
A SCHEDULING PHILOSOPHY FOR MULTI-PROCESSING SYSTEMS
Butler W. Lampson *

University of California
Berkeley, California

Introduction

Oneof the essential parts of any computer
system is a mechanism for allocating the proces-
sors of the system among the various competitors
for their services. These allocations must be
performed in even the simplest system, for
example, by the action of an operator at the
console of the machine. In larger systems more
automatic techniques are usually adopted;
batching of jobs, interrupts and interval timers
are the most common ones. As the use of such
techniques becomes more frequent, it becomes
increasingly difficult to maintain the conven-
tional view of a computer as a system which does
only one job at a time; even though it may at
any given instant be executing a particular
sequence of instructions, its attention is
switched from one such sequence to another with
such rapidity that it appears desirable to
describe the system in a manner which accommo-
dates this multiplexing more naturally. It is
worthwhile to observe that these remarks apply
to any large modern computer system and not just
to one which attempts to service a number of
on-line users simultaneously.

This paper is concerned with a variety of
ideas which bear on the analysis of a multi-
processing system. Most of these ideas center
around two fundamental issues:

a. How decisions can be made about which
instructions to execute next. Some of the basic
ideas on this subject in the next two sections
were originated by Saltzer.

b. How programs are protected from them-
selves and each other. Papers by Dennis and
LeClerc have influenced the treatment of this
subject.

Detailed consideration is given to methods for
multiplexing processors, and it is shown that
suitable hardware and software can make it
possible to schedule all the processing done
by the system in a uniform manner, so that
interrupt routines do not have to be treated
differently from ordinary user programs.
Finally, a variety of mechanisms are considered
for interlocking and synchronizing parallel
computations.

Preliminaries

We begin by defining some terms which will
permit a precise discussion of what happens in
a complex computer system. The most important
of these terms is process. The intuitive basis
for the idea represented by this word is the
observation that certain sequences of actions
follow naturally, one upon the other, and are
more or less independent of other sequences.
For example, a disk-to-printer routine and a
matrix inversion program running on the same
processor are two quite distinct programs,
which can normally execute entirely indepen-
dently of each other. The independence is not
complete, however, since information may be
written into the disk file by the inversion
program while earlier information is read by
the printer driver. Furthermore, the fact
that clearly different programs are being
executed is not essential; two inversions
operating on different data would have just
as much right to be considered distinct.
Indeed, it might well be that a single inver-
sion program could be coded in such a way that
several parts of it could be in execution
simultaneously.

To summarize, the essential character-
istic of a process is that it has, at least
conceptually, a processor of its own to run
on, and that the state of its processor is
more or less independent of all the other
processors on which all the other processes
are running. Since there are usually not as
many physical processors as there are processes,
it becomes necessary to create enough logical
processors by multiplexing the physical ones.
Techniques for doing this are one of the
subjects of this paper.

The S t a t e Vector

We now consider more carefully what is
involved in switching a physical processor
from one process to another. When a processor
is executing instructions, there exists a
collection of information (called the full
state vector) whic.h is sufficient to completely
define its state at any given moment, in the
sense that placing the processor in some

* The work reported in this paper was supported
in part by the Advanced Research Projects Agency
of the Department of Defense under contract SD-185

arbitrary state and then resetting it from the
full state vector will cause execution of
instructions to proceed as though nothing had
happened. For a central processor of conven-
tional organization the full state vector in-
cludes:

a. The contents of the program counter.
b. The contents of the central registers

of the processor. For convenience we will
confine our attention to points in time between
the execution of instructions at which registers
directly accessible to the programmer are the
only ones of interest. The use of address
mapping schemes involving segmentation may make
it necessary to consider also certain non-
accessible registers involved in indirect
addressing. This complication will be ignored.

c. The address space of the processor and
the contents of every address in it. By this
we mean a list of all the legal memory addresses
which may be generated by the program and the
contents of each one.

d. The state of all input-output devices
attached to the processor.

The information just specified consists of a
rather large number of bits. Furthermore, it
contains considerably more detail than is
usually desired. In a time-sharing system, for
example, the physical state of the input-output
devices is not normally of interest to the
program, and even the contents of the next word
to be read from a file may not be information
which we wish to associate with a process, since
such an association makes it difficult for two
processes to share the file.

