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A collection of basic ideas is presented, which have been 
evolved by various workers over the past four years to provide 
a suitable framework for the design and analysis of multi- 
processing systems. The notions of process and state vector are 
discussed, and the nature of basic operations on processes is 
considered. Some of the connections between processes and 
protection are analyzed. A very general approach to priority- 
oriented scheduling is described, and its relationship to con- 
ventional interrupt systems is explained. Some aspects of 
time-oriented scheduling are considered. The implementation 
of the scheduling mechanism is analyzed in detail and the 
feasibility of embodying it in hardware established. Finally, 
several methods for interlocking the execution of independcrt 
processes are presented and compared. 

KEY WORDS AND PHRASES: time-sharing, multiprocessing, process, sched- 
uling, interlocks, protection, priority, interrupt systems 

CR CATEGORIES: 4.31, 4.32, 6.21 

I n t r o d u c t i o n  

One of the essential parts of any computer system is a 
mechanism for allocating the processors of the system 
among the various competitors for their services. These 
allocations must be performed in even the simplest system, 
for example, by the action of an operator at the console of 
the machine. In larger systems more automatic techniques 
are usually adopted: batching of jobs, interrupts, and 
interval timers are the most common ones. As the use of 
such techniques becomes more frequent, it becomes in- 
creasingly difficult to maintain the conventional view of a 
computer as a system which does only one job at a time; 
even though it may at any given instant be executing a 
particular sequence of instructions, its attention is switched 
from one such sequence to another with such rapidity that 
it appears desirable to describe the system in a manner 
which accommodates this multiplexing more naturally. I t  
is worth while to observe that these remarks apply to 
any large modern computer system and not just to one 
which attempts to service a number of online users simul- 
taneously. 

We consider first, therefore, the basic ideas of process 
and state vector and the properties of processes which are, 
so to speak, independent of the hardware on which they 
may happen to be executing. The interactions between 
processes are dealt with and the necessary machinery is 
constructed to permit these interactions to proceed 
smoothly. Many of these ideas were first expounded by 
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Sa]tzer [5], from whose treatment we have borrowed most 
of our terminology. We then go on to analyze the mecha- 
nisms by which processes increase their capabilities. 

In the next few sections we consider mechanisms for 
sharing processors among processes. Our attention centers 
first on priority-driven scheduling systems, which have 
obvious analogies with interrupt systems. After detailed 
treatment of a reasonably efficient implementation of a 
priority scheduler, we turn to some of the problems of 
time-driven scheduling, in which the objective is to get 
work done at certain fixed times. A scheme for embedding 
time-driven processes in the priority system is discussed, 
and the generally neglected problem of guaraneted service 
is analyzed at some length; unfortunately, its surface is 
only scratched. 

There follows a detailed analysis of how an interrupt 
system might be replaced with a quite general scheduling 
system which permits any user process to run in response 
to any external signal and which removes all constraints 
on the relative priorities of different processes and the 
order in which their execution may be started and stopped. 
In conclusion we consider the very important problem of 
interlocking processes which access a common data base 
and analyze its relation to the scheduling system in use. 

P r e l i m i n a r i e s  

We begin by defining some terms which will permit a 
precise discussion of what happens in a complex computer 
system. The most important of these terms is process. The 
intuitive basis for the idea represented by this word is the 
observation that certain sequences of actions follow 
naturally, one upon the other, and are more or less inde- 
pendent of other sequences. For example, a disk4o-printer 
routine and a matrix inversion program running on the same 
processor are two quite distinct programs, which can 
normally execute entirely independently of each other. The 
independence is not complete, however, since information 
may be written into the disk file by the inversion program 
while earlier information is read by the printer driver. 
Furthermore, the fact that clearly different programs are 
being executed is not essential; two inversions operating 
on different data would have just as much right to be 
considered distinct. Indeed, it might well be that a single 
inversion program could be coded in such a way that 
several parts of it could be in execution simultaneously. 

To summarize, the essential characteristic of a process 
is that it has, at least conceptually, a processor of its own 
to run on, and that the state of its processor is more or less 
independent of all the other processors on which all the 
other processes are running. Since there are usually not a s  
many physical processors as three are processes, it becomes 
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necessary to create enough logical processors by m~dti- 
plexing the physical ones. Techniques for doing this are 
one of the subjects of this paper. 

We now consider more carefully what is involved ir~ 
switching a physical processor from one process to another. 
When a processor is exeeuti~g instructions, there exists a 
collection of information (called the full-state vector) which 
is sufficient to completely define its state at any given 
moment,  in the sense that  placing the processor in some 
arbi t rary state and then resetting it from the full state 
veetor will cause execution of instructions to proceed as 
though nothing had happened. For  a central processor of 
eonventional organization the full-state vector includes: 

(a) The contents of the program counter. 
(b) The contents of the central registers of the processor. 

For  eonvenienee, we will confine our at tent ion to points in 
t ime between the execution of instructions at which regis- 
ters directly accessible to the programmer are the only 
ones of interest. The  use of address mapping schemes 
involving segmentation may make it necessary to consider 
Mso certain nonaccessible registers involved in indirect 
addressing. This eomplieation will be ignored. 

(e) The address space of the processor and the contents 
of every address in it. By  this we mean a list of all the 
legal memory addresses which may be generated by the 
program and the contents of each one. 

(d) The state of all input-output  devices at tached to 
the processor. 

The information just specified consists of a rather large 
number  of bits. Furthermore,  it eontains considerably 
more detail than is usually desired. In  a time-sharing 
system, for example, the physical state of the inpu t /ou tpu t  
devices is not normally of interest to the program, and 
even the address of the next word to be read from a file 
may  not be information which we wish to associate with a 
process, since such an association makes it difficult for two 
processes to share the file. 

Similar considerations apply to the contents of the words 
in the address space; these might be changed by  another 
process. The address space itself, however, has a better  
claim to be regarded as an integwal par t  of the process. 
To  clarify this point, we pause to consider (or define) 
exactly what the address space is. We may think of all the 
words which can possibly be addressed by any process as 
being numbered in some arbitrary fashion. Each word 
is then identified by its number,  which we will call its 
absolute address. Note that  we are not  saying anything 
about  the physical location of the words, and tha t  the 
absolute address we have just defined has nothing to do 
with this location, but  is simply a eoneeptual tool. Then 
the address space of a process (also called the map) is a 
function from the integers into the set consisting of the 
absolute addresses of all the words in the system and two 
symbols U and N;  i.e. it, associates with every address 
generated by the program an absolute address, or specifies 
tha t  the address is undefined or not available. The address 
space may also carry information about  the accessibility 

of a word for which i{: supplies alx absolui:e address, speci- 
fying, for example, that  the word may tact be written into. 

Observe now tim.e, what the address space really does is 
to deflate tile memory of the process..Any of the words of 
this memory may  ~Hso be part of ~he memory of some other 
process, which may  refer to them with the same or differ- 
ent addresses. The words, however, are considered to have 
an existence indepeudent of their addresses in any particu- 
lar address space. 

We recognize, then, that  the definition we want for the 
state vector of a process is not  a direct analog of the one 
used in system theory. In fact, it. leaves unspecified a 
nuinber of things which can affect the furore execution of 
a process, namely just those things which we wish to think 
of as being shared between processes. With this point in 
mind, we define the state vector (or stateword) of a process 
to consist of the program counter, central registers, and 
address space of the processor on which it is running. 
From the above discussion we conclude that  the process 
can still exist even if it is not  running on the processor, 
since the state vector carries sufficient information to 
allow it to be restarted. A process should be sharply dis- 
tinguished from a program, which is a sequence of instruc- 
tions in memory.  We can speak of either a process or a 
processor executing a program. The process is the logical, 
the processor the physical environment for this execution. 
I t  seems reasonable to say tha t  the process is executing 
even if it  is not running on any processor. 

To give practical substance to the distinction between 
process and program, it is required that  execution of the 
program should not  cause it  to be modified. If  this re- 
strietion is observed, it is clear tha t  more than one process 
can be executing the same program at the same time. 
Note tha t  it is not  necessary to have more than one proc- 
essor for this to be possible, since we do not insist that a 
process be running in order to be executing. To return to 
the matr ix inversion example: in a particular problem it 
may  be necessary to invert  six independent matrices, and 
to this end six processes may be established, one to work 
on each matrix but  all executing the same program. On 
the other hand, one of these processes may,  after inverting 
a matrix, go on to execute a different program which calcu- 
lates its eigenvalues. 

