
A Systems Scheduling Philosophy for Multiprocessing
Butler W . Lampson

University of California, Berkeley, California

A collection of basic ideas is presented, which have been
evolved by various workers over the past four years to provide
a suitable framework for the design and analysis of multi-
processing systems. The notions of process and state vector are
discussed, and the nature of basic operations on processes is
considered. Some of the connections between processes and
protection are analyzed. A very general approach to priority-
oriented scheduling is described, and its relationship to con-
ventional interrupt systems is explained. Some aspects of
time-oriented scheduling are considered. The implementation
of the scheduling mechanism is analyzed in detail and the
feasibility of embodying it in hardware established. Finally,
several methods for interlocking the execution of independcrt
processes are presented and compared.

KEY WORDS AND PHRASES: time-sharing, multiprocessing, process, sched-
uling, interlocks, protection, priority, interrupt systems

CR CATEGORIES: 4.31, 4.32, 6.21

I n t r o d u c t i o n

One of the essential parts of any computer system is a
mechanism for allocating the processors of the system
among the various competitors for their services. These
allocations must be performed in even the simplest system,
for example, by the action of an operator at the console of
the machine. In larger systems more automatic techniques
are usually adopted: batching of jobs, interrupts, and
interval timers are the most common ones. As the use of
such techniques becomes more frequent, it becomes in-
creasingly difficult to maintain the conventional view of a
computer as a system which does only one job at a time;
even though it may at any given instant be executing a
particular sequence of instructions, its attention is switched
from one such sequence to another with such rapidity that
it appears desirable to describe the system in a manner
which accommodates this multiplexing more naturally. I t
is worth while to observe that these remarks apply to
any large modern computer system and not just to one
which attempts to service a number of online users simul-
taneously.

We consider first, therefore, the basic ideas of process
and state vector and the properties of processes which are,
so to speak, independent of the hardware on which they
may happen to be executing. The interactions between
processes are dealt with and the necessary machinery is
constructed to permit these interactions to proceed
smoothly. Many of these ideas were first expounded by

Presented at an ACM Symposium on Operating System Principles,
Gatlinburg, Tennessee, October 1-4, 1967; revised January, 1968.

The work reported in this paper was supported in part by the
Advanced Research Projects Agency of the Department of De-
fense under Contract SD-185.

Sa]tzer [5], from whose treatment we have borrowed most
of our terminology. We then go on to analyze the mecha-
nisms by which processes increase their capabilities.

In the next few sections we consider mechanisms for
sharing processors among processes. Our attention centers
first on priority-driven scheduling systems, which have
obvious analogies with interrupt systems. After detailed
treatment of a reasonably efficient implementation of a
priority scheduler, we turn to some of the problems of
time-driven scheduling, in which the objective is to get
work done at certain fixed times. A scheme for embedding
time-driven processes in the priority system is discussed,
and the generally neglected problem of guaraneted service
is analyzed at some length; unfortunately, its surface is
only scratched.

There follows a detailed analysis of how an interrupt
system might be replaced with a quite general scheduling
system which permits any user process to run in response
to any external signal and which removes all constraints
on the relative priorities of different processes and the
order in which their execution may be started and stopped.
In conclusion we consider the very important problem of
interlocking processes which access a common data base
and analyze its relation to the scheduling system in use.

P r e l i m i n a r i e s

We begin by defining some terms which will permit a
precise discussion of what happens in a complex computer
system. The most important of these terms is process. The
intuitive basis for the idea represented by this word is the
observation that certain sequences of actions follow
naturally, one upon the other, and are more or less inde-
pendent of other sequences. For example, a disk4o-printer
routine and a matrix inversion program running on the same
processor are two quite distinct programs, which can
normally execute entirely independently of each other. The
independence is not complete, however, since information
may be written into the disk file by the inversion program
while earlier information is read by the printer driver.
Furthermore, the fact that clearly different programs are
being executed is not essential; two inversions operating
on different data would have just as much right to be
considered distinct. Indeed, it might well be that a single
inversion program could be coded in such a way that
several parts of it could be in execution simultaneously.

To summarize, the essential characteristic of a process
is that it has, at least conceptually, a processor of its own
to run on, and that the state of its processor is more or less
independent of all the other processors on which all the
other processes are running. Since there are usually not a s
many physical processors as three are processes, it becomes

Volume 11 / Number 5 / May, 1968 Communicat ions of the ACM 347

necessary to create enough logical processors by m~dti-
plexing the physical ones. Techniques for doing this are
one of the subjects of this paper.

We now consider more carefully what is involved ir~
switching a physical processor from one process to another.
When a processor is exeeuti~g instructions, there exists a
collection of information (called the full-state vector) which
is sufficient to completely define its state at any given
moment, in the sense that placing the processor in some
arbi t rary state and then resetting it from the full state
veetor will cause execution of instructions to proceed as
though nothing had happened. For a central processor of
eonventional organization the full-state vector includes:

(a) The contents of the program counter.
(b) The contents of the central registers of the processor.

For eonvenienee, we will confine our at tent ion to points in
t ime between the execution of instructions at which regis-
ters directly accessible to the programmer are the only
ones of interest. The use of address mapping schemes
involving segmentation may make it necessary to consider
Mso certain nonaccessible registers involved in indirect
addressing. This eomplieation will be ignored.

(e) The address space of the processor and the contents
of every address in it. By this we mean a list of all the
legal memory addresses which may be generated by the
program and the contents of each one.

(d) The state of all input-output devices at tached to
the processor.

The information just specified consists of a rather large
number of bits. Furthermore, it eontains considerably
more detail than is usually desired. In a time-sharing
system, for example, the physical state of the inpu t /ou tpu t
devices is not normally of interest to the program, and
even the address of the next word to be read from a file
may not be information which we wish to associate with a
process, since such an association makes it difficult for two
processes to share the file.

Similar considerations apply to the contents of the words
in the address space; these might be changed by another
process. The address space itself, however, has a better
claim to be regarded as an integwal par t of the process.
To clarify this point, we pause to consider (or define)
exactly what the address space is. We may think of all the
words which can possibly be addressed by any process as
being numbered in some arbitrary fashion. Each word
is then identified by its number, which we will call its
absolute address. Note that we are not saying anything
about the physical location of the words, and tha t the
absolute address we have just defined has nothing to do
with this location, but is simply a eoneeptual tool. Then
the address space of a process (also called the map) is a
function from the integers into the set consisting of the
absolute addresses of all the words in the system and two
symbols U and N; i.e. it, associates with every address
generated by the program an absolute address, or specifies
tha t the address is undefined or not available. The address
space may also carry information about the accessibility

of a word for which i{: supplies alx absolui:e address, speci-
fying, for example, that the word may tact be written into.

Observe now tim.e, what the address space really does is
to deflate tile memory of the process..Any of the words of
this memory may ~Hso be part of ~he memory of some other
process, which may refer to them with the same or differ-
ent addresses. The words, however, are considered to have
an existence indepeudent of their addresses in any particu-
lar address space.

We recognize, then, that the definition we want for the
state vector of a process is not a direct analog of the one
used in system theory. In fact, it. leaves unspecified a
nuinber of things which can affect the furore execution of
a process, namely just those things which we wish to think
of as being shared between processes. With this point in
mind, we define the state vector (or stateword) of a process
to consist of the program counter, central registers, and
address space of the processor on which it is running.
From the above discussion we conclude that the process
can still exist even if it is not running on the processor,
since the state vector carries sufficient information to
allow it to be restarted. A process should be sharply dis-
tinguished from a program, which is a sequence of instruc-
tions in memory. We can speak of either a process or a
processor executing a program. The process is the logical,
the processor the physical environment for this execution.
I t seems reasonable to say tha t the process is executing
even if it is not running on any processor.

To give practical substance to the distinction between
process and program, it is required that execution of the
program should not cause it to be modified. If this re-
strietion is observed, it is clear tha t more than one process
can be executing the same program at the same time.
Note tha t it is not necessary to have more than one proc-
essor for this to be possible, since we do not insist that a
process be running in order to be executing. To return to
the matr ix inversion example: in a particular problem it
may be necessary to invert six independent matrices, and
to this end six processes may be established, one to work
on each matrix but all executing the same program. On
the other hand, one of these processes may, after inverting
a matrix, go on to execute a different program which calcu-
lates its eigenvalues.