Similar considerations apply to the contents
of the words in the address space; these might
be changed by another process. The address
space itself, however, has a better claim to be
regarded as an integral part of the process.
To clarify this point, we pause to consider (or
define) exactly what the address space is. We
may think of all the words which can possibly
be addressed by any process as being numbered
in some arbitrary fashion. Each word is then
identified by its number, which we will call
its absolute address. Note that we are not
saying anything about the physical location of
the words, and that the absolute address we
have just defined has nothing to do with this
location, but is simply a conceptual tool. Then
the address space of a process (also called the
map) is a function from the integers into the
set consisting of the absolute addresses of all
the words in the system and two symbols U and
N. I.e., it associates with every address
generated by the program an absolute address,

or specifies that the address is undefined or
not available. The address space may also
carry information about the accessibility of
a word for which it supplies an absolute
address, specifying for example, that the word
may not be written into.

Observe now that what the address space
really does is to define the memory of the
process. Any of the words of this memory may
~iso be part of the memory of some other process,
which may refer to them with the same or differ-
ent addresses. The words, however, are consi-
dered to have an existence independent of their
addresses in any particular address space.

We recognize, then, that the definition
we want for the state vector of a process is
not a direct analog of the one used in system
theory. In fact, it leaves unspecified a
number of things which can affect the future
execution of a process, namely just those
things which we wish to think of as being
shared between processes. With this point in
mind, we define the state vector (or stateword)
of a process to consist of the program counter,
central registers and address space of the
processor on which it is running. From the
above discussion we conclude that the process
can still exist even if it is not running on
the processor, since the state vector carries
sufficient information to allow it to be
restarted. A process should be sharply
distinguished from a program, which is a
sequence of instructions in memory. We can
speak of either a process or a processor execu-
ting a program. The process is the logical,
the processor the physical environment for this
execution. It seems reasonable to say that the
process is executing even if it is not running
on any processor.

In order to give practical substance to
the distinction between process and program,
it is necessary to require that execution of
the program should not cause it to be modified.
If this restriction is observed, it is clear
that more than one process can be executing
the same program at the same time. Note that
it is not necessary to have more than one pro-
cessor for this to be possible, since we do not
insist that a process be running in order to
be executing. To return to our matrix inversion
example: in a particular problem it may be
necessary to invert six independent matrices,
and to this end six processes may be established,
one to work on each matrix but all executing
the same program. On the other hand# one of
these processes may, after inverting a matrix,
go on to execute a different program which
calculates its eigenvalues.

@ •

O~eratiops on Processes

In this section we take up some points
which are independent of processor multiplexing.
A number of these points center around the
observation that a process does not always want
to execute instructions even if there is a
physical processor avail~ble. A typical example
of such a process is a compiler which has ex-
hausted its availzLble input and is waiting for
more cards to be read. This is a special case
of a very general situation, in which a process
is waiting for some external condition to be
satisfied and has nothing useful to do in the
meantime. There are basically two ways in
which this situation can be handled. The
simplest is for the process to loop, testing
a flag which records the state of the external
condition. The objection to this scheme is
that it is wasteful if there is any other pro-
cess which could use the processor. Alterna-
tively, the process can record somewhere the
fact that it is waiting for, say, 14 cards to
be read, and block itself. It will then execute
no more instructions until the 14th card has
been read and it has received a wakeup signal.
The part of the system responsible for handling
block and wakeup instructions will be called
the scheduler. When a processor is executing
instructions for a process, the process is said
to be running.

From the point of view of the scheduler,
then, the life history of a process is an
alternation of running periods and blocked ones.
Each running period is terminated by a request
to the scheduler that the process should be
blocked; this request may be made by the pro-
cess itself or by some other process. Each
blocked period is terminated by a wakeup signal
whose characteristics we have just described.
Since the process can do nothing to help itself
while it is blocked, it must make arrangements
to be woken before blocking itself. Let us
consider what the nature of these arrangements
might be.