O p e r a t i o n s  o n  Processes  

In this section we take up some points which are inde- 
pendent  of processor multiplexing. A number  of these 
points center around the observation that  a process does 
not  always want to execute instructions even if there is a 
physieal processor available. A typical example of such a 
proeess is a compiler which has exhausted its available 
input and is waiting for more cards to be read. This is a 
special case of a very general situation, in which a process 
is waiting for some external eondition to be satisfied and 
has nothing useful to do in the meantime. There  are basi- 
cally two ways in which this Situation can be handled. 
The  simplest is for the process to loop, testing a flag which 
records the state of the external condition. The  objection 
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to this scheme is that  it is wasteful if there is any other 
process which could use the processor. Alternatively, the 
process can record somewhere the fact that  it is waiting 
for, say, 14 cards to be read, and blocl~ itself. I t  will then 
execute no more instructions until the 14th card has been 
read and it has received a walceup signal. The part of the 
system responsible for handling block and wakeup in- 
structions will be called the scheduler. When a processor is 
executing instructions for a process, the process is said to 
be running. 

From the point of view of the scheduler, then, the life 
history of a process is an alternation of running periods 
and blocked ones. Each running period is terminated by a 
request to the scheduler that  the process should be blocked; 
this request may  be made by the process itself or by some 
other process. Each blocked period is terminated by a 
wake up signal whose characteristics are described 
above. Since the process can do nothing to help itself 
while it is blocked, it must make arrangements to be 
awakened before blocking itself. Let us consider what 
the nature of these arrangements might be. 

The simplest situation is one in which the process has 
requested some service to be performed and wishes to 
wait until it is completed. Typical services have to do with 
input-output: a process might block itself until an input 
buffer is filled. In this case the process performing the 
service is expected to provide the wakeup signal. This 
idea is so simple as to require only one further comment. 
A reciprocal situation is that  of the input-output process: 
it expects to be awakened by a demand for service and 
blocks itself when it has done its job. The situation is 
sketched in Figure 1. Readers familiar with the concept 
of coroutines will find this picture familiar. 

input-output process 

Fie. 1. Reciprocally blocked processes. Solid horizontal lines 
indicate running periods, dashed ones blocked periods. 
The arrows are wakeup signals. 

A slightly more involved situation is shown in Figure 2. 
Here the input is assumed to be buffered, so tha t  the com- 
puting process, after making a request for input, is able 
to continue running for a while. In the figure it continues 
to run on buffered input data until after the input-output 
process has completed its work and sent it a wakeup, 
which has no effect on an already running process. Finally, 
it blocks itself, but by this time the wakeup has passed 
and will never come again. 

This situation can of course be alleviated by having the 
input process set a flag indicating that  it has filled the next 
buffer. The computing process could then test this flag 
and not block itself if the operation is complete. This 
approach, however, will only serve to make the bad 
situation shown in Figure 2a less common; it  will not 
eliminate it entirely, since it is still possible for the input 
process to send its wakeup in the interval between an 
unsuccessful test and the subsequent block. What  is neces- 
sary is to reduce this interval to zero, which can be done 

with a simple device called a walceup-waiting switch. 
There is one of these for each process. Whenever a wakeup 
signal arrives at a running process, the switch is turned 
on. Whenever the process is blocked, it  is turned off', and 
the process can also tm'n it off explicitly. If  a process tries 
to block itself and the wakeup-waiting switch is on, the 
switch is turned off and the process is simply allowed to 
continue running without interruption. This sequence of 
events is illustrated in Figure 2b. 

computing process . . . . . . . .  ~--- .  I 

input-output process . . . . . . . .  

(a) Race condition improperly handled. The second wakeup 
is lost. 

computing process ~ ~ A 

(b) Race conditions handled correctly. The cusps are at- 
tempts to block thwarted by the wakeup-waiting switch. 

Fro. 2. Race conditions in the scheduler 

Note that  a single switch for each process is quite suffi- 
cient. Any function which might be accomplished with a 
stack of wakeup signals handled by the scheduler can be 
equally well accomplished by communication through 
shared memory. 

The proper way to program a process which blocks 
itself periodically, like the ones in Figure 2, is to check 
explicitly after a wakeup signal is received that  there is in 
fact work to be done, and to block again if there is not. 
This procedure will circumvent the problems which would 
otherwise arise if the work for which a wakeup is received 
gets done before the process tries to block. Often the sim- 
plest way to make this check is with a loop back to the 
code which made the decision to block, as, for example, 
in the following routine to read data from an input buffer 
being filled by another process: 

a. Is input buffer empty? 
b. If not, read data and exit. 
c. Otherwise, block. 
d. When wakeup arrives, go to (a). 

An additional complication is introduced by the fact 
tha t  it is not unusual for several processes to be blocked 
waiting for the same condition to occur. If  this situation 
can arise, the process generating the wakeup must be 
prepared to send it not just to one process, but to an entire 
wakeup list of processes. Alternatively, it  may be preferable 
to leave this process unaware of the problem and to make 
one of the processes receiving a wakeup signal responsible 
for sending wakeups to the others ( if  such action is ap- 
propriate; in the case of several processes competing for a 
single device it may not be). The possible existence of 
wakeup lists is not important to the basic scheme and 
has been mentioned only to illustrate a complication 
which can be handled without difficulty. 

We now have two states for a process: blocked and 
running; and two basic operations on processes: block and 
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wakeup. Let us consider what else is required° Two thi~gs 
are obvious: it is necessary to be able to create a~d desfmy 
processes, and to establish restrictions on the kind of 
access allowed to one process by another. These problems, 
however, ha:re to do with the general mecha~fism i~a the 
system for granting c:apabilities, with which we are ~tot 
concerned here. The precise operations required to create 
a process are considered in a later section. 

It is, however, very convenient for a process to have one 
other property in addition to being blocked or running. 
Suppose, for example, that. a program involving several 
processes is being debugged online. A valuable tool in this 
situation is the ability to stop execution of the program, 
examine the state of things, and then continue as though 
nothing had happened. During the pause in execution, all 
the processes being debugged are suspet~ded; i.e. they are 
prevented from executing. If a wakeup signal is directed at 
a suspended process, it. is recorded and will be acted 
Upon when the process is released. In other words, being 
suspended is a quality unrelated to being blocked; a 
suspended process can be either blocked or running, but 
it will execute no instructions until it is released. 

Approximately the same effect can be obtained by 
reading the state words of ~dl the processes, destroying 
them, and then recreating them later and putting back 
the statewords. This approach, however, requires a po- 
tentially large amount of information to be recorded and 
then restored. I t  is also likely to be quite time-eonsuufing, 
especially since it is usuMly not possible to destroy a 
process at any arbitrary point in its execution, e.g. when 
it is operating on system tables. Furthermore, if any 
wakeup signals for a process arrive after it has been 
destroyed, they will be lost, which is not very satisfactory. 

Acquistion of Capabilities. We conclude this section 
vdth a brief discussion of the relationship between proc- 
esses and protection. I t  has been taken for granted so far, 
as in almost all of the published literature, that a process 
(or a group of processes) is the basic entity to which cap- 
abilities should be attached [2, 3]. Since this doctrine 
earmot easily be made to cover all situations, it is usually 
modified in running systems by more or less inelegant 
devices for allowing a process to have different capabilities 
depending on what it is doing. 

To make this point clearer, let us consider an ordinary 
unprivileged process which wishes to obtain permission to 
use a tape unit,, for example. I t  will make some kind of 
"call on the system." That is, it will transfer to a system 
routine which will determine whether the process is au- 
thorized to use tape units and whether the specified unit is 
free. If everything is in order, the system will grant the 
desired permission. To avoid unnecessary digression, 
let us ecssume that permission is granted by turning on a 
bit in the stateword, and that the hardware allows execu- 
tion o finstruetions for this tape unit only when the bit is on. 
The point is that the process running the system program 
must have much greater capabilities than the user process; 
it has at least the capability to set the hypothetical bit 
just introduced, and the user process does not, have that 

eat)abitily or ii; would have set the t>it i{selL It1 f~xct, we 
cau dispense with the bit if anyone can s(t, i~, since it 
wol/Id serve Ilo use[ill porpose.  

