute address
for printout as ASCII characters
for printout as signed integer
for no printing of addresses
(load) for no printing of register contents
The modifiers hold until the user types a carriage re-
turn or gives another / command.

For examining a sequence of registers, the commands
+ and — are available. The former examines the pre-
ceding register, the latter the following register. In the
absence of a carriage return the modifiers of the last
examination hold. The — command examines the reg-
ister addressed by the one last examined.

The contents of a register may be modified after
examination simply by typing the desired new contents.
Note that the assembler is always part of the com-
mand processor, and that debugging commands are dif-
ferentiated by their format from words to be assembled
(as noted above, an assembler line has comma or space
at its first punctuation character, and all debugger lines
have some other initial punctuation character). Further-
more, debugging commands may occur in macros, so
that very elaborate operations can be constructed and
then called on with the two or three characters of a
macro name.

CZ-I>IO0n0

To increase the flexibility of debugging macros, the
unary operator @ is dcfined. The value of @ SYM3
is the contents of location SYM3. With this operator,
macros may be defined to type out words depending on
very complicated conditions. A simple example is

TG<A> =
< .RPT.FOR TEMP = A(1),37777,1

*SCAN THROUGH ALL OF STORAGE STARTING
AT THE LOCATION GIVEN BY - -
*THE FIRST ARGUMENT

< .IF @ TEMP E. (A)2 »
*IF THE CURRENT LOCATION MATCHES THE

Interactive machine-language programming 147

SECOND ARGUMENT, THE SCAN IS OVER

</TEMP; *PRINT OUT THE
TEMPI = TEMP CONTENTS
TEMP = 37777 *SAVE THE ADDRESS
>>>> *AND TERMINATE
THE SCAN
Called with
TG 100,20

it will type out the first location after 100 with contents
greater than 20. '

Another important command causes an expression
to be typed in a specified format. Thus if SYM has the
value 1253 then

= sym; 1253
would be the result of giving the — command. All the
modifiers are available but the normal mode of type-
out is constant rather than symbolic. If no expression
is given, the one most recently typed is taken. Thus, after
the above command, the user might try
s=: SYM (the system’s response the sym-
bolic equivalent of 1253, fol-
lows the ;)

It is often necessary to search storage for occurrences
of a particular word. This may be done with a macro,
as indicated above, but long searches would be quite
slow. A faster search can be made with

Texpression;
which causes all the locations matching the specified
expression to be typed out. The match may be masked,
and the bounds of the search are adjustable. This com-
mand takes all the typeout modifiers as well as

E
which searches for a specified effective address (includ-
ing indexing and indirect addressing) and

X
which searches for all exceptional words (which do
not match). For additional flexibility the user may
specify a macro which will be executed each time a
matching word is found.

In addition to being able to examine and modify his
program, the user also needs to be able to run it. To
this end he may start it at a specified location with

,G location
If he wishes to monitor its progress he may insert break-
points at certain locations with the command

,B location
This causes execution of the program to be interrupted
at the specified location. Contro] returns to the system,
which types some useful information and awaits further
commands. An alternate form of this command is

,B location,marco name
which causes the specified macro to be executed at
each break, instead of returning control directly to the

typewriter. Very powerful conditional tracing may be
done in this way.

After a break has occurred, execution of the pro-
gram may be resumed with the ,P command. The break-
point is not affected. To prevent another break until
the breakpoint has been passed n time the form

\1;
may be used. Modifiers may precede the command.

To step through the program, instruction by instruc-
tion, the command ,S may be used instead of ,P. It
allows one instruction to be executed and then breaks
again. $n; allows n instructions to be executed before
breaking. A fully automatic trace has been deliberately
omitted, but presents no difficulties in principle.

THE EDITOR

There remains one feature of great importance in the
IMP system, the symbolic editor. The debugger provides
facilities, which have already been described, for modi-
fying the contents of core. These modirications, however,
are not recorded in the symbolic version of the pro-
gram. To permit this to be done, so that reloading will
result in a correctly updated binary program, several
commands are available which act both on the assembler
binary and on the symbolic.

This operation is not as straightforward as it might
appear, since there is no one to one correspondence
between lines of symbolic and words of binary. Ad-
dresses given to the debugger of course refer to core
locations, but for editing it is more convenient to ad-
dress lines of symbolic. To permit proper correlation of
these line references with the binary program, a copy
of the symbolic file is made during loading with the
address of the first and last assembled words explicitly
appended to each line. Since the program is not moved
around during editing, these numbers do not change
except locally. When a debugging session is complete,
the edited symbolic is rewritten without this informa-
tion.