O p e r a t i o n s o n Processes

In this section we take up some points which are inde-
pendent of processor multiplexing. A number of these
points center around the observation that a process does
not always want to execute instructions even if there is a
physieal processor available. A typical example of such a
proeess is a compiler which has exhausted its available
input and is waiting for more cards to be read. This is a
special case of a very general situation, in which a process
is waiting for some external eondition to be satisfied and
has nothing useful to do in the meantime. There are basi-
cally two ways in which this Situation can be handled.
The simplest is for the process to loop, testing a flag which
records the state of the external condition. The objection

348 Communications of the ACM Volume 11 / Number 5 / May, 1968

to this scheme is that it is wasteful if there is any other
process which could use the processor. Alternatively, the
process can record somewhere the fact that it is waiting
for, say, 14 cards to be read, and blocl~ itself. I t will then
execute no more instructions until the 14th card has been
read and it has received a walceup signal. The part of the
system responsible for handling block and wakeup in-
structions will be called the scheduler. When a processor is
executing instructions for a process, the process is said to
be running.

From the point of view of the scheduler, then, the life
history of a process is an alternation of running periods
and blocked ones. Each running period is terminated by a
request to the scheduler that the process should be blocked;
this request may be made by the process itself or by some
other process. Each blocked period is terminated by a
wake up signal whose characteristics are described
above. Since the process can do nothing to help itself
while it is blocked, it must make arrangements to be
awakened before blocking itself. Let us consider what
the nature of these arrangements might be.

The simplest situation is one in which the process has
requested some service to be performed and wishes to
wait until it is completed. Typical services have to do with
input-output: a process might block itself until an input
buffer is filled. In this case the process performing the
service is expected to provide the wakeup signal. This
idea is so simple as to require only one further comment.
A reciprocal situation is that of the input-output process:
it expects to be awakened by a demand for service and
blocks itself when it has done its job. The situation is
sketched in Figure 1. Readers familiar with the concept
of coroutines will find this picture familiar.

input-output process

Fie. 1. Reciprocally blocked processes. Solid horizontal lines
indicate running periods, dashed ones blocked periods.
The arrows are wakeup signals.

A slightly more involved situation is shown in Figure 2.
Here the input is assumed to be buffered, so tha t the com-
puting process, after making a request for input, is able
to continue running for a while. In the figure it continues
to run on buffered input data until after the input-output
process has completed its work and sent it a wakeup,
which has no effect on an already running process. Finally,
it blocks itself, but by this time the wakeup has passed
and will never come again.

This situation can of course be alleviated by having the
input process set a flag indicating that it has filled the next
buffer. The computing process could then test this flag
and not block itself if the operation is complete. This
approach, however, will only serve to make the bad
situation shown in Figure 2a less common; it will not
eliminate it entirely, since it is still possible for the input
process to send its wakeup in the interval between an
unsuccessful test and the subsequent block. What is neces-
sary is to reduce this interval to zero, which can be done

with a simple device called a walceup-waiting switch.
There is one of these for each process. Whenever a wakeup
signal arrives at a running process, the switch is turned
on. Whenever the process is blocked, it is turned off', and
the process can also tm'n it off explicitly. If a process tries
to block itself and the wakeup-waiting switch is on, the
switch is turned off and the process is simply allowed to
continue running without interruption. This sequence of
events is illustrated in Figure 2b.

computing process ~--- . I

input-output process

(a) Race condition improperly handled. The second wakeup
is lost.

computing process ~ ~ A

(b) Race conditions handled correctly. The cusps are at-
tempts to block thwarted by the wakeup-waiting switch.

Fro. 2. Race conditions in the scheduler

Note that a single switch for each process is quite suffi-
cient. Any function which might be accomplished with a
stack of wakeup signals handled by the scheduler can be
equally well accomplished by communication through
shared memory.

The proper way to program a process which blocks
itself periodically, like the ones in Figure 2, is to check
explicitly after a wakeup signal is received that there is in
fact work to be done, and to block again if there is not.
This procedure will circumvent the problems which would
otherwise arise if the work for which a wakeup is received
gets done before the process tries to block. Often the sim-
plest way to make this check is with a loop back to the
code which made the decision to block, as, for example,
in the following routine to read data from an input buffer
being filled by another process:

a. Is input buffer empty?
b. If not, read data and exit.
c. Otherwise, block.
d. When wakeup arrives, go to (a).

An additional complication is introduced by the fact
tha t it is not unusual for several processes to be blocked
waiting for the same condition to occur. If this situation
can arise, the process generating the wakeup must be
prepared to send it not just to one process, but to an entire
wakeup list of processes. Alternatively, it may be preferable
to leave this process unaware of the problem and to make
one of the processes receiving a wakeup signal responsible
for sending wakeups to the others (if such action is ap-
propriate; in the case of several processes competing for a
single device it may not be). The possible existence of
wakeup lists is not important to the basic scheme and
has been mentioned only to illustrate a complication
which can be handled without difficulty.

We now have two states for a process: blocked and
running; and two basic operations on processes: block and

Volume 11 / Number 5 / May, 1968 Communicat ions of the ACM 349

wakeup. Let us consider what else is required° Two thi~gs
are obvious: it is necessary to be able to create a~d desfmy
processes, and to establish restrictions on the kind of
access allowed to one process by another. These problems,
however, ha:re to do with the general mecha~fism i~a the
system for granting c:apabilities, with which we are ~tot
concerned here. The precise operations required to create
a process are considered in a later section.

It is, however, very convenient for a process to have one
other property in addition to being blocked or running.
Suppose, for example, that. a program involving several
processes is being debugged online. A valuable tool in this
situation is the ability to stop execution of the program,
examine the state of things, and then continue as though
nothing had happened. During the pause in execution, all
the processes being debugged are suspet~ded; i.e. they are
prevented from executing. If a wakeup signal is directed at
a suspended process, it. is recorded and will be acted
Upon when the process is released. In other words, being
suspended is a quality unrelated to being blocked; a
suspended process can be either blocked or running, but
it will execute no instructions until it is released.

Approximately the same effect can be obtained by
reading the state words of ~dl the processes, destroying
them, and then recreating them later and putting back
the statewords. This approach, however, requires a po-
tentially large amount of information to be recorded and
then restored. I t is also likely to be quite time-eonsuufing,
especially since it is usuMly not possible to destroy a
process at any arbitrary point in its execution, e.g. when
it is operating on system tables. Furthermore, if any
wakeup signals for a process arrive after it has been
destroyed, they will be lost, which is not very satisfactory.

Acquistion of Capabilities. We conclude this section
vdth a brief discussion of the relationship between proc-
esses and protection. I t has been taken for granted so far,
as in almost all of the published literature, that a process
(or a group of processes) is the basic entity to which cap-
abilities should be attached [2, 3]. Since this doctrine
earmot easily be made to cover all situations, it is usually
modified in running systems by more or less inelegant
devices for allowing a process to have different capabilities
depending on what it is doing.

To make this point clearer, let us consider an ordinary
unprivileged process which wishes to obtain permission to
use a tape unit,, for example. I t will make some kind of
"call on the system." That is, it will transfer to a system
routine which will determine whether the process is au-
thorized to use tape units and whether the specified unit is
free. If everything is in order, the system will grant the
desired permission. To avoid unnecessary digression,
let us ecssume that permission is granted by turning on a
bit in the stateword, and that the hardware allows execu-
tion o finstruetions for this tape unit only when the bit is on.
The point is that the process running the system program
must have much greater capabilities than the user process;
it has at least the capability to set the hypothetical bit
just introduced, and the user process does not, have that

eat)abitily or ii; would have set the t>it i{selL It1 f~xct, we
cau dispense with the bit if anyone can s(t, i~, since it
wol/Id serve Ilo use[ill porpose.