This discussion suggests tImt the "trill o1~ the system" 
mentioned above is really a w,,~keup directed to a process 
with gre~t eapttbilitics, ~hich we c a l I a  system proc- 
ess. There must also be some mechanism for communi- 
cating data between user and system processes, so that the 
latter can find out what is wanted a~d the former obtain 
information about the fate of its request. We may assume 
that the two processes share some memory, and neglect a 
host of questions about how such aa arra[~geinent can 
actually be implemented with reasonable eft:ieieney. The 
situation is then quite clear: the user process puts informa- 
tion about its request into this shared nlemory, wakes up 
the system process, and blocks. The system process ex- 
amines the request, modifies the user process stateword 
appropriately, records what it has done in the shared 
memory, wakes up the user process, and blocks. The entire 
interaction depends on cooperation between the two 
processes, which is precisely why it is a suitable mecha- 
nism for its purpose: the user process cannot force the 
system process to do anything, but can only call attention 
to its desires. 

I t  is worth noticing, however, that the use of two proc- 
esses in the manner just discussed is completely different 
from the usual applications of multiproeessing, where two 
processes are running (more or less) in parallel. Here no 
paraUel execution takes place at all; the system process 
runs when, and only when, the user process is blocked. 
The entire transaction in fact looks exactly like a sub- 
routine call and return implemented in a very clumsy 
way. The only reason that the system process is a process 
rather than a prog~'am is that it has capabilities which 
we wish to deny to the user process. 

If we approach the discussion of capabilities from 
different viewpoint, it will become cleat" why very few 
systems use the multiple process scheme described above. 
The first point to observe is that instead of thinking of a 
process as starting out with no power and acquiring cap- 
abilities, one may think of it as starting out with absolute 
power and then being restricted by the system's protection 
mechanisms. This is of course the customary way of look-- 
lag at things; the word "absolute" is especially appropri- 
ate on a mapped machine, since protection is usually 
enforced primarily by the map and the ability to use 
absolute addresses allows a process to do anything. Let 
us consider briefly the fundamental characteristics of 
protection systems. 

The simplest way of describing what is required is to 
say that certain processes must be prevented from exe- 
cuting certain words as instructions, namely those which 
violate the constraints of the protection they operate 
under. For purposes of implementation, however, it has 
proved convenient to make a further distinction and say 
that a process must be prevented from (1) accessing, 
changing, or transferring control to eertain words in the 
physical memory of the machine (memorg protection), and 
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from (2) executing instructions with certain operation 
codes, which are often called privileged (control protec- 
tion). 

To accommodate the first requh'ement a~ variety of 
arrangements has been tried, which fall into two general 
classes, namely the protection of particular physical 
regions of core and the provision of an address mapping 
function which transforms every address generated by the 
program before sending it to the physical memory. The 
relative merits of various schemes in both classes have 
been debated at some length and need not concern us 
here. We turn our attention to the problems of control 
protection. 

Protection Systems. ~vYhat might be called the minimal 
solution to these problems, and one which has been im- 
plemented on many machines, is the provision of two 
modes called "monitor" and "user," or "master" and 
"slave" modes. In the first, or monitor, mode all the in- 
structions of the machine can be executed, including those 
which change the address space of the process. In user 
mode, on the other hand, all the opcodes which might 
interfere with the operation of the system or of another 
user are prohibited. This prohibition is usually enforced 
by causing a switch into monitor mode and a transfer to 
a standard system routine whenever attempted execution 
of a privileged opcode is detected. These include any op- 
code which is undefined or which halts the machine, all 
input-output opcodes, and all opcodes which invoke the 
scheduling or address mapping hardware. 

One of the implications of this kind of organization is 
that calls on the system, say in the form of a switch to 
monitor mode and a transfer to one of a small number of 
standard entry points, must be provided for any operation 
which a user program may be authorized to perfoi~n and 
which requires execution of privileged instructions. Be- 
cause the ability to execute such instructions attaches to a 
process, and because there are only two possible states 
which a process can be in as far as its authority to execute 
such instructions is concerned, there is no way of avoiding 
a call to a system routine every time the need for a privi- 
leged instruction arises. Furthermore, this routine will 
in general have to check the validity of the call every 
time it is entered. Some improvement can be obtained 
by providing a number of different modes in which various 
classes of instructions are prohibited, but the number of 
input-output devices attached to a system is likely to be 
large enough to prevent this approach from effecting 
much improvement, since in general every device must 
be protected independently of every other one. Matters 
are still worse when it comes to mass storage devices and 
it is desired to allow access only to certain areas of the 
device. 

.Am alternative approach to the whole problem of con- 
trol protection--one which is capable of eliminating the 
problems we have been considering--is to attach the 
authority to execute privileged instructions not to the 
process executing them but to the memory locations from 
which they are executed. Almost any memory protection 
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scheme for a time-sharing system will allow an area of 
memory to be made read-only to a process. A system 
routine which controls the memory protection hardware 
can obtain read/write access to this area and therefore 
can put into it anything it likes. What we envision now is 
an extension of the memory protection mechanism which 
allows this area to be made not merely read-only, but also 
privileged. If a memory location is part of a privileged 
area, then the control protection hardware will allow a 
privileged instruction fetched from this location to exe- 
cute. Otherwise, execution of such an instruction will be 
suppressed. 

The system then simply arranges that the memory 
available to any process which is authorized to execute 
privileged instructions contains those instructions which 
the system wants to allow the process to execute, and 
no others; the process executes them by addressing them 
with an execute instruction. The result of such an arrange- 
ment is that from the point of view of the system control 
protection is absorbed into memory protection: the ulti- 
mate authority which a process can exercise is determined 
by the memory it can write, since not only the ability to 
execute privileged instructions but also the state of the 
memory protection system itself is determined by the 
contents of certain areas of memory. A process can do 
anything if it can write into privileged memory and can 
set up the memory protection for itself or for another 
process. 

It therefore follows that to change the capabilities of a 
process it suffices to change the map. The operation of 
waking up a system process can be replaced by a sub- 
routine call which makes some memory accessible which 
was formerly forbidden. One popular implementation falls 
back temporarily on the monitor mode coneept--a transfer 
of control which changes the protection (called a leap) 
must go through a standard routine which, running in 
monitor mode, is not subject to the usual restrictions of 
the system. This scheme is completely general and quite 
elegant; its only drawback is that leaps are likely to be 
slow. 

At least two proposals have been made for making most 
or all of the map-changing operation automatic. The 
~ULTICS group has suggested a hardware implementa- 
tion of their "ring" structure, which divides the address 
space of a process into concentric rings and allows access 
to ring n from ring m only if m < n. Evans and LeClem 
[4] have put forward a mapping and protection system 
which permits individual control of the access every seg- 
ment has to every other segment. Neither of these pro- 
posals has yet been implemented. 

In many cases, of course, the entire problem is evaded 
by performing the desired privileged operation entirely 
in monitor mode, i.e. outside the confines of the protection 
system. This approach makes it unnecessary to worry 
about how to increase the capabilities of a process, but 
has obvious disadvantages in flexibility and security and 
is gradually becoming unpopular. 
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S c h e d u l i n g  

In this section we consider some .algorithms which ma) 
be used to implement a scheduler, a,),d complete the dis- 
cussion of bask' principles with an a~mlysis of p~oces~or 
multiplexing. The scheduler eo~sists ()t" t,wo sets of p ro  
eedures which are logically quite indepe~,(tent of each o~ her, 
and a data base which compeers them. 

The first set of procedures may  be called the ~'zser inter- 
i~(*. Its :t'uuedon is to implemem the b:~sie opera- 
tio~s which may  be called for by a user process: 

block 
wakeup 
suspe~ad 
release 
test and reset wakeup waiting switch 
change priority (see below). 