We illustrate this with an example. Consider the
symbolic and resulting binary

S1 MOVE AB (200,201) S! LDA A 200
STA . B - 201
ADD C (202,202) ADD C 202
STORE D,E (203,204) STA D 203
STA E 204
S2 BRU S1 (205,205) S2 BRU S1 205
and the editing command
R S2-1 insert before line $2-1
SUB F
which gives rise to the following:
St MOVE A,B (200,201) S1 LDA A 200
STA B -~ 201

ADD C (202,1512) BRU END 202

148 Interactive machine-language programming

SUB F (1513,1513) BRU [END1 203
STORE D,E (1514,204) STA E 204
S2 BRU S1 (205,205) S2 BRU s1 205
END ADD C 1512
SUB F 1513
STA D 1514

BRU S1 4 1515
BRU S1 5 1516
All the BRU (branch unconditional) instructions are
inserted to guarantee that the right thing happens if
any of the instructions causes a skip. The alternative to
this rather simple-minded scheme appears to be com-
plete reassembly, which has been rejected as too slow.
The arrangement outlined will deal correctly with
patches made over other patches; although the binary
may come to look rather peculiar, the symbolic will
always be readable.
To give the user access to the readable symbolic
the command .

,L symbolic line address[,symbolic line addressl;
(where the contents of the brackets is optionally in-
cluded) causes the specified block of lines to be printed.
Two other edit commands are available:

,D symbolic line address[,symbolic line address];
which deletes the specified block of lines, and

,C same arguments;
which deletes and then inserts the text which follows.
Deleting S1 1 from the original program would result

" in binary as follows

S1 LDA A

BRU .END
BRU .END 1
STA D

STA E

S2 BRU S1

.END STA B
BRU S1 3

The implementation of these commands is quite
straightforward. One entire edit command is collected
and the new text, if any, is assembled. Then the
changed core addresses are computed and the appro-
priate record of the symbolic file rewritten.

The scheme has two drawbacks: It does not work
propetly for skips of more than one instruction or for
subroutine calls which pick up arguments from follow-
ing locations, and it leaves core in a rather confusing
state, especially after several patches have been made
at the same location. The first difficulty can be avoided
by changing large enough segments of the symbolic.
The second can be alleviated by reassembly whenever
things get too unreadable.

The only other published approach to the problem
of patching binary programs automatically is that of
- . Evans,® who keeps relocation information and relocates

the entire program after each change. This procedure
is not very fast, and in any event is not practical for a
system with no relocation.

EFFICIENCY

The IMP system depends for its viability on fast
assembly. The implementation techniques discussed in
this paper have permitted the first version of the assem-
bler to attain the unremarkable but satisfactory speed
of 200 lines per second. Simple character handling
hardware would probably double assembly speed on
simple assemblies and produce even greater improve-
ment on programs with many macros and repeats.

Using the latter figures, we deduce that a program
of 10,000 instructions, a large one by most standards,
will load in 25 seconds. This number indicates that the
cost of the IMP approach is not at all unreasonable—
far more computer time, including overhead, is likely
to be spent in the debugging operations which follow
this load. When only minor changes are made it is, of
course, possible to save the binary core image and thus
avoid reloading. ,

In spite of the speed of the assembler, it is possible
that a relocatable loader might be a desirable adjunct
to the system. There are no basic reasons why it should
not be included.

As to the size of the system, the assembler is about
2500 instructions, the debugger and editor about 2000.

ACKNOWLEDGMENTS

The ideas in this paper owe a great deal to many
stimulating conversations between the author and Peter
Deutsch. I am especially indebted to him for the idea
that all strings in the input can be handled uniformly
with string brackets. A system very similar to this one
has been implemented by him for the CDC 3100.

REFERENCES

1. M. Halpern, “XPOP—A Metalanguage without
Metaphysics,” AFIPS Conf. Proc., vol. 25, 1964.

2. G. Mealy, “Anatomy of an Assembly System,”
RAND Corporation (Dec. 1962).

3. S. Boilen et al, “A Time-Sharing Debugging Sys-
tem for a Small Computer,” AFIPS Conf. Proc.,
vol. 23, Spartan Books, Washington D.C., 1963,
pp. 51-58.

4. L. P. Deutsch and B. W. Lampson, “DDT—Time-
Sharing Debugging System Reference Manual,”
Project GENIE Doc. 30.40.10 (May 1965).

5. “The MIDAS Assembly Program,” internal mem-
orandum, M.L.T.

6. Thomas G. Evans and D. L. Darby, “DEBUG—

Interactive machine-Janguage programming 149

An Extension to Current Online Debugging Tech- 7. C. N. Mooers, “TRAC, A Procedure-Describing
niques,” Comm. ACM, vol. 8, no. 5, pp. 321-25 Language for the Reactive Typewriter,” Comm.
(May 1965). ACM vol. 9, no. 3, pp. 215-219 (Mar. 1966).