This discussion suggests tImt the "trill o1~ the system"
mentioned above is really a w,,~keup directed to a process
with gre~t eapttbilitics, ~hich we c a l I a system proc-
ess. There must also be some mechanism for communi-
cating data between user and system processes, so that the
latter can find out what is wanted a~d the former obtain
information about the fate of its request. We may assume
that the two processes share some memory, and neglect a
host of questions about how such aa arra[~geinent can
actually be implemented with reasonable eft:ieieney. The
situation is then quite clear: the user process puts informa-
tion about its request into this shared nlemory, wakes up
the system process, and blocks. The system process ex-
amines the request, modifies the user process stateword
appropriately, records what it has done in the shared
memory, wakes up the user process, and blocks. The entire
interaction depends on cooperation between the two
processes, which is precisely why it is a suitable mecha-
nism for its purpose: the user process cannot force the
system process to do anything, but can only call attention
to its desires.

I t is worth noticing, however, that the use of two proc-
esses in the manner just discussed is completely different
from the usual applications of multiproeessing, where two
processes are running (more or less) in parallel. Here no
paraUel execution takes place at all; the system process
runs when, and only when, the user process is blocked.
The entire transaction in fact looks exactly like a sub-
routine call and return implemented in a very clumsy
way. The only reason that the system process is a process
rather than a prog~'am is that it has capabilities which
we wish to deny to the user process.

If we approach the discussion of capabilities from
different viewpoint, it will become cleat" why very few
systems use the multiple process scheme described above.
The first point to observe is that instead of thinking of a
process as starting out with no power and acquiring cap-
abilities, one may think of it as starting out with absolute
power and then being restricted by the system's protection
mechanisms. This is of course the customary way of look--
lag at things; the word "absolute" is especially appropri-
ate on a mapped machine, since protection is usually
enforced primarily by the map and the ability to use
absolute addresses allows a process to do anything. Let
us consider briefly the fundamental characteristics of
protection systems.

The simplest way of describing what is required is to
say that certain processes must be prevented from exe-
cuting certain words as instructions, namely those which
violate the constraints of the protection they operate
under. For purposes of implementation, however, it has
proved convenient to make a further distinction and say
that a process must be prevented from (1) accessing,
changing, or transferring control to eertain words in the
physical memory of the machine (memorg protection), and

350 Communica t i ons of t h e ACM V o l u m e 11 / Number 5 / May, 196g

from (2) executing instructions with certain operation
codes, which are often called privileged (control protec-
tion).

To accommodate the first requh'ement a~ variety of
arrangements has been tried, which fall into two general
classes, namely the protection of particular physical
regions of core and the provision of an address mapping
function which transforms every address generated by the
program before sending it to the physical memory. The
relative merits of various schemes in both classes have
been debated at some length and need not concern us
here. We turn our attention to the problems of control
protection.

Protection Systems. ~vYhat might be called the minimal
solution to these problems, and one which has been im-
plemented on many machines, is the provision of two
modes called "monitor" and "user," or "master" and
"slave" modes. In the first, or monitor, mode all the in-
structions of the machine can be executed, including those
which change the address space of the process. In user
mode, on the other hand, all the opcodes which might
interfere with the operation of the system or of another
user are prohibited. This prohibition is usually enforced
by causing a switch into monitor mode and a transfer to
a standard system routine whenever attempted execution
of a privileged opcode is detected. These include any op-
code which is undefined or which halts the machine, all
input-output opcodes, and all opcodes which invoke the
scheduling or address mapping hardware.

One of the implications of this kind of organization is
that calls on the system, say in the form of a switch to
monitor mode and a transfer to one of a small number of
standard entry points, must be provided for any operation
which a user program may be authorized to perfoi~n and
which requires execution of privileged instructions. Be-
cause the ability to execute such instructions attaches to a
process, and because there are only two possible states
which a process can be in as far as its authority to execute
such instructions is concerned, there is no way of avoiding
a call to a system routine every time the need for a privi-
leged instruction arises. Furthermore, this routine will
in general have to check the validity of the call every
time it is entered. Some improvement can be obtained
by providing a number of different modes in which various
classes of instructions are prohibited, but the number of
input-output devices attached to a system is likely to be
large enough to prevent this approach from effecting
much improvement, since in general every device must
be protected independently of every other one. Matters
are still worse when it comes to mass storage devices and
it is desired to allow access only to certain areas of the
device.

.Am alternative approach to the whole problem of con-
trol protection--one which is capable of eliminating the
problems we have been considering--is to attach the
authority to execute privileged instructions not to the
process executing them but to the memory locations from
which they are executed. Almost any memory protection

Volume 11 / N u m b e r 5 / May, 1968

scheme for a time-sharing system will allow an area of
memory to be made read-only to a process. A system
routine which controls the memory protection hardware
can obtain read/write access to this area and therefore
can put into it anything it likes. What we envision now is
an extension of the memory protection mechanism which
allows this area to be made not merely read-only, but also
privileged. If a memory location is part of a privileged
area, then the control protection hardware will allow a
privileged instruction fetched from this location to exe-
cute. Otherwise, execution of such an instruction will be
suppressed.

The system then simply arranges that the memory
available to any process which is authorized to execute
privileged instructions contains those instructions which
the system wants to allow the process to execute, and
no others; the process executes them by addressing them
with an execute instruction. The result of such an arrange-
ment is that from the point of view of the system control
protection is absorbed into memory protection: the ulti-
mate authority which a process can exercise is determined
by the memory it can write, since not only the ability to
execute privileged instructions but also the state of the
memory protection system itself is determined by the
contents of certain areas of memory. A process can do
anything if it can write into privileged memory and can
set up the memory protection for itself or for another
process.

It therefore follows that to change the capabilities of a
process it suffices to change the map. The operation of
waking up a system process can be replaced by a sub-
routine call which makes some memory accessible which
was formerly forbidden. One popular implementation falls
back temporarily on the monitor mode coneept--a transfer
of control which changes the protection (called a leap)
must go through a standard routine which, running in
monitor mode, is not subject to the usual restrictions of
the system. This scheme is completely general and quite
elegant; its only drawback is that leaps are likely to be
slow.

At least two proposals have been made for making most
or all of the map-changing operation automatic. The
~ULTICS group has suggested a hardware implementa-
tion of their "ring" structure, which divides the address
space of a process into concentric rings and allows access
to ring n from ring m only if m < n. Evans and LeClem
[4] have put forward a mapping and protection system
which permits individual control of the access every seg-
ment has to every other segment. Neither of these pro-
posals has yet been implemented.

In many cases, of course, the entire problem is evaded
by performing the desired privileged operation entirely
in monitor mode, i.e. outside the confines of the protection
system. This approach makes it unnecessary to worry
about how to increase the capabilities of a process, but
has obvious disadvantages in flexibility and security and
is gradually becoming unpopular.

C o m m u n i c a t i o n s o f the ACM 351

S c h e d u l i n g

In this section we consider some .algorithms which ma)
be used to implement a scheduler, a,),d complete the dis-
cussion of bask' principles with an a~mlysis of p~oces~or
multiplexing. The scheduler eo~sists ()t" t,wo sets of p ro
eedures which are logically quite indepe~,(tent of each o~ her,
and a data base which compeers them.

The first set of procedures may be called the ~'zser inter-
i~(*. Its :t'uuedon is to implemem the b:~sie opera-
tio~s which may be called for by a user process:

block
wakeup
suspe~ad
release
test and reset wakeup waiting switch
change priority (see below).