I f  processor multiplexing is not, required this is a very 
straightforward mat, get. We define four arrays iodexed 
by process or proee:ssor number (these are equivalent if 
{,here is no multiplexing): 

~w.*~[i] is 1. if' processor i is executing instructions, 0 if 
i~ is not. This value controls the processor. 

suspend[i] is 1 if process i is suspended, 0 if ig is not. 
ru~stateg] is 0 if the process was blocked more recently 

than i t  was awakened, 1 otherwise. 
wws[i] is 1 if the wakeup waiting switch for process i is 

on, 0 if it is off. 
These arrays, together with some other data  to be intro- 
duced shortly, eonstitute the s&eduger data ba,e. Pseudo 
ALGOL procedures %r the basic operations are: 
p r o c e d u r e  bled; ( i ) ;  
b e g  l n 

i f  ww;,'ii] = 0 t h e n  run[ i ]  : =  run.state[i] : =  0 e l s e  ww.~{i] : =  0 
e n d  ; 
p r o c e d u r e  ~z~ke~* p(,; ) ; 
b e g i n  

ifr~n,~taie{i] = 1 t h e n  ~ews{i] : = 1 ;  r~*nstateii] : =  1; 
i f  s:,zs'pend{i] = 0 t h e n  run[i] : =  1 

e n d  ; 
p r o c e d u r e  an.spend(i) ; 
beg i  n 

r ~ n  i] : =  0; g~.spend[i] : =  1 
e n d  ; 
p r o e e d  u r e  relea,~e (£) ; 
b e g i  n 

ettd ; 
i n  t e g e r  p r o e e d  u r e  t r~z'w2 (i)  ; 
b e g i n  

g~uws := u~es[i}; w,~:ali] := 0 
e n d  

In {he absence of multiplexing this is the entire irnple- 
memati<m of the scheduler. I t  is assumed that  the aetior~ 
specified by one of these procedures is taken instan- 
taneously a8 far as the rest of the system is concerned. 
We defer a consideration of how this can be done and of 
the generM problems of LnteAoeking paradlel processes to a 
later section. Note that  we have not said anything about 
how these procedures are executed; it wilt be suNcient for 
the moment to imagine a spatial processor whose sole 
function is to do this. 

3/u//ip/c.~'in!/. :\s soon as we begin tx) coHsider processor 
mult iplexh~g, life becomes much more (omp/icat, ed and 
re(we i>.teresti~g. I~ order t;o i~t, rodu(> {he complicaBio[~s 
(me ai :~ {i]ue, let, us assume that  {be usuP i~d,(w[~mc pr0- 
(e{lurv,~ coaiimle 1o funci,io~ ~H before, but, ihaU t;h.c array 
run no k)nger di:rectly {,o~d rols the {}pera~hm of a processor. 
.In fact, since there are no longer e~/ough proecssops ~0 
allow one to be assigm, d to each progr:m,, the da, t.a base 
arrays are not directly related to processors a.t {g/. To Sl)ee- 
ifv the indirect rel~tiotiship, we define {,we more arrays: 

processor[i] specifies the processor {assigned to process 
i. Ir is 0 if no processor is assigned. 

proc6~s[j] specifies the process running on. processor j. 
It. is 0 if no process is runnixlg. 

A process i is called ready if rim[i] = 1 but processor[i]=O. 
The procedures which establish connect;ions between 

processes and processors constitute dm second half of the 
scheduler, which is called the e,dbrcer. The algorithm 
used by ~he enforcer to assign processors is ealled the 
s&eduti,~g aZt~o,,i~a,,,. A very simple and very unsatisfactory 
scheduling algorithm might be the following: 

i : = 0  
> loop :  f o r  j : =  1 s t e p  1 u n t i l  np d o  

i f  proce.>s[j] = 0 t h e n  
b e g i n  

gZoop: i : =  i f  i = n q  t h e n  t e l s e  i + 1; i f  r u n [ / ]  = 0 
\/processor[i} # 0 t h e n  g o t o  qIoop; 
processor[i i : =  j ;  processU] := 1 

e n d  
e l s e  i f  run[preces.s[j]] = 0 t h e n  
b e g i n  

process[j] : =  processor[process{j.j]:= O; g o t o  qloop 
e n d  ; 

g o t o  ploop ; 

Here np is die m~mber of processors, nq the number of 
processes. This procedure simply cycles around the proc- 
esses in riced sequence, assigning free processors to proc- 
esses which wish to run as it  finds them. Again we as- 
sume that  where there is any possibility of confusion the 
enforcer's actions are performed instantaneously. 

Prioritie.s. In order to improve on this algorithm i~ is 
necessary for the scheduler to have some idea about the 
relative importance of different processes. For purposes of 
discussion we consider that  two inclosures of importarlce 
exist : 

An integer assigned to each process called its priority. 
The enforcer regards process i as more important  than 
process j if priori{gill > priority[j]. The array priority 
is added to the scheduler da ta  base. 

The amount  of time which has elapsed since a process 
was ready and assigned a particular priority. For 
processes of equal priority the enforcer operates on a 
first-come, first-served basis. 

Two modifications to t, he user interface are required t,o 
~meommodate this new idea. One is a change in wake@ 
which allows a priority to be supplied along with the 
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wakeup sigt~f~l: 

proeed ~re wakeup (i,p) ; 
begin 

ifrvn,sgate[i] = 1 then wws[i] := 1; 
runslate[i] := 1; prioril, y[i] := p; 
if,suspend[i] = 0 then 'run[i] := 1 

e nd ; 

The other is a new operation: 

procedure chpri(i,p); begin priorily[i] := p end; 

These two operations make it  possible to establish priori- 
ties for ~he various processes. The way in which this is 
done will determine which processes get to run, and will 
therefore have an important  influence on the behavior of 
the system. I t  should be clear, however, that  priority 
assignment is not  an integral part  of the scheduler, and 
it will therefore receive only passing consideration. 

We expect the enforcer to select from the processes 
with run[i]= 1 those np which have the highest priority 
at each instant. The precise length of an instant will be 
considered later;  obviously we want it to be as short as 
possible provided the overhead stays low. A typical 
situation which the scheduling algorithm might encounter 
in a two-processor system might involve four processes 
computing with various priorities, another four processes 
blocked for ordinary input-output  operations, and two 
processes awaiting real-time interrupts. At one moment 
the system should be running two of the computing proc- 
esses, at the next  one of these and then a process acti- 
vated because of the receipt of teletype input, and at the 
next two top priority real-time processes. See Figure 3. 

We now proceed to consider a possible implementation 
of the multiplexing philosophy just described. The idea 
is that  the scheduler should not  be aware of a process at 
all until it receives the wakeup signal, i.e. it should look 
only at processes on a list called the ~ady list. This list 
should be organized so as to make the selection of highest 
priority processes as natural  as possible and to facilitate 

C, 6 c,  6 C, 7 C, 8 Computing processes 
I/O, 4 I/O, 3 I/O, 6 I/O, 8 Processes blocked for 

I/O 
I, 1 I, 2 
(a) A possible state of the system. The running processes are in 

boldface, the ready ones in italics. Numbers indicate priori- 
ties; the highest priority is 1. 

C, 6 C, 6 C, 7 C, 9 
I/O, 4 I/O, 3 [/0, 6 1/0, 8 
I, 1 I, 2 
(b) Another possible state 
C, 6 C, 6 C, 7 C, 8 
I/O, 4 I/O, 3 I/O, 6 [/0, 8 
1,1 1,2 
(c) A higher priority process becomes ready 
C, 6 (1) C, 6 (2) C, 7 (3) C, S (4) 
U0, 4 (5) I/O, 3 (6) U0, o (7) I/O, s (8) 
I, 1 (9) I, 2 (10) 
(d) Two urgent i~al-time processes are rumfing. Process numbers 

in parentheses. 

FIo. 3. Running, ready, and blocked processes in a 
two-processor system 
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the introduction of new processes. The former require- 
ment can be very simply satisfied by  keeping the process 
numbers of the ready processes in a table of consecutive 
registers in order of their priority. This arrangement is 
extremely inconvenient, however, when it comes to adding 
processes, since on the average half of the list will need to 
be moved for each addition. 

A slight improvement can be effected by replacing the 
table with a linked list, so that  insertion requires only a 
splicing of pointers. I t  still requires a search through the 
list, however, to find the appropriate point at which to 
make the insertion. In order to eliminate this search it will 
be necessary to introduce more structure into the ready 
list. One way to do this is the following: restrict priorities 
to be integers in the range from 1 to n, and equip the sched- 
uler with an n-word table called the priority list. Each 
entry of this table contains either 0 or a pair of process 
numbers, plfp and plrp. Associated with each process 
there are also two process numbers, fqp[i] and bqp[i], which 
serve the purpose of forward and backward queue point- 
ers. 

Tile significance of these arrangements is as follows: 
every nonzero priority list ent ry  contains pointers to the 
head and tail of a queue of ready processes which have the 
priority given by  the index of the entry in the priority list. 
When a new process arrives, it is added to the tail of the 
queue; processes are run beginning at the head. The 
queue is kept as a symmetric list to facilitate deletions. 