The simplest situation is one in which
the process has requested some service to be
performed and wishes to wait until it is
completed. Typical services have to do with
input-output: a process might block itself
until an input buffer is filled. In this case
the process performing the service is expected
to provide the wakeup signal. This idea is so
simple as to require only one further comment.
A reciprocal situation is that of the input-
output process: it expects to be woken by a
demand for service and blocks itself when it

has done its job. The situation can be
sketched as in figure i. Readers familiar
with the concept of co-routines will find
this picture fsmiliar.

Race Conditions

A slightly more involved situation is
shown in figure 2. Here the input is assumed
to be buffered, so that the computing process,
after making a request for input, is able to
continue running for a while. In the figure
it continues to run on buffered input data
until after the input-output process has com-
pleted its work and sent it a wakeup, which has
no effect on an already running process. Final-
ly, it blocks itself, but by this time the
wakeup has passed and will never come again.

This situation can of course be alleviated
by having the input process set a flag indica-
ting that it has filled the next buffer. The
computing process could then test this flag
and not block itself if the operation is com-
plete. This approach, however, will only
serve to make the bad situation shown in
figure 2a less common; it will not eliminate
it entirely, since it is still possible for
the input process to send its wakeup in the
interval between an unsuccessful test and the
subsequent block. What is necessary is to
reduce this interval to zero, which can be done
with a simple device called a wakeup-waiting
switch. There is one of these for each process.
Whenever a wakeup signal arrives at a running
process, the switch is turned on. Wherever
the process is blocked, it is turned off, and
the process can also turn it off explicitly.
If a process tries to block itself and the
wa~eup-waiting switch is on, the switch is
turned off and the process is simply allowed
to continue running without interruption. This
sequence of events is illustrated in figure 2b.

Note that a single switch for each process
is quite sufficient. Any function which might
be accomplished with a stack of wakeup signals
handled by the scheduler can equally well be
accomplished by communication through shared
memory. The details of such communication are
too obvious to be worth discussing; in general
a simple task queue will suffice.

The proper way to program a process which
blocks itself periodically, like the ones in
figure 2, is to check explicitly after a wakeup
signal is received that there is in fact work
to be done, and to block again if there is not.
This procedure will circumvent the problems

which would otherwise arise if the work for
which a wakeup is received gets done before the
process tries to block. Often the simplest way
to make this check is with a loop back to the
code which made the decision to block. Thus,
for example, the following routine to read data
from an input buffer being filled by another
process:

a. Is input buffer empty?
b. If not, read data and exit.
c. Otherwise, block
d. When wakeup arrives, go to (a).

An additional complication is introduced
by the fact that it is not unusual for several
processes to be blocked waiting for the same
condition to occur. If this situation can arise,
the process generating the wakeup must be pre-
pared to send it not just to one process, but to
an entire wakeup list of processes. Alterna-
tively, it may be preferable to leave this
process unaware of the problem and to make one
of the processes being woken up responsible for
sending wakeups to the others (if such action is
appropriate; in the case of several processes

competing for a single device it may not be).
The possible existence of wakeup lists is not
important to the basic scheme and has been men-
tioned only to illustrate a complication which
can be handled without difficulty.

Suspension

We now have two states for a process:
blocked and running, and two basic operations
on processes: block and wakeup. Let us consi-
der what else is required. Two things are
obvious: it is necessary to be able to create
and destroy processes, and to establish
restrictions on the kind of access allowed to
one process by another. These problems, how-
ever, have to do with the general mechanism in
the system for granting capabilities, with
which this paper is not concerned. The precise
operations required to create a process will
be considered in a later section.

It is, however, very convenient for a
process to have one other property in addition
to being blocked or running. Suppose, for
example, that a program involving several
processes is being debugged on-line. A valuable
tool in this situation is the ability to stop
execution of the program, examine the state of
things, and then continue as though nothing had
happened. During the pause in execution, all
the processes being debugged are suspended;
i.e., they are prevented from executing. If a

wakeup signal is directed at a suspended pro-
cess, it is recorded and will be acted upon
when the process is released. In other words,
being suspended is a quality unrelated to being
blocked; a suspended process can be either
blocked or running, but it will execute no
instructions until it is released.

Approximately the same effect can be
obtained by reading the state words of all the
processes, destroying them, and then recreating
them later and putting back the statewords.
This approach, however, requires a potentially
large amount of information to be recorded and
then restored. It is also likely to be quite
time consuming, especially since it is usually
not possible to destroy a process at any arbi-
trary point in its execution, e.g. when it is
operating on system tables. Furthermore, if
any wakeup signals for a process arrive after
it has been destroyed, they will be lost, which
is not very satisfactory.