I f processor multiplexing is not, required this is a very
straightforward mat, get. We define four arrays iodexed
by process or proee:ssor number (these are equivalent if
{,here is no multiplexing):

~w.*~[i] is 1. if' processor i is executing instructions, 0 if
i~ is not. This value controls the processor.

suspend[i] is 1 if process i is suspended, 0 if ig is not.
ru~stateg] is 0 if the process was blocked more recently

than i t was awakened, 1 otherwise.
wws[i] is 1 if the wakeup waiting switch for process i is

on, 0 if it is off.
These arrays, together with some other data to be intro-
duced shortly, eonstitute the s&eduger data ba,e. Pseudo
ALGOL procedures %r the basic operations are:
p r o c e d u r e bled; (i) ;
b e g l n

i f ww;,'ii] = 0 t h e n run[i] : = run.state[i] : = 0 e l s e ww.~{i] : = 0
e n d ;
p r o c e d u r e ~z~ke~* p(,;) ;
b e g i n

ifr~n,~taie{i] = 1 t h e n ~ews{i] : = 1 ; r~*nstateii] : = 1;
i f s:,zs'pend{i] = 0 t h e n run[i] : = 1

e n d ;
p r o c e d u r e an.spend(i) ;
beg i n

r ~ n i] : = 0; g~.spend[i] : = 1
e n d ;
p r o e e d u r e relea,~e (£) ;
b e g i n

ettd ;
i n t e g e r p r o e e d u r e t r~z'w2 (i) ;
b e g i n

g~uws := u~es[i}; w,~:ali] := 0
e n d

In {he absence of multiplexing this is the entire irnple-
memati<m of the scheduler. I t is assumed that the aetior~
specified by one of these procedures is taken instan-
taneously a8 far as the rest of the system is concerned.
We defer a consideration of how this can be done and of
the generM problems of LnteAoeking paradlel processes to a
later section. Note that we have not said anything about
how these procedures are executed; it wilt be suNcient for
the moment to imagine a spatial processor whose sole
function is to do this.

3/u//ip/c.~'in!/. :\s soon as we begin tx) coHsider processor
mult iplexh~g, life becomes much more (omp/icat, ed and
re(we i>.teresti~g. I~ order t;o i~t, rodu(> {he complicaBio[~s
(me ai :~ {i]ue, let, us assume that {be usuP i~d,(w[~mc pr0-
(e{lurv,~ coaiimle 1o funci,io~ ~H before, but, ihaU t;h.c array
run no k)nger di:rectly {,o~d rols the {}pera~hm of a processor.
.In fact, since there are no longer e~/ough proecssops ~0
allow one to be assigm, d to each progr:m,, the da, t.a base
arrays are not directly related to processors a.t {g/. To Sl)ee-
ifv the indirect rel~tiotiship, we define {,we more arrays:

processor[i] specifies the processor {assigned to process
i. Ir is 0 if no processor is assigned.

proc6~s[j] specifies the process running on. processor j.
It. is 0 if no process is runnixlg.

A process i is called ready if rim[i] = 1 but processor[i]=O.
The procedures which establish connect;ions between

processes and processors constitute dm second half of the
scheduler, which is called the e,dbrcer. The algorithm
used by ~he enforcer to assign processors is ealled the
s&eduti,~g aZt~o,,i~a,,,. A very simple and very unsatisfactory
scheduling algorithm might be the following:

i : = 0
> loop : f o r j : = 1 s t e p 1 u n t i l np d o

i f proce.>s[j] = 0 t h e n
b e g i n

gZoop: i : = i f i = n q t h e n t e l s e i + 1; i f r u n [/] = 0
\/processor[i} # 0 t h e n g o t o qIoop;
processor[i i : = j ; processU] := 1

e n d
e l s e i f run[preces.s[j]] = 0 t h e n
b e g i n

process[j] : = processor[process{j.j]:= O; g o t o qloop
e n d ;

g o t o ploop ;

Here np is die m~mber of processors, nq the number of
processes. This procedure simply cycles around the proc-
esses in riced sequence, assigning free processors to proc-
esses which wish to run as it finds them. Again we as-
sume that where there is any possibility of confusion the
enforcer's actions are performed instantaneously.

Prioritie.s. In order to improve on this algorithm i~ is
necessary for the scheduler to have some idea about the
relative importance of different processes. For purposes of
discussion we consider that two inclosures of importarlce
exist :

An integer assigned to each process called its priority.
The enforcer regards process i as more important than
process j if priori{gill > priority[j]. The array priority
is added to the scheduler da ta base.

The amount of time which has elapsed since a process
was ready and assigned a particular priority. For
processes of equal priority the enforcer operates on a
first-come, first-served basis.

Two modifications to t, he user interface are required t,o
~meommodate this new idea. One is a change in wake@
which allows a priority to be supplied along with the

3 5 2 C o m m u n i c a t i o n s o f t h e A(L$| V o l u m e l I / N u m b e r 5 / May, 1968

wakeup sigt~f~l:

proeed ~re wakeup (i,p) ;
begin

ifrvn,sgate[i] = 1 then wws[i] := 1;
runslate[i] := 1; prioril, y[i] := p;
if,suspend[i] = 0 then 'run[i] := 1

e nd ;

The other is a new operation:

procedure chpri(i,p); begin priorily[i] := p end;

These two operations make it possible to establish priori-
ties for ~he various processes. The way in which this is
done will determine which processes get to run, and will
therefore have an important influence on the behavior of
the system. I t should be clear, however, that priority
assignment is not an integral part of the scheduler, and
it will therefore receive only passing consideration.

We expect the enforcer to select from the processes
with run[i]= 1 those np which have the highest priority
at each instant. The precise length of an instant will be
considered later; obviously we want it to be as short as
possible provided the overhead stays low. A typical
situation which the scheduling algorithm might encounter
in a two-processor system might involve four processes
computing with various priorities, another four processes
blocked for ordinary input-output operations, and two
processes awaiting real-time interrupts. At one moment
the system should be running two of the computing proc-
esses, at the next one of these and then a process acti-
vated because of the receipt of teletype input, and at the
next two top priority real-time processes. See Figure 3.

We now proceed to consider a possible implementation
of the multiplexing philosophy just described. The idea
is that the scheduler should not be aware of a process at
all until it receives the wakeup signal, i.e. it should look
only at processes on a list called the ~ady list. This list
should be organized so as to make the selection of highest
priority processes as natural as possible and to facilitate

C, 6 c, 6 C, 7 C, 8 Computing processes
I/O, 4 I/O, 3 I/O, 6 I/O, 8 Processes blocked for

I/O
I, 1 I, 2
(a) A possible state of the system. The running processes are in

boldface, the ready ones in italics. Numbers indicate priori-
ties; the highest priority is 1.

C, 6 C, 6 C, 7 C, 9
I/O, 4 I/O, 3 [/0, 6 1/0, 8
I, 1 I, 2
(b) Another possible state
C, 6 C, 6 C, 7 C, 8
I/O, 4 I/O, 3 I/O, 6 [/0, 8
1,1 1,2
(c) A higher priority process becomes ready
C, 6 (1) C, 6 (2) C, 7 (3) C, S (4)
U0, 4 (5) I/O, 3 (6) U0, o (7) I/O, s (8)
I, 1 (9) I, 2 (10)
(d) Two urgent i~al-time processes are rumfing. Process numbers

in parentheses.

FIo. 3. Running, ready, and blocked processes in a
two-processor system

V o l u m e 11 / N u m b e r 5 / May, 1968

the introduction of new processes. The former require-
ment can be very simply satisfied by keeping the process
numbers of the ready processes in a table of consecutive
registers in order of their priority. This arrangement is
extremely inconvenient, however, when it comes to adding
processes, since on the average half of the list will need to
be moved for each addition.

A slight improvement can be effected by replacing the
table with a linked list, so that insertion requires only a
splicing of pointers. I t still requires a search through the
list, however, to find the appropriate point at which to
make the insertion. In order to eliminate this search it will
be necessary to introduce more structure into the ready
list. One way to do this is the following: restrict priorities
to be integers in the range from 1 to n, and equip the sched-
uler with an n-word table called the priority list. Each
entry of this table contains either 0 or a pair of process
numbers, plfp and plrp. Associated with each process
there are also two process numbers, fqp[i] and bqp[i], which
serve the purpose of forward and backward queue point-
ers.

Tile significance of these arrangements is as follows:
every nonzero priority list ent ry contains pointers to the
head and tail of a queue of ready processes which have the
priority given by the index of the entry in the priority list.
When a new process arrives, it is added to the tail of the
queue; processes are run beginning at the head. The
queue is kept as a symmetric list to facilitate deletions.

To clarify the ready list pointer structure, the situation
in Figure 3 is displayed in full in Figures 4 and 5.