To clarify the ready list pointer structure, the situation 
in Figure 3 is displayed in full in Figures 4 and 5. 

Management of the ReadyList. To take advantage of this 
data structure it is desirable to integrate the enforcer 
with the user interface procedures, since the enforcer needs 
to act only in response to a block, wakeup, or change 
priority operation (suspend and release, if they involve the 
enforcer at all, are equivalent to block and wakeup). 
Constant scanning of the scheduler data  base is therefore 
not  necessary. The pointer manipulations now become 
sufficiently complex, however, tha t  a description in words 
seems more satisfactory than explicit procedures. 

ready list 

FIG. 4. 

processes 

Ready list and queues for Figure 3d 

C o m m u n i c a t i o n s  of  t h e  ACM 353 



There are two basic cases in which the enforcer is ac- 
tivated. 

The first case is when a process is awakened. I t  is neces- 
sary to 

(W1) Enter  this process in the ready list at the ap- 
propriate priority on the tail of the queue (unless it is 
already on the ready list at a higher priority). 

(W2) Cheek to see whether this priority is higher than 
that  of some running process. If  not, there is nothing to 
do. 

(W3) If  so, switch the processor rumfing the lowest 
priority process so that  it  will run the newly introduced 
process instead. The abandoned process remains on the 
ready list and will run in due course. I t  has been pre- 
empted. 

The second case is when a running process blocks and its 
wakeup-waiting switch is not set. 

(B1) Remove its queue cell from the ready list. 
(B2) Find the lowest priority running process. Examine 

its forward pointer. 
(B3) If  it is a pointer to another queue cell, run the 

process in that  queue cell, which is now the lowest priority 
process. 

(B4) Otherwise, scan down the priority list from the 
entry  at the priority level of the lowest priority running 
process. When a nonzero entry is found, run the process 
in the queue cell pointed to by  its head pointer. 

A change priority operation, the only other one which 
affects the enforcer, can be implemented with the se- 
quence 

block; priority[i] := new priority; wakeup; 

In  practice, of course, this can be improved upon, since 
there are many cases in which no changes in processor 
assignment are called for. 

Priority rlfp rlrp 

1 9 9 
2 10 10 
3 0 0 
4 5 5 
5 0 0 
6 1 7 
7 3 3 
8 4 8 

FIG. 5a. Ready list for Figure 3d 

Process Priority f qp rqp Processor Run 

1 6 2 *6 0 1 
2 6 7 1 0 1 
3 7 *7 *7 0 1 
4 8 8 *8 0 1 
5 4 *4 *4 0 1 
6 - -  - -  - -  0 0 
7 6 *6 2 0 1 
8 8 *8 4 0 1 
9 1 *1 *1 2 1 

10 2 *2 *2 1 1 

FIG. 5b. Ready list queues for Figure 3d. 

If it is assumed that  the priority list and the queue 
cells are kept in memory, then the cost of block and wakeup 
operations in memory references (assuming that  queue 
pointers are packed two per word) is 

(Wl) Three references to enter a new cell in a queue 
(one if level was empty).  Two of these (to splice pointers) 
can be made in parallel. One more reference is needed to 
record the new state of the process; it can be made in 
parallel with all of the first three. 

(W2, 3) One reference to switch processes on a proc- :: 
essor (not counting loading and storing of the state 
vector), followed by another reference to record the new 
state of the preempted process. This assumes that  the : 
priority and queue cell address of every running process 
are kept in registers associated with the processor running 
it. 

(B1) Three references to delete a process (two if it is 
the only one on its priority level). Two of these (to splice 
pointers) can be made in parallel  

(B3) Two references to get the process number of the 
new lowest priority process if it is on the same level as 
the current one. Only one  is required if the process blocked 
is the lowest one, since the pointer to the next one is 
obtained in the splicing operation. 

(B4) Two references also if it  has lower priority, plus 
references wasted in the scan. 

The cost of the scan can be reduced to one reference 
by  providing a bit word with one bit for each priority 
level and turning this bit on if the level is occupied. This 
scheme requires an extra reference every time a level 
becomes empty or ceases to be empty.  Its value therefore 
depends on the density of empty  levels. 

If the actual lowest priority process (the one farthest 
down the queue at the lowest priority level) is not known, 
step B3 is complicated by  the possibility tha t  we may 
have to pass over queue cells for already running processes. 
I f  there are many  priority levels containing only one 
process, the cost of entering or deleting a process can be 
reduced by one cycle if we t reat  this as a special ease and 
put  the single process number directly in the ready list. 

Observe tha t  the algorithms described above can be 
implemented in a mechanism, independent of any proc- 
essor, which is able to read and write memory,  accept 
block and wakeup requests, and send to a processor the 
information tha t  it  should dump the process it is now 
running and start  executing another one. I f  the process 
number of the new process is held in a fixed memory 
location unique to the processor, then only one control 
line is required from the scheduler to each processor. The 
line simply says: switch processes: 

If we neglect the possibility of wakeup signals which 
come from the outside world, however, it is also clearly 
possible for everything to be done by one of the processors 
being scheduled. Since every scheduling operation is 
initiated by an ordinary user process, there is no problem 
in finding a processor to do the work. The  only other 
difficulty is in getting a processor to switch processes. This 
may be done with a signal which any processor can send 
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to any other, including itself, provided this signal is not 
sent until all the other manipulations connected with the 
scheduling operation have been completed. See Saltzer 
[5] for a more detailed discussion of this point. 

Timers. So far we have seen two mechanisms which 
can cause a process to lose its processor: 

It may be blocked, by itself or by some other process. 
It may be preempted by a higher priority process. 

If every process could be counted on to run for only a 
short period before blocking, these mechanisms would be 
entirely sufifieient. Unfortunately, in the real world proc- 
eesses run for sufficiently long periods of time that  it is 
necessary to have some method for stopping their execu- 
tion, or at least reducing their priority, after a certain 
amount of time has elapsed. 

The period for which a process is allowed to run before 
such disagreeable things begin to happen to it is usually 
called a quantum. I t  may vary with the priority, the 
process, the time of day, or anything else, and how its 
value is established is a policy decision with which we 
are not concerned. Some attention must be paid, however, 
to the methods by which the policy decision, once arrived 
at, is to be enforced. I t  is desirable that  these methods 
should allow as much flexibility as possible in the choice 
of quantum and should not add significantly to the cost 
of scheduling. 

What we wish to do is to attach to each process, as 
part of its stateword, an integer which we call a timer. 
When the process is running, the time is held in a hard- 
ware register and decremented at fixed intervals. When it 
reaches zero, the process is forced to transfer to a standard 
location where the system leaves a transfer to a routine 
which decides what to do. Two alternatives seem plausible: 
(1) Assign a lower priority to the process, an action which 
may cause it to be deprived of its processor. (2) Leave the 
process at the same priority, but give preference to all 
the other processes at the same priority level. Neither one, 
however, need be built into the scheduling mechanism. 

The choice of an initial setting for the timer is another 
policy decision, which can be made when the process is 
blocked or when it is awakened. The latter alternative 
is somewhat more appealing, since it allows for the possi- 
bility that  different wakeup signals may arrive for the 
process, with different priorities and requiring different 
amounts of time. The drawback is that  a wakeup signal 
must carry an additional piece of information. In either 
case we may  observe that  the choice of quantum and the 
action to be taken when it is exhausted can, like the 
assignment of priority, be left within limits to the discre- 
tion of the user. 

One other point ought to be brought out in regard to 
the kind of priority multiplexing scheme we have been 
discussing: it  does not guarantee that  a ready process 
will ever be run; if enough processes of higher priority 
exist, it will in fact not be run. This may be exactly what 
is intended, but if it is not, the design of the priority and 
quantum assignment algorithms must take the unpleasant 
possibility into account. This might be done by restricting 

Volume 11 / Number  5 / May, 1968 

the frequency with which a process may enter the ready 
list with high priority. Another alternative is to restrict 
the length of time it may run at high priority, although 
this one may be subverted by the fixed overhead imposed 
by the need to swap in the memory for the process. Still 
a third approach is to increase the priority of processes 
which have been waiting for a long time at low levels. 