Ac~u~isition of Capabilities

We conclude this section with a brief
discussion of the relationship between processes
and protection. It has been taken for granted
so far, as in almost all of the published
literature, that a process is the basic entity
to which capabilities should be attached. Since
this doctrine cannot easily be made to cover
all situations, it is usually modified in
running systems by more or less inelegant devi-
ces for a~owing a process to have different
capabilities depending on what it is doing.

To make this point clearer, consider an
ordinary unprivileged process which wishes to
obtain permission to use a tape unit, for
example. It will make some kind of "call on
the system." That is, it will transfer to a
system routine which will determine whether the
process is authorized to use tape units and
whether the specified unit is free. If every-
thing is in order, the system will grant the
desired permission. In order to avoid unneces-
sar/ digression, let us assume that permission
is granted by turning on a bit in the stateword,
and that the hardware allows execution of
instructions for this tape unit only when the
bit is on. The point is that the process run-
ning the system program must have much greater
capabilities than the user process; it has at
least the capability to set the hypothetical
bit just introduced, and the user process does
not have that capability or it would have set
the bit itself. In fact# we can dispense with
the bit if anyone can set it, since it would
serve no useful purpose.

This discussion suggests that the "call on
the system" mentioned above is really a wakeup
directed to a process with great capabilities,
which we will call a system process. There must
also be some mechanism for communicating data
between user and system processes, so that the
latter can find out what is wanted and the form-
er obtain information about the fate of its
request. We may assume that the two processes
share some memory, and neglect a host of ques-
tions about how such an arrangement can actually
be implemented with reasonable efficiency. The
situation is then quite clear: the user process
puts information about its request into this
shared memory, wakes up the system process, and
blocks. The system process examines the request,
modifies the user process stateword appropriate-
ly, records what it has done in the shared
memory, wakes up the user process and blocks.
The entire interaction depends on cooperation
between the two processes, which is precisely
why it is a suitable mechanism for its purpose:
the user process cannot force the system process
to do anything, but can only call attention
to its desires.

It is worth noticing, however, that the use
of two processes in the manner just discussed
is completely different from the usual applica-
tions of multiprocessing, where two processes
are running (more or less) in parallel. Here
no parallel execution takes place at all; the
system process runs when, and only when, the
user process is blocked. The entire transaction
in fact looks exactly like a subroutine call
and return implemented in a very clumsy way.
The only reason that the system process is a
process rather than a pro6ram is that it has
capabilities which we wish to deny to the user
process.

If we approach the discussion of capabili-
ties from a different viewpoint, it will become
clear why very few systems use the multiple
process scheme described above. The first
point to observe is that instead of thinking
of a process as starting out with no power and
acquiring capabilities, one may think of it as
starting out with absolute power and then being
restricted by the system's protection mecha-
nisms. This is of course the customary way of
looking at things; the word "absolute" is
especially appropriate on a mapped machine,
since protection is usually enforced primarily
by the map and the ability to use absolute
addresses allows a process to do anything. Let
us consider briefly the fundamental character-
istics of pro~ection systems.

The simplest way of describing what is
required is to say that certain processes must
be prevented from executing certain words as
instructions, namely those which violate the
constraints of the protection they operate
under. For purposes of implementation, however,
it has proved convenient to make a further
distinction and say that a process must be
prevented from

i. Accessing, changing or transferring
control to certain words in the physical
memory of the machine (memory protection).

2. Executing instructions with certain
operation codes, which are often called privi-
leged (control protection).

To accommodate the first requirement a variety
of arrangements has been tried, which fall
into two general classes, namely the protection
of particular physical regions of core and the
provision of an address mapping function which
transforms every address generated by the pro-
gram before sending it to the physical memory.
The latter scheme is generally recognized as
superior, and has been discussed at some length
by various authors. We turn our attention here
to the problems of control protection.