Management of the ReadyList. To take advantage of this
data structure it is desirable to integrate the enforcer
with the user interface procedures, since the enforcer needs
to act only in response to a block, wakeup, or change
priority operation (suspend and release, if they involve the
enforcer at all, are equivalent to block and wakeup).
Constant scanning of the scheduler data base is therefore
not necessary. The pointer manipulations now become
sufficiently complex, however, tha t a description in words
seems more satisfactory than explicit procedures.

ready list

FIG. 4.

processes

Ready list and queues for Figure 3d

C o m m u n i c a t i o n s of t h e ACM 353

There are two basic cases in which the enforcer is ac-
tivated.

The first case is when a process is awakened. I t is neces-
sary to

(W1) Enter this process in the ready list at the ap-
propriate priority on the tail of the queue (unless it is
already on the ready list at a higher priority).

(W2) Cheek to see whether this priority is higher than
that of some running process. If not, there is nothing to
do.

(W3) If so, switch the processor rumfing the lowest
priority process so that it will run the newly introduced
process instead. The abandoned process remains on the
ready list and will run in due course. I t has been pre-
empted.

The second case is when a running process blocks and its
wakeup-waiting switch is not set.

(B1) Remove its queue cell from the ready list.
(B2) Find the lowest priority running process. Examine

its forward pointer.
(B3) If it is a pointer to another queue cell, run the

process in that queue cell, which is now the lowest priority
process.

(B4) Otherwise, scan down the priority list from the
entry at the priority level of the lowest priority running
process. When a nonzero entry is found, run the process
in the queue cell pointed to by its head pointer.

A change priority operation, the only other one which
affects the enforcer, can be implemented with the se-
quence

block; priority[i] := new priority; wakeup;

In practice, of course, this can be improved upon, since
there are many cases in which no changes in processor
assignment are called for.

Priority rlfp rlrp

1 9 9
2 10 10
3 0 0
4 5 5
5 0 0
6 1 7
7 3 3
8 4 8

FIG. 5a. Ready list for Figure 3d

Process Priority f qp rqp Processor Run

1 6 2 *6 0 1
2 6 7 1 0 1
3 7 *7 *7 0 1
4 8 8 *8 0 1
5 4 *4 *4 0 1
6 - - - - - - 0 0
7 6 *6 2 0 1
8 8 *8 4 0 1
9 1 *1 *1 2 1

10 2 *2 *2 1 1

FIG. 5b. Ready list queues for Figure 3d.

If it is assumed that the priority list and the queue
cells are kept in memory, then the cost of block and wakeup
operations in memory references (assuming that queue
pointers are packed two per word) is

(Wl) Three references to enter a new cell in a queue
(one if level was empty). Two of these (to splice pointers)
can be made in parallel. One more reference is needed to
record the new state of the process; it can be made in
parallel with all of the first three.

(W2, 3) One reference to switch processes on a proc- ::
essor (not counting loading and storing of the state
vector), followed by another reference to record the new
state of the preempted process. This assumes that the :
priority and queue cell address of every running process
are kept in registers associated with the processor running
it.

(B1) Three references to delete a process (two if it is
the only one on its priority level). Two of these (to splice
pointers) can be made in parallel

(B3) Two references to get the process number of the
new lowest priority process if it is on the same level as
the current one. Only one is required if the process blocked
is the lowest one, since the pointer to the next one is
obtained in the splicing operation.

(B4) Two references also if it has lower priority, plus
references wasted in the scan.

The cost of the scan can be reduced to one reference
by providing a bit word with one bit for each priority
level and turning this bit on if the level is occupied. This
scheme requires an extra reference every time a level
becomes empty or ceases to be empty. Its value therefore
depends on the density of empty levels.

If the actual lowest priority process (the one farthest
down the queue at the lowest priority level) is not known,
step B3 is complicated by the possibility tha t we may
have to pass over queue cells for already running processes.
I f there are many priority levels containing only one
process, the cost of entering or deleting a process can be
reduced by one cycle if we t reat this as a special ease and
put the single process number directly in the ready list.

Observe tha t the algorithms described above can be
implemented in a mechanism, independent of any proc-
essor, which is able to read and write memory, accept
block and wakeup requests, and send to a processor the
information tha t it should dump the process it is now
running and start executing another one. I f the process
number of the new process is held in a fixed memory
location unique to the processor, then only one control
line is required from the scheduler to each processor. The
line simply says: switch processes:

If we neglect the possibility of wakeup signals which
come from the outside world, however, it is also clearly
possible for everything to be done by one of the processors
being scheduled. Since every scheduling operation is
initiated by an ordinary user process, there is no problem
in finding a processor to do the work. The only other
difficulty is in getting a processor to switch processes. This
may be done with a signal which any processor can send

3 5 4 C o m m u n i c a t i o n s o f t h e A C M V o l u m e 11 / N u m b e r 5 / M a y , 1968

to any other, including itself, provided this signal is not
sent until all the other manipulations connected with the
scheduling operation have been completed. See Saltzer
[5] for a more detailed discussion of this point.

Timers. So far we have seen two mechanisms which
can cause a process to lose its processor:

It may be blocked, by itself or by some other process.
It may be preempted by a higher priority process.

If every process could be counted on to run for only a
short period before blocking, these mechanisms would be
entirely sufifieient. Unfortunately, in the real world proc-
eesses run for sufficiently long periods of time that it is
necessary to have some method for stopping their execu-
tion, or at least reducing their priority, after a certain
amount of time has elapsed.

The period for which a process is allowed to run before
such disagreeable things begin to happen to it is usually
called a quantum. I t may vary with the priority, the
process, the time of day, or anything else, and how its
value is established is a policy decision with which we
are not concerned. Some attention must be paid, however,
to the methods by which the policy decision, once arrived
at, is to be enforced. I t is desirable that these methods
should allow as much flexibility as possible in the choice
of quantum and should not add significantly to the cost
of scheduling.

What we wish to do is to attach to each process, as
part of its stateword, an integer which we call a timer.
When the process is running, the time is held in a hard-
ware register and decremented at fixed intervals. When it
reaches zero, the process is forced to transfer to a standard
location where the system leaves a transfer to a routine
which decides what to do. Two alternatives seem plausible:
(1) Assign a lower priority to the process, an action which
may cause it to be deprived of its processor. (2) Leave the
process at the same priority, but give preference to all
the other processes at the same priority level. Neither one,
however, need be built into the scheduling mechanism.

The choice of an initial setting for the timer is another
policy decision, which can be made when the process is
blocked or when it is awakened. The latter alternative
is somewhat more appealing, since it allows for the possi-
bility that different wakeup signals may arrive for the
process, with different priorities and requiring different
amounts of time. The drawback is that a wakeup signal
must carry an additional piece of information. In either
case we may observe that the choice of quantum and the
action to be taken when it is exhausted can, like the
assignment of priority, be left within limits to the discre-
tion of the user.

One other point ought to be brought out in regard to
the kind of priority multiplexing scheme we have been
discussing: it does not guarantee that a ready process
will ever be run; if enough processes of higher priority
exist, it will in fact not be run. This may be exactly what
is intended, but if it is not, the design of the priority and
quantum assignment algorithms must take the unpleasant
possibility into account. This might be done by restricting

Volume 11 / Number 5 / May, 1968

the frequency with which a process may enter the ready
list with high priority. Another alternative is to restrict
the length of time it may run at high priority, although
this one may be subverted by the fixed overhead imposed
by the need to swap in the memory for the process. Still
a third approach is to increase the priority of processes
which have been waiting for a long time at low levels.

Fixed Time Scheduling

Everything we have said so far about wakeup signals
has implied that they originate in some definite action
on the part of some unblocked process, whether this
process be within the system or entirely external to it.
A signal originated by an external process might be the
result of a circuit breaker opening. There is one particular
class of wakeup signals, however, which demand special
consideration, and that consists of the signals arising from
the elapse of specified intervals of time. I t is extremely
common for a process to wish to block itself taltil, say,
noon arrives, or for 5 seconds to give a user opportunity
to respond to some stimulus, or for that fraction of 100
msec remaining since it was last awakened if it wishes to
give attention to some input signal at that interval.