Fixed Time Scheduling 

Everything we have said so far about wakeup signals 
has implied that  they originate in some definite action 
on the part of some unblocked process, whether this 
process be within the system or entirely external to it. 
A signal originated by an external process might be the 
result of a circuit breaker opening. There is one particular 
class of wakeup signals, however, which demand special 
consideration, and that  consists of the signals arising from 
the elapse of specified intervals of time. I t  is extremely 
common for a process to wish to block itself taltil, say, 
noon arrives, or for 5 seconds to give a user opportunity 
to respond to some stimulus, or for that  fraction of 100 
msec remaining since it was last awakened if it wishes to 
give attention to some input signal at that  interval. 

Another important case arises fl'om the following ob- 
servation: there is a large class of applications for which a 
user sitting at a teletype prefers a uniform 2-second 
response time to one which has, say, a uniform distribu- 
tion between .5 and 2 seconds, or even one which is .5 
seconds with probability .75 and 2 seconds the rest of 
the time. This is a fortunate circumstance from the point 
of view of the system, since it is only required to provide 
service sometime within a 2-second period chosen at its 
convenience. I t  does, however, require reasonably flexible 
timing facilities, both to give warning of the close approach 
of the deadline and to delay the generation of output until 
2 seconds have elapsed. 

Such requirements can of course be satisfied by the pro- 
vision of an interval timer for each one; when a process 
blocks itself for n ~see, one of these timers is set for that  
interval and the signal which it will emit on its expira- 
tion is routed to the process. This solution is, however, 
obviously wasteful in the extreme. 

To improve on it we create a list called the fixed-time 
list, each entry of which contains: 

1. A process number and priority. 
2. A time. 
3. A pointer to the next entry on the list. 

The contents of the first entry on this list is kept in a fast 
register and the time constantly compared with a real- 
time clock. As soon as the latter becomes greater, the 
specified process is awakened, the entry put on a free 
storage list, and the contents of the new first entry loaded 
into the registers. Any process desiring service at a fixed 
time simply puts the proper entry on this list and blocks 
itself. Note that  it is possible for the contents of the 
registers to be changed by the appearance of a request 
with time earlier than that  now in them. 

This arrangement ensures that  the scheduler will at  
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all times be aware of the requirements of processes which 
wish to run while it remains ignorant of those whose 
wakeup time has not yet arrived. In case there are not 
enough processors to run all the processes demanding 
service, the priority mechanisms of the scheduler can be 
relied upon to allocate processors to the inost important 
ones. This means that, given information about the 
distribution of processes at. various priorities, it is possible 
to compute beforehand what kind of service a process 
can obtain at a given priority level or, alternatively, what 
priority it must have to obtain a given level of service. 
For those processes on the fixed-time list precise informa- 
tion is available. For those being awakened in other ways 
only probabilities can be knowm beforehand. This uncer- 
tMnty can be eliminated by assigning higher priorities 
to the fixed-time processes than to any others, or, if the 
cost of this scheme is unacceptable, it is still possible to 
work out expected average and maximum delays. Since 
the system ean enforce its decisions about priority and 
running time, it can guarantee the correctness of its 
estimate for these delays (barring hardware failure or bugs 
in the system programs). The important point is that no 
computations need to be made when it is time to wake up 
a process; everything can be worked at when the process 
makes a request for service, and it can be informed exactly 
what kind of response can be obtained at what price. 

Sonm elementary observations about this response may 
be in order here. These are intended to suggest the scope 
of the problem; very little attention has been given to it, 
and much work needs to be done. Let us ignore the 
existence of nonfixed-time processes for simplicity, and 
let us also assume that no time elapses between the ar- 
rival of a wakeup signal and the execution of the first 
useful instruetion of a process. Then if there are n proc- 
essors we can guarantee to n processes any Mnd of service 
they may require, simply by giving them all the highest 
priority. After that, the situation becomes a little more 
complex, and some information must be required of the 
processes about the frequency, quality, and duration of 
service which they require. This information might in- 
elude any of the following items: 

1. With what frequency will the process wake up? Must 
it run at fixed times, or only at fixed intervals with an 
arbitrary origin? For most sampling processes the latter 
will suffice. What times and intervals does it wish to run at? 

2. What errors in the satisfaction of the above require- 
ments can be tolerated, and with what probability? Is it 
acceptable, for instance, to miss 1 percent of the samples 
entirely? This might frequently be the case. What is the 
desired distribution of error versus frequency of occur- 
rence? Perhaps a 2-msee error is completely acceptable, 
one of 5 msec tolerable 10 percent of the time, and one of 
10 msec intolerable. Or perhaps 40-ttsee accuracy is re- 
quired with 0 tolerance for greater error. Presumably a 
reid system will have a minimum error, determined by the 
response time of the scheduler, which is independent of 
priority. 

3. How long will t, he process run each time? Perhaps no 
more than 200 ~sec. Perhaps 1 msec usually, 2 msec 10 per- 
cent of the time. To what extent can it, tolerate interrup_ 
tions? Must it perform 5 msec of computation in 5 msee 
of reaI time, or is it acceptable for 7 msec of real time to 
elapse? 

Needless to say, not all users will be able or willing to 
supply accurate information about all of these items. 
For those who do not, the system can make worst case 
assumptions and charge accordingly; an incentive is thus 
provided for the user to state his requirements as precisely 
as possible. 

When all this information has been collected for all 
the fixed-time processes and suitable statistics and worst 
ease information supplied for t, he others, a routine can be 
run to figure out what service can be provided with what 
probability. This routine will certainly be complex and 
slow if it is to do a good job, but this is not particularly 
objectionable, since it runs only when a user requests a 
different grade of serviee, not whenever he is served. 
Too frequent running of the routine can be discouraged 
by eharging for it. As each new request for service comes 
in, it is thus possible to determine whether it can be 
satisfied (together with all the other requests already 
accepted) and at what cost; and if not, what service can 
be provided. The user can thus obtain precise information 
about what to expect. If the system is overloaded, of 
course, some users will not be able to get what they want. 
The proper response to this situation is to expand the 
system (if the user requests are justified; this is of course 
a policy decision which cannot be made by the system); 
if the service allocation routine is good, there can be 
reasonable assurance that the system is doing as well as 
it can. 

H a r d w a r e  I m p l e m e n t a t i o n  

The concepts and techniques described in the last three 
sections have been developed to provide the sole scheduling 
mechanism for a reasonably large time-shared system. 
Nearly all such systems in existence or under development 
are based on a dichotomy between two different schedulers: 
one implemented in hardware and usually called the in- 
terrupt system, the other implemented in software and 
used to schedule user programs. Such an organization has a 
number of drawbacks. First, it leads to a sharp distinction 
between interrupt routines, which are regarded as part of 
the basic system, usually run in some unprotected mode, 
and cannot call on the system services available to ordinary 
programs; and user processes, which cannot respond 
directly to external signals and cannot run for short 
periods of time without incurring overhead considerably 
greater than their running time. 

Second, the software scheduling system is usually quite 
slow and cumbersome. I t  requires a considerable amount 
of time to convince both the processor hardware and the 
system software that a different process is being run, and 
the computation required to properly handle the highly 
nonuniform load of user processes is substantial. As a 
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result the time required to schedule a process is on the 
order of milliseconds, except possibly for a very small 
class of processes which can be given special treatment. 
On the other hand, a process scheduled in this way can 
eatl on all the services which the system provides without 
taking any special precautions (can, for example, open a 
disk file, which is a highly nontrivial operation), and it 
runs within the elaborate framework of protection normal 
for a user process which prevents it from damaging other 
users or degrading the service too much and insulates it 
from many of the consequences of its own folly. 

Third, it is nearly impossible to establish any kind of 
communication between the priority system established 
by the interrupt hardware and the one defined by the 
software. The usual rule is simply that all interrupt 
routines take precedence over any "normal" processes. I t  
is, of course, possible to persuade the software scheduler 
to, in effect, turn an interrupt routine into an ordinary 
process, but this is a messy and time-consuming pro- 
eedure. Related to this problem is the fact that the inter- 
rupt system's priority scheme is not likely to be satis- 
factory in demanding situations; many routines need 
much more flexibility to establish their priorities than the 
hardware can conveniently allow, especially where the 
set of interrupts which are expected during any given 
five-minute period is a small and varying subset of all 
those which might be handled in a week. 

A fourth point which is somewhat unrelated to the first 
three is that interrupt systems do not switch enough of 
the state of a processor automatically. The most obvious 
omission is the interval timer and elapsed time clock. 