Protection Systems

What might be called the minimal solution
to these problems, and one which has been
implemented on many machines, is the provision
of two modes called "monitor" and "user", or
"master" and "slave" modes. In the first, or
monitor, mode all the instructions of the
machine can be executed, including those which
change the address space of the process. In
user mode, on the other hand, all the opcodes
which might interfere with the operation of the
system or of another user are prohibited. This
prohibition is usually enforced by causing a
switch into monitor mode and a transfer to a
standard system routine whenever attempted
execution of a privileged opcode is detected.
These include any opcode which is undefined.
or which halts the machine, all input-output
opcodes, and all opcodes which invoke the
scheduling or address mapping hardware.

One of the implications of this kind of
organization is that calls on the system, say
in the form of a switch to monitor mode and a
transfer to one of a small number of standard
entry points, must be provided for any operation
which a user program may be authorized to per-
form and which requires execution of privileged
instructions. Because the ability to execute

such instructions attaches to a process, and
because there are only two possible states
which a process can be in as far as its autho-
rity to execute such instructions is concerned,
there is no way of avoiding a call to a system
routine every time the need for a privileged
instruction arises. Furthermore, this routine
will in general have to check the validity of
the call every time it is entered. Some improve-
ment can be obtained by providing a number of
different modes in which various classes of
instructions are prohibited, but the number of
input-output devices attached to a system is
likely to be large enough to prevent this
approach from effecting much improvement, since
in general every device must be protected
independently of every other one. Matters are
still worse when it comes to mass storage devi-
ces and it is desired to allow access only to
certain areas of the device.

An alternative approach to the whole pro-
blem of control protection, and one which is
capable of eliminating the problems we have
been considering, is to attach the authority
to execute privileged instructions not to the
process executing them but to the memory loca-
tions from which they are executed. Almost any
memory protection scheme for a time-sharing
system will allow an area of memory to be made
read-only to a process. A system routine which
controls the memory protection hardware can
obtain read/write access to this area and there-
fore can put into it anything it likes. What
we envision now is an extension of the memory
protection mechanism which allows this area to
be made not merely read-only, but also privi-
leged. If a memory location is part of a
privileged area, then the control protection
hardware will allow a privileged instruction
fetched from this location to execute. Other-
wise, execution of such an instruction will be
suppressed.

The system then simply arranges that the
memory available to any process which is
authorized to execute privileged instructions
contains those instructions which the system
wants to allow the process to execute, and no
others; the process executes them by addressing
them with an execute instruction. The result
of such an arrangement is that from the point
of view of the system control protection is
absorbed into memory protection: the ultimate
authority which a process can exercise is
determined by the memory it can write, since
not only the ability to execute privileged
instructions but also the state of the memory
protection system itself is determined by the

contents of certain areas of memory. A process
can do anything if it can write into privileged
memory and can set up the memory protection
for itself or for another process.

It therefore follows that to change the
capabilities of a process it suffices to change
the map. The operation of waking up a system
process can be replaced by a subroutine call
which makes some memory accessible which was
formerly forbidden. One popular implementation
falls back temporarily on the monitor mode
concept--a transfer of control which changes
the protection (called a leap) must go through
a standard routine which, running in monitor
mode, is not subject to the usual restrictions
of the system. This scheme is completely
general and quite elegant; its only drawback
is that leaps are likely to be slow.

A mapping scheme proposed by Evans and
Le Clerc eliminates this objection and extends
the idea. Its foundation is the observation
that a single procedure does not require access
to the entire address space of the process of
which it is a part. This consideration leads
to an addressing scheme in which each segment
is able to address a small number (say 16) of
other segments. Each of these may in turn
address other segments, so that the entire
or global address space may be very large, even
though the local address space, or that directly
accessible from a single segment, is quite
small. This arrangement has substantial advan-
tages in terms of address bits saved. Its more
important contribution, however, is the organi-
zation which it forces on the programmer and
enforces on his behalf: each part of the
program is able to address exactly that data
which it needs, and nothing else.

Such a drastic reduction in the number of
entities which can be independently protected
(segments) also permits a new approach to the
specification of protection. It is now possible
to put the bits specifying the protection of a
segment A not on the segment itself but on the
link between A and the segment B which refers
to it, since B can refer only to 16 segments.
The protection information for an entire process
is then specified not by a vector of protection
bits for each segment, but by a matrix M which
defines