Another important case arises fl'om the following ob-
servation: there is a large class of applications for which a
user sitting at a teletype prefers a uniform 2-second
response time to one which has, say, a uniform distribu-
tion between .5 and 2 seconds, or even one which is .5
seconds with probability .75 and 2 seconds the rest of
the time. This is a fortunate circumstance from the point
of view of the system, since it is only required to provide
service sometime within a 2-second period chosen at its
convenience. I t does, however, require reasonably flexible
timing facilities, both to give warning of the close approach
of the deadline and to delay the generation of output until
2 seconds have elapsed.

Such requirements can of course be satisfied by the pro-
vision of an interval timer for each one; when a process
blocks itself for n ~see, one of these timers is set for that
interval and the signal which it will emit on its expira-
tion is routed to the process. This solution is, however,
obviously wasteful in the extreme.

To improve on it we create a list called the fixed-time
list, each entry of which contains:

1. A process number and priority.
2. A time.
3. A pointer to the next entry on the list.

The contents of the first entry on this list is kept in a fast
register and the time constantly compared with a real-
time clock. As soon as the latter becomes greater, the
specified process is awakened, the entry put on a free
storage list, and the contents of the new first entry loaded
into the registers. Any process desiring service at a fixed
time simply puts the proper entry on this list and blocks
itself. Note that it is possible for the contents of the
registers to be changed by the appearance of a request
with time earlier than that now in them.

This arrangement ensures that the scheduler will at

Communica t ions of t h e ACIVI 355

all times be aware of the requirements of processes which
wish to run while it remains ignorant of those whose
wakeup time has not yet arrived. In case there are not
enough processors to run all the processes demanding
service, the priority mechanisms of the scheduler can be
relied upon to allocate processors to the inost important
ones. This means that, given information about the
distribution of processes at. various priorities, it is possible
to compute beforehand what kind of service a process
can obtain at a given priority level or, alternatively, what
priority it must have to obtain a given level of service.
For those processes on the fixed-time list precise informa-
tion is available. For those being awakened in other ways
only probabilities can be knowm beforehand. This uncer-
tMnty can be eliminated by assigning higher priorities
to the fixed-time processes than to any others, or, if the
cost of this scheme is unacceptable, it is still possible to
work out expected average and maximum delays. Since
the system ean enforce its decisions about priority and
running time, it can guarantee the correctness of its
estimate for these delays (barring hardware failure or bugs
in the system programs). The important point is that no
computations need to be made when it is time to wake up
a process; everything can be worked at when the process
makes a request for service, and it can be informed exactly
what kind of response can be obtained at what price.

Sonm elementary observations about this response may
be in order here. These are intended to suggest the scope
of the problem; very little attention has been given to it,
and much work needs to be done. Let us ignore the
existence of nonfixed-time processes for simplicity, and
let us also assume that no time elapses between the ar-
rival of a wakeup signal and the execution of the first
useful instruetion of a process. Then if there are n proc-
essors we can guarantee to n processes any Mnd of service
they may require, simply by giving them all the highest
priority. After that, the situation becomes a little more
complex, and some information must be required of the
processes about the frequency, quality, and duration of
service which they require. This information might in-
elude any of the following items:

1. With what frequency will the process wake up? Must
it run at fixed times, or only at fixed intervals with an
arbitrary origin? For most sampling processes the latter
will suffice. What times and intervals does it wish to run at?

2. What errors in the satisfaction of the above require-
ments can be tolerated, and with what probability? Is it
acceptable, for instance, to miss 1 percent of the samples
entirely? This might frequently be the case. What is the
desired distribution of error versus frequency of occur-
rence? Perhaps a 2-msee error is completely acceptable,
one of 5 msec tolerable 10 percent of the time, and one of
10 msec intolerable. Or perhaps 40-ttsee accuracy is re-
quired with 0 tolerance for greater error. Presumably a
reid system will have a minimum error, determined by the
response time of the scheduler, which is independent of
priority.

3. How long will t, he process run each time? Perhaps no
more than 200 ~sec. Perhaps 1 msec usually, 2 msec 10 per-
cent of the time. To what extent can it, tolerate interrup_
tions? Must it perform 5 msec of computation in 5 msee
of reaI time, or is it acceptable for 7 msec of real time to
elapse?

Needless to say, not all users will be able or willing to
supply accurate information about all of these items.
For those who do not, the system can make worst case
assumptions and charge accordingly; an incentive is thus
provided for the user to state his requirements as precisely
as possible.

When all this information has been collected for all
the fixed-time processes and suitable statistics and worst
ease information supplied for t, he others, a routine can be
run to figure out what service can be provided with what
probability. This routine will certainly be complex and
slow if it is to do a good job, but this is not particularly
objectionable, since it runs only when a user requests a
different grade of serviee, not whenever he is served.
Too frequent running of the routine can be discouraged
by eharging for it. As each new request for service comes
in, it is thus possible to determine whether it can be
satisfied (together with all the other requests already
accepted) and at what cost; and if not, what service can
be provided. The user can thus obtain precise information
about what to expect. If the system is overloaded, of
course, some users will not be able to get what they want.
The proper response to this situation is to expand the
system (if the user requests are justified; this is of course
a policy decision which cannot be made by the system);
if the service allocation routine is good, there can be
reasonable assurance that the system is doing as well as
it can.

H a r d w a r e I m p l e m e n t a t i o n

The concepts and techniques described in the last three
sections have been developed to provide the sole scheduling
mechanism for a reasonably large time-shared system.
Nearly all such systems in existence or under development
are based on a dichotomy between two different schedulers:
one implemented in hardware and usually called the in-
terrupt system, the other implemented in software and
used to schedule user programs. Such an organization has a
number of drawbacks. First, it leads to a sharp distinction
between interrupt routines, which are regarded as part of
the basic system, usually run in some unprotected mode,
and cannot call on the system services available to ordinary
programs; and user processes, which cannot respond
directly to external signals and cannot run for short
periods of time without incurring overhead considerably
greater than their running time.

Second, the software scheduling system is usually quite
slow and cumbersome. I t requires a considerable amount
of time to convince both the processor hardware and the
system software that a different process is being run, and
the computation required to properly handle the highly
nonuniform load of user processes is substantial. As a

356 Communications of the ACM Volume 11 / Number 5 / May, 1968

result the time required to schedule a process is on the
order of milliseconds, except possibly for a very small
class of processes which can be given special treatment.
On the other hand, a process scheduled in this way can
eatl on all the services which the system provides without
taking any special precautions (can, for example, open a
disk file, which is a highly nontrivial operation), and it
runs within the elaborate framework of protection normal
for a user process which prevents it from damaging other
users or degrading the service too much and insulates it
from many of the consequences of its own folly.

Third, it is nearly impossible to establish any kind of
communication between the priority system established
by the interrupt hardware and the one defined by the
software. The usual rule is simply that all interrupt
routines take precedence over any "normal" processes. I t
is, of course, possible to persuade the software scheduler
to, in effect, turn an interrupt routine into an ordinary
process, but this is a messy and time-consuming pro-
eedure. Related to this problem is the fact that the inter-
rupt system's priority scheme is not likely to be satis-
factory in demanding situations; many routines need
much more flexibility to establish their priorities than the
hardware can conveniently allow, especially where the
set of interrupts which are expected during any given
five-minute period is a small and varying subset of all
those which might be handled in a week.

A fourth point which is somewhat unrelated to the first
three is that interrupt systems do not switch enough of
the state of a processor automatically. The most obvious
omission is the interval timer and elapsed time clock.

These considerations suggest that it might be worthwhile
to develop a system which would eliminate interrupts
and drastically speed up the software scheduler by
centralizing all responsibility for assigning processors to
processes into one mechanism. A basic objection to any
such proposal might well be the following: once something
has been built into hardware it is very difficult to change.
Scheduling algorithms are not well understood, and it is
not likely that we can lay down rules today for deciding
what processes to run which will satisfy us next year.
Therefore, we should not freeze our present inadequate
ideas into the system forever.

To see why this argument is weak, observe that a broad
distinction can be made between a policy-making and an
administrative module in a system. The latter performs some
function in a manner controlled by parameters supplied
to it by the former. Of course, it is true that the organiza-
tion of an administrative module affects the kinds of
parameters that can be fed to it, and consequently deter-
mines the system's policy within certain limits. These
limits are very wide, however, in many cases of practical
interest. Consider, for example, an input/output buffering
system. By adjusting the number of buffers, the blocking
factor, the organization of buffers into pools, and the pri-
orities of files competing for buffers, the behavior of the
system can be varied over a wide range.