These considerations suggest that it might be worthwhile 
to develop a system which would eliminate interrupts 
and drastically speed up  the software scheduler by 
centralizing all responsibility for assigning processors to 
processes into one mechanism. A basic objection to any 
such proposal might well be the following: once something 
has been built into hardware it is very difficult to change. 
Scheduling algorithms are not well understood, and it is 
not likely that we can lay down rules today for deciding 
what processes to run which will satisfy us next year. 
Therefore, we should not freeze our present inadequate 
ideas into the system forever. 

To see why this argument is weak, observe that a broad 
distinction can be made between a policy-making and an 
administrative module in a system. The latter performs some 
function in a manner controlled by parameters supplied 
to it by the former. Of course, it is true that the organiza- 
tion of an administrative module affects the kinds of 
parameters that  can be fed to it, and consequently deter- 
mines the system's policy within certain limits. These 
limits are very wide, however, in many cases of practical 
interest. Consider, for example, an input/output buffering 
system. By adjusting the number of buffers, the blocking 
factor, the organization of buffers into pools, and the pri- 
orities of files competing for buffers, the behavior of the 
system can be varied over a wide range. 

Similarly with a scheduler: its behavior is determined 

by the priority assignment algorithms, the choice of 
quanta for running processes, and the action taken on 
quantum overflow, as well as by decisions of the swapper 
and the input-output system. The scheduler itself simply 
provides a framework for enforcing the decisions taken 
by policy modules. 

Furthermore, the scheduler is such a basic part of the 
system that it is difficult to see how it could be drastically 
altered without a complete revision of the rest of the sys- 
tem. The effort required for such a change is probably 
greater than that required to rebuild any reasonable 
piece of hardware, so that the flexibility offered by software 
is likely to be illusory. 

With these preliminaries out of the way, let us consider 
how an interrupt system might be replaced by a more 
powerful mechanism. The functions of an interrupt system 
are three: to continually monitor a fairly large number of 
external signals and take appropriate action when one of 
them changes state; to start a processor executing in- 
structions for a new process within a fairly small number 
of microseconds after an interrupt arrives, regardless of 
what it is doing at the time; to recognize a sequence of 
priorities among interrupt signals and keep the processors 
executing the highest priority ones. 

To replace it we clearly need a piece of equipment which 
functions independently of the processors being scheduled, 
and which is capable of examining say 50 external lines, 
recognizing that one of them is high, putting a process 
on the ready list, and giving it a processor, all within a 
period of perhaps 10 gsec. Present-day hardware tech- 
nology allows such a device, which we henceforth call 
the scheduler, to be built with a read-only microprogram 
memory and some small number of internal registers, 
say 5 or 10, and to operate with a cycle time of 100 to 
200 nsec. The major delays it encounters are due to the 
main memory of the system. This, however, is likely to 
be organized in numerous modules, so that the scheduler 
can make several references to main memory in parallel 
if this is convenient. 

All the external interrupt lines are directed into the 
scheduler, which in its normal state loops constantly, 
examining them and the request lines from the processors 
for activity. Associated with each line is a fixed core loca- 
tion (possibly relative to a programmable base register). 
When the scheduler finds an active line it goes to this 
location to find out what to do. In most cases the line 
will carry a wakeup signal, and the core location will 
containing either 0, which causes the signal to be ignored, 
or the arguments for a wakeup operation, which are a 
process number and a priority. The process nuInber is 
actually a pointer to a block of words which contain: 

the state word for the process (or its core or drum 
address). 

bits which specify whether it is blocked, ready, or run- 
ning, what processor it is running on, whether it is 
suspended or not, and the wakeup waiting switch. 

forward and backward pointers for the ready list queue 
it is on, if any. 
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If  the process is ready or running at a higher priority than 
its current one, there is nothing to do. Otherwise, it. must  
be added to the ready list or moved to the appropriate 
level; the steps required to accomplish this have already 
been presented. If  its priority is high enough it  must be 
given a processor, which is done by storing its stateword 
address into a standard place and sending the selected 
processor a switch signal. The  scheduler then sets the 
status bits for the newly running process and for the one 
which has been preempted and goes on its way. 

Processor Switching. The processor which receives the 
switch signal must store the stateword of the process it 
is currently running in the proper place, which it is 
responsible for remembering, and pick up the address 
of its new stateword from the cell where the scheduler 
left it. Note that  the stateword of a process is always 
associated with the process itself and never with the one 
which preempts it. This means that  it is not necessary to 
exit froIn "interrupt  routines" in the order in which they 
are entered. In fact, the whole idea of an interrupt routine 
does not have much meaning. The time required to store 
a stateword and pick up a new one will depend on memory 
speed and the number of central registers, but  with a 
memory of reasonable bandwidth and 1 gsec cycle time 
it  should not be more than 4 or 5 ~see. 

The stateword, of course, defines the process. The infor- 
mation it  contains, together with a minimal amount of 
other status information and temporary  storage for essen- 
tial system routines, is all that  is needed to allow a process 
to run (although to do anything useful it will have to have 
some user program and data storage as well). All these 
da ta  can be held in a block of memory locations which 
we may cM1 the context block. The  address of this block is 
then sufficient information to give to a processor when it 
starts to run the process, and the operation of creating 
a process consists precisely in creating a new context block. 
The  layout of a context block is shown in Figure 6. 

In a paged swapping system it will probably be con- 
venient to assign a page to the context block, which may 
then be identified by its drum address if it is not in core. 
Of course, it is not possible for a processor to run the 
process if its context block is out of core, but  the scheduler 
can detect this situation and wake up a system process 
instead. This process, which might be called the context 

program counter 

central registers 

clock 

map 

status information, user number, capabilities, 
etc. 

temporary storage for 
system routines 

Fro. 6. Contents of a context block 

interpreted 
by hardware 

block swapper, Call then take responsibility for bringing 
the context block into core arid waking up its process 
again. 

The algorithms for block and change priority have ; 
already been considered and present no new problems. The 
t reatment  of the timer has also been considered. Recall 
tha t  it  does not  involve the scheduler at all; decisions 
about what to do when a timer trap occurs are matters of 
policy and must  be left as flexible as possible. 

I t  should be pointed out tha t  there is a distinction be- 
tween interrupts, which are wakeup signals, arid traps, 
which are forced transfers of control within a single process. 
This distinction is made very sharp by  a hardware sehedu- 
ler~ which has complete jurisdiction over wakeups but 
knows nothing about traps. In  addition to the timer 
trap, there are also likely to be traps for various conditions 
having to do with memory addressing, for protection viola- 
tions, for floating-point overflow, and possibly for a variety 
of other conditions. A call on the system by a user process 
is also a kind of trap, and indeed in some systems it 
takes the same form as an illegal instruction execution. 
This observation should illuminate the relationship of a 
t rap to a wakeup signal, espeeiMly in the light of our 
earlier discussion of system calls. 

I n t e r l o c k i n g  o f  P r o c e s s e s  

I t  is very often the ease in a large system, whether it be 
an entire time-sharing complex or simply an applications 

} 
program, that independent processes work on the same 
data base. When the data base is being modified, it is ~: 
generally not in a fit state to be looked at. It is therefore 
necessary for a process which intends to modify the data 
base to lock out any other process which might want to 
modify or look at it. The  sequence of events required is 

1. Test  the lock to see if it is set. I f  so, loop in this step. 
If  not, go on. 

2. Set the lock. There must  not be any opportunity 
between steps one and two for another process to 
set the lock. If  this event should occur, both processes 
would proceed to access the data base simultaneously, 
exactly the condition we are trying to avoid. 

3. Examine or modify the data  base. 
4. Clear the lock. 

In  some eases these precautions are required only when data 
are being changed, At other times, especially when pointers 
are involved, it is dangerous even to look at the data if 
another process might  be modifying them. The  details 
will vary  with the specific application, but  the nature of 
the problem remains the same. 

Several techniques exist for implementing locks. The 
first is to provide a machine instruction of the following 
general form: test the contents of the memory word 
addressed. If  it is negative, skip. Otherwise make it  nega- 
tive and take the next instruction. If  we call this instruc- 
tion TSL for test and set lock, then the sequence 

TSL LOCK 
BRU OK branch unconditionally 
BRU * - 2 
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.will not allow control to reach OK unless the lock has been 
found not to be set, and when eontrol does reach OK the 
lock will be set, again. Probably two memory references 
to LOCK will be required by TSL. If  this is the ease, 
~eeess to tha t  cell by any other process must be inhibited 
between the two references of the TSL. 

This mechanism allows an arbitrary number of locks 
to exist. A lock is cleared by  storing some positive number 
in the lock cell. A minimum of two instructions must be 
executed, and a minimum of four memory cycles is re- 
quired. The biggest drawback is that  a process hung up 
waiting for a lock to be cleared expends memory cycles 
without doing any useful work. These memory references 
degrade the performance of the rest of the system. 

An alternative method is to supply each process with a 
lock register consisting of n bits. The  equivalent of TSL 
hangs the process until a specified bit is off, then turns it  
on and proceeds. Two instructions are still required, but  
only two memory references. The cost of waiting for a 
lock to clear is simply the cost associated with the processor 
which is delayed; there is no drain on the rest of the 
system. There  are two drawbacks: the number of different 
locks which may be set is limited by the length of the lock 
register, and a physical connection between processors 
other than the memory is required, even though it is a 
simple one. Furthermore,  it is not  clear what to do with 
the lock register if a process is blocked and the processor 
given to another process. 

If processors are being shared, either method has the 
following further drawback. Suppose there is only one 
processor, and that  process A is running, sets a lock, and is 
deprived temporari ly of its processor in favor of process 
B, which at tempts to set the same lock. Process B will 
hang, but  the lock will never be cleared, since A will never 
be able to continue (unless B is preempted by  a t imer 
runout). This is rather serious. The difficulty can be 
avoided by  increasing the priority of process A so much 
that it cannot be preempted, but  this scheme has obvious 
disadvantages. 

The problem is handled in most existing systems by 
precisely this means, however. "Increasing the priority 
of process A"  is accomplished by  disabling the interrupt 
system, so that any interrupt signals which come in are 
stacked until an enable instruction is executed. The process 
which executes the disable instruction will run without 
interference, since on most systems all the mechanisms 
for taldng the processor away from it are dependent on 
interrupts. 

The fact that this method stops the entire scheduling 
:system from functioning is not particularly objectionable if 
it does so only for a few microseconds. A much more 
serious problem is that  it requires explicit action to re- 
enable the interrupts; if this action is omitted, the entire 
system ceases to function. This method can therefore be 
used only by highly privileged processes and with the 

greatest of care. 
With the TSL instruction a completely general solution 

to the entire interlocking problem is possible along the 
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following lines. When a process tests a lock and finds it 
set, it blocks itself. Before doing so, however, it adds 
itself to a list of processes waiting for the lock to be 
cleared, which we call a wakeup list. The process which 
clears the lock does so through a standard routine which 
cheeks for the existence of this list and wakes up one or 
all of the processes on it, depending on the nature of the 
lock. The cost of this operation is very low if there is 
nobody to wake up, probably just one conditional branch. 
The generality is, however, necessary since most locks 
used by the basic system programs can be tested by a 
large number of processes at once, not just  by two. Obvi- 
ous examples are locks oil storage allocation tables or 
input /output  devices. 

Short-Term Interlock. The arrangement described above 
is a complete solution to the problem we are consider- 
ing. Its only drawback is that  it requires a good deal of 
machinery to be brought to bear even if only a few 
instructions are to be interlocked. This point becomes 
painfully clear when the details of constructing a wakeup 
list are considered: since a process can in general be inter- 
rupted or preempted between the execution of any two 
instructions, there is no guarantee that  the list will not 
disappear while a process is in the middle of adding itself 
to it. We would therefore like to have a very cheap mecha- 
nism for ensuring that  a short sequence of instruct- 
tions can be completed without interference from the 
scheduler. 

We thereforeintroduee a new instruction called PROtect,  
whose function is to ensure that  during some short period 
after the execution of PRO:  

a. The process which executes the PRO cannot lose its 
processor or be preempted by the timer. 

b. No other PRO can be executed. If  another processor 
attempts to do a PRO, it is forced to wait until the current 
one is complete. Simple hardware synchronization tech- 
niques can ensure this. 

The "short period" mentioned above is probably best 
measured in memory references by  the processor and about 
15 is probably the right number. Time is not satisfactory 
since the amount of time required to execute an instruc- 
tion is unlikely to be predictable in ~ advance, and instruc- 
tion execution is even worse, since an indirect addressing 
loop can cause the processor to hang without executing 
any instructions. Since a PRO cannot hang up a processor 
for more than a small number of memory cycles it does not  
need to be a privileged instruction, and can therefore be 
used by ordinary programs, which occasionally have as 
much need for locks as system programs. 

The PRO mechanism has one serious weakness which 
limits its usefulness: if a memory fault occurs while the 
PRO is in force, its effect on the following instructions is 
lost. I t  is therefore necessary to ensure that  all addresses 
generated during the PRO fall either in the page contain- 
ing the program, or in pages guaranteed to be in core, or 
in one other page which is first referenced before anything 
critical is done. If the return from a memory fault re- 
enables PRO, all will then be well. 
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With this much machinery (l~IlO is the only new in- 
struction which is really essential) we have a very  satis- 
factory system for interlocking independent processes. 
Short  sequences of instructions can be protected by  PRO;  
if every other Sequence of instructions which is executed 
b y  another process and references the sensitive data  is 
also covered by  a PRO, it is not  possible for two such 
sequences to be executed simultaneously. Larger operations 
on shared da ta  bases can be interlocked with locks in 
memory .  The cost of setting and clearing such a lock is 
only a few instructions. 

The  methods discussed in this paper  depend on eo- 

operation among the processes referencing a shared da ta  

base and on correct programming of each reference to the 

da ta .  As Van Horn  and others have  pointed out, the bugs 

introduced by incorrect handling of this problem occur 

in a random and generally irreprodueible manner  and 
are very difficult to remove. Van Horn  [6] has proposed a 

scheme which enforces proper handling of shared data; 
it does however require more substantial  hardware modifi- 
cations than the methods suggested here. 

REFERENCES 
1. DENNIS, J. ET AL. Machine Structures Group Memos 19, 40, 

41. M.I.T., Cambridge, Mass., 1966. 
2. DENNIS, J. B. Segmentation and tim design of multipro- 

grammed computer systems. J. ACM 12, 4 (Oct. 1965), 589- 
602. 

3. -----,  AND VAN HORN, E. Programming semantics for multi- 
programmed computations. Comm. ACM 9, 3 (Mar. 1966), 
143-155. 

4. LECLERC, JEAN-YVES. Memory structures for interactive 
computers. Project Genie Document 40.10.110, U. of Califor- 
nia, Berkeley, Calif., May 1966. 

5. SALTZER, J. H. Traffic control in a multiplexed computer 
system. MAC-TR-30 (thesis), M.I.T., Cambridge, ~¥[ass., 
July 1966. 

6. VAN HORN, E. C. Computer design for asynchronously re- 
producible multiprocessing. MAC-TR-34 (thesis), M.I.T., 
Cambridge, Mass., Nov. 1966. 

Three Criteria for Designing Computing 
Systems to Facilitate Debugging 

Earl C. V a n  Horn 
General Electric Company, Phoenix, Arizona 

The designer of a computing system should adopt  explicit 
criteria for accepting or rejecting proposed system features. 
Three possible criteria of this kind are input recordability, input 
specifiability, and asynchronous reproducibility of output. These 
criteria imply that a user can, if be desires, either know or con- 
trol all the influences affecting the content and extent of  his 
computer's output. To define the scope of the criteria, the 
notion of an abstract machine of a programming language and 
the notion of a virtual computer are explained. Examples of 
applications of the criteria concern the reading of a time-of-day 
clock, the synchronization of parallel processes, protection in 
multiprogrammed systems, and the assignment of capability 
indexes. 
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I n t r o d u c t i o n  

Today  the design of computing systems is an art. For 
the design of these systems to become a science, the criteria 
b y  which a designer accepts or rejects proposed system 
features must  be s ta ted exphcitly. This paper  states three 
possible design criteria and explores some of their conse- 
quences. 

The  criteria are s tatements  of properties desired in 
computing system's  interface with a user; these properties 
are intended to facilitate program testing. The  criteria 
are input recordability, or I R  for short, input specifiability, 
or IS for short, and asynchronous reproducibility of output, or 
ARO for short. Although precise explanations of the cri- 
teria will require some preliminary developments,  the 
criteria can be s ta ted briefly as follows. 

The  I R  criterion means tha t  before s tar t ing a computa- 

tion a user can command tha t  during the computat ion 
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