Similarly with a scheduler: its behavior is determined

by the priority assignment algorithms, the choice of
quanta for running processes, and the action taken on
quantum overflow, as well as by decisions of the swapper
and the input-output system. The scheduler itself simply
provides a framework for enforcing the decisions taken
by policy modules.

Furthermore, the scheduler is such a basic part of the
system that it is difficult to see how it could be drastically
altered without a complete revision of the rest of the sys-
tem. The effort required for such a change is probably
greater than that required to rebuild any reasonable
piece of hardware, so that the flexibility offered by software
is likely to be illusory.

With these preliminaries out of the way, let us consider
how an interrupt system might be replaced by a more
powerful mechanism. The functions of an interrupt system
are three: to continually monitor a fairly large number of
external signals and take appropriate action when one of
them changes state; to start a processor executing in-
structions for a new process within a fairly small number
of microseconds after an interrupt arrives, regardless of
what it is doing at the time; to recognize a sequence of
priorities among interrupt signals and keep the processors
executing the highest priority ones.

To replace it we clearly need a piece of equipment which
functions independently of the processors being scheduled,
and which is capable of examining say 50 external lines,
recognizing that one of them is high, putting a process
on the ready list, and giving it a processor, all within a
period of perhaps 10 gsec. Present-day hardware tech-
nology allows such a device, which we henceforth call
the scheduler, to be built with a read-only microprogram
memory and some small number of internal registers,
say 5 or 10, and to operate with a cycle time of 100 to
200 nsec. The major delays it encounters are due to the
main memory of the system. This, however, is likely to
be organized in numerous modules, so that the scheduler
can make several references to main memory in parallel
if this is convenient.

All the external interrupt lines are directed into the
scheduler, which in its normal state loops constantly,
examining them and the request lines from the processors
for activity. Associated with each line is a fixed core loca-
tion (possibly relative to a programmable base register).
When the scheduler finds an active line it goes to this
location to find out what to do. In most cases the line
will carry a wakeup signal, and the core location will
containing either 0, which causes the signal to be ignored,
or the arguments for a wakeup operation, which are a
process number and a priority. The process nuInber is
actually a pointer to a block of words which contain:

the state word for the process (or its core or drum
address).

bits which specify whether it is blocked, ready, or run-
ning, what processor it is running on, whether it is
suspended or not, and the wakeup waiting switch.

forward and backward pointers for the ready list queue
it is on, if any.

Volume 11 / Number 5 / May, 1968 Communications of the ACM 357

If the process is ready or running at a higher priority than
its current one, there is nothing to do. Otherwise, it. must
be added to the ready list or moved to the appropriate
level; the steps required to accomplish this have already
been presented. If its priority is high enough it must be
given a processor, which is done by storing its stateword
address into a standard place and sending the selected
processor a switch signal. The scheduler then sets the
status bits for the newly running process and for the one
which has been preempted and goes on its way.

Processor Switching. The processor which receives the
switch signal must store the stateword of the process it
is currently running in the proper place, which it is
responsible for remembering, and pick up the address
of its new stateword from the cell where the scheduler
left it. Note that the stateword of a process is always
associated with the process itself and never with the one
which preempts it. This means that it is not necessary to
exit froIn "interrupt routines" in the order in which they
are entered. In fact, the whole idea of an interrupt routine
does not have much meaning. The time required to store
a stateword and pick up a new one will depend on memory
speed and the number of central registers, but with a
memory of reasonable bandwidth and 1 gsec cycle time
it should not be more than 4 or 5 ~see.

The stateword, of course, defines the process. The infor-
mation it contains, together with a minimal amount of
other status information and temporary storage for essen-
tial system routines, is all that is needed to allow a process
to run (although to do anything useful it will have to have
some user program and data storage as well). All these
da ta can be held in a block of memory locations which
we may cM1 the context block. The address of this block is
then sufficient information to give to a processor when it
starts to run the process, and the operation of creating
a process consists precisely in creating a new context block.
The layout of a context block is shown in Figure 6.

In a paged swapping system it will probably be con-
venient to assign a page to the context block, which may
then be identified by its drum address if it is not in core.
Of course, it is not possible for a processor to run the
process if its context block is out of core, but the scheduler
can detect this situation and wake up a system process
instead. This process, which might be called the context

program counter

central registers

clock

map

status information, user number, capabilities,
etc.

temporary storage for
system routines

Fro. 6. Contents of a context block

interpreted
by hardware

block swapper, Call then take responsibility for bringing
the context block into core arid waking up its process
again.

The algorithms for block and change priority have ;
already been considered and present no new problems. The
t reatment of the timer has also been considered. Recall
tha t it does not involve the scheduler at all; decisions
about what to do when a timer trap occurs are matters of
policy and must be left as flexible as possible.

I t should be pointed out tha t there is a distinction be-
tween interrupts, which are wakeup signals, arid traps,
which are forced transfers of control within a single process.
This distinction is made very sharp by a hardware sehedu-
ler~ which has complete jurisdiction over wakeups but
knows nothing about traps. In addition to the timer
trap, there are also likely to be traps for various conditions
having to do with memory addressing, for protection viola-
tions, for floating-point overflow, and possibly for a variety
of other conditions. A call on the system by a user process
is also a kind of trap, and indeed in some systems it
takes the same form as an illegal instruction execution.
This observation should illuminate the relationship of a
t rap to a wakeup signal, espeeiMly in the light of our
earlier discussion of system calls.

I n t e r l o c k i n g o f P r o c e s s e s

I t is very often the ease in a large system, whether it be
an entire time-sharing complex or simply an applications

}
program, that independent processes work on the same
data base. When the data base is being modified, it is ~:
generally not in a fit state to be looked at. It is therefore
necessary for a process which intends to modify the data
base to lock out any other process which might want to
modify or look at it. The sequence of events required is

1. Test the lock to see if it is set. I f so, loop in this step.
If not, go on.

2. Set the lock. There must not be any opportunity
between steps one and two for another process to
set the lock. If this event should occur, both processes
would proceed to access the data base simultaneously,
exactly the condition we are trying to avoid.

3. Examine or modify the data base.
4. Clear the lock.

In some eases these precautions are required only when data
are being changed, At other times, especially when pointers
are involved, it is dangerous even to look at the data if
another process might be modifying them. The details
will vary with the specific application, but the nature of
the problem remains the same.

Several techniques exist for implementing locks. The
first is to provide a machine instruction of the following
general form: test the contents of the memory word
addressed. If it is negative, skip. Otherwise make it nega-
tive and take the next instruction. If we call this instruc-
tion TSL for test and set lock, then the sequence

TSL LOCK
BRU OK branch unconditionally
BRU * - 2

358 Communications of the ACM Volume 11 / Number 5 / May, 1968

.will not allow control to reach OK unless the lock has been
found not to be set, and when eontrol does reach OK the
lock will be set, again. Probably two memory references
to LOCK will be required by TSL. If this is the ease,
~eeess to tha t cell by any other process must be inhibited
between the two references of the TSL.

This mechanism allows an arbitrary number of locks
to exist. A lock is cleared by storing some positive number
in the lock cell. A minimum of two instructions must be
executed, and a minimum of four memory cycles is re-
quired. The biggest drawback is that a process hung up
waiting for a lock to be cleared expends memory cycles
without doing any useful work. These memory references
degrade the performance of the rest of the system.

An alternative method is to supply each process with a
lock register consisting of n bits. The equivalent of TSL
hangs the process until a specified bit is off, then turns it
on and proceeds. Two instructions are still required, but
only two memory references. The cost of waiting for a
lock to clear is simply the cost associated with the processor
which is delayed; there is no drain on the rest of the
system. There are two drawbacks: the number of different
locks which may be set is limited by the length of the lock
register, and a physical connection between processors
other than the memory is required, even though it is a
simple one. Furthermore, it is not clear what to do with
the lock register if a process is blocked and the processor
given to another process.

If processors are being shared, either method has the
following further drawback. Suppose there is only one
processor, and that process A is running, sets a lock, and is
deprived temporari ly of its processor in favor of process
B, which at tempts to set the same lock. Process B will
hang, but the lock will never be cleared, since A will never
be able to continue (unless B is preempted by a t imer
runout). This is rather serious. The difficulty can be
avoided by increasing the priority of process A so much
that it cannot be preempted, but this scheme has obvious
disadvantages.

The problem is handled in most existing systems by
precisely this means, however. "Increasing the priority
of process A" is accomplished by disabling the interrupt
system, so that any interrupt signals which come in are
stacked until an enable instruction is executed. The process
which executes the disable instruction will run without
interference, since on most systems all the mechanisms
for taldng the processor away from it are dependent on
interrupts.

The fact that this method stops the entire scheduling
:system from functioning is not particularly objectionable if
it does so only for a few microseconds. A much more
serious problem is that it requires explicit action to re-
enable the interrupts; if this action is omitted, the entire
system ceases to function. This method can therefore be
used only by highly privileged processes and with the

greatest of care.
With the TSL instruction a completely general solution

to the entire interlocking problem is possible along the

"Volume 11 / Number 5 / May, 1968

following lines. When a process tests a lock and finds it
set, it blocks itself. Before doing so, however, it adds
itself to a list of processes waiting for the lock to be
cleared, which we call a wakeup list. The process which
clears the lock does so through a standard routine which
cheeks for the existence of this list and wakes up one or
all of the processes on it, depending on the nature of the
lock. The cost of this operation is very low if there is
nobody to wake up, probably just one conditional branch.
The generality is, however, necessary since most locks
used by the basic system programs can be tested by a
large number of processes at once, not just by two. Obvi-
ous examples are locks oil storage allocation tables or
input /output devices.

Short-Term Interlock. The arrangement described above
is a complete solution to the problem we are consider-
ing. Its only drawback is that it requires a good deal of
machinery to be brought to bear even if only a few
instructions are to be interlocked. This point becomes
painfully clear when the details of constructing a wakeup
list are considered: since a process can in general be inter-
rupted or preempted between the execution of any two
instructions, there is no guarantee that the list will not
disappear while a process is in the middle of adding itself
to it. We would therefore like to have a very cheap mecha-
nism for ensuring that a short sequence of instruct-
tions can be completed without interference from the
scheduler.

We thereforeintroduee a new instruction called PROtect,
whose function is to ensure that during some short period
after the execution of PRO:

a. The process which executes the PRO cannot lose its
processor or be preempted by the timer.

b. No other PRO can be executed. If another processor
attempts to do a PRO, it is forced to wait until the current
one is complete. Simple hardware synchronization tech-
niques can ensure this.

The "short period" mentioned above is probably best
measured in memory references by the processor and about
15 is probably the right number. Time is not satisfactory
since the amount of time required to execute an instruc-
tion is unlikely to be predictable in ~ advance, and instruc-
tion execution is even worse, since an indirect addressing
loop can cause the processor to hang without executing
any instructions. Since a PRO cannot hang up a processor
for more than a small number of memory cycles it does not
need to be a privileged instruction, and can therefore be
used by ordinary programs, which occasionally have as
much need for locks as system programs.

The PRO mechanism has one serious weakness which
limits its usefulness: if a memory fault occurs while the
PRO is in force, its effect on the following instructions is
lost. I t is therefore necessary to ensure that all addresses
generated during the PRO fall either in the page contain-
ing the program, or in pages guaranteed to be in core, or
in one other page which is first referenced before anything
critical is done. If the return from a memory fault re-
enables PRO, all will then be well.

C o m m u n i c a t i o n s o f t h e ACM 359

With this much machinery (l~IlO is the only new in-
struction which is really essential) we have a very satis-
factory system for interlocking independent processes.
Short sequences of instructions can be protected by PRO;
if every other Sequence of instructions which is executed
b y another process and references the sensitive data is
also covered by a PRO, it is not possible for two such
sequences to be executed simultaneously. Larger operations
on shared da ta bases can be interlocked with locks in
memory . The cost of setting and clearing such a lock is
only a few instructions.

The methods discussed in this paper depend on eo-

operation among the processes referencing a shared da ta

base and on correct programming of each reference to the

da ta . As Van Horn and others have pointed out, the bugs

introduced by incorrect handling of this problem occur

in a random and generally irreprodueible manner and
are very difficult to remove. Van Horn [6] has proposed a

scheme which enforces proper handling of shared data;
it does however require more substantial hardware modifi-
cations than the methods suggested here.

REFERENCES
1. DENNIS, J. ET AL. Machine Structures Group Memos 19, 40,

41. M.I.T., Cambridge, Mass., 1966.
2. DENNIS, J. B. Segmentation and tim design of multipro-

grammed computer systems. J. ACM 12, 4 (Oct. 1965), 589-
602.

3. -----, AND VAN HORN, E. Programming semantics for multi-
programmed computations. Comm. ACM 9, 3 (Mar. 1966),
143-155.

4. LECLERC, JEAN-YVES. Memory structures for interactive
computers. Project Genie Document 40.10.110, U. of Califor-
nia, Berkeley, Calif., May 1966.

5. SALTZER, J. H. Traffic control in a multiplexed computer
system. MAC-TR-30 (thesis), M.I.T., Cambridge, ~¥[ass.,
July 1966.

6. VAN HORN, E. C. Computer design for asynchronously re-
producible multiprocessing. MAC-TR-34 (thesis), M.I.T.,
Cambridge, Mass., Nov. 1966.

Three Criteria for Designing Computing
Systems to Facilitate Debugging

Earl C. V a n Horn
General Electric Company, Phoenix, Arizona

The designer of a computing system should adopt explicit
criteria for accepting or rejecting proposed system features.
Three possible criteria of this kind are input recordability, input
specifiability, and asynchronous reproducibility of output. These
criteria imply that a user can, if be desires, either know or con-
trol all the influences affecting the content and extent of his
computer's output. To define the scope of the criteria, the
notion of an abstract machine of a programming language and
the notion of a virtual computer are explained. Examples of
applications of the criteria concern the reading of a time-of-day
clock, the synchronization of parallel processes, protection in
multiprogrammed systems, and the assignment of capability
indexes.

KEY WORDS AND PHRASES: computer design, computer design criteria,
computer systems, computer systems design, input equipment, input equip-
ment design, operating systems, operating systems design, multlprogram-
ming, multlprogrammed systems, multlprogrammed system design t virtual
computers, programming languages, programming language design, pro-
gram semantics, programming language semantics, determinism, reproduci-
bility, repeatability, deterministic computers, protection, memory protection,
information security, information privacy, computing reliability, debugging,
program debugging, program testing, parallel processing, parallel pro-
grammlng, multiprocessing

CR CATEGORIES: 2.11, 4.12, 4.13, 4.20, 4.30, 4.42, 4.43, 55.24, 6.20, 6.35

Presented at an ACM Symposium on Operating System Principles,
Gatlinburg, Tennessee, October 2-4, 1967; revised January, 1968.

360 Communications of the ACM

I n t r o d u c t i o n

Today the design of computing systems is an art. For
the design of these systems to become a science, the criteria
b y which a designer accepts or rejects proposed system
features must be s ta ted exphcitly. This paper states three
possible design criteria and explores some of their conse-
quences.

The criteria are s tatements of properties desired in
computing system's interface with a user; these properties
are intended to facilitate program testing. The criteria
are input recordability, or I R for short, input specifiability,
or IS for short, and asynchronous reproducibility of output, or
ARO for short. Although precise explanations of the cri-
teria will require some preliminary developments, the
criteria can be s ta ted briefly as follows.

The I R criterion means tha t before s tar t ing a computa-

tion a user can command tha t during the computat ion

Many of the concepts described here were developed during the
• author's Ph.D. thesis research [1] for the M.I.T. Department of
Electrical Engineering. Work reported herein was supported in
part by Project MAC, an M.I.T. research project sponsored by the
Advanced Research Projects Agency, Department of Defense,
under Office of Naval Research Contract Nonr-4102(01). Repro-
duction of this paper, in whole or in part, is permitted for any
purpose of the United States Government.

Volume 11 / Number 5 / May, 1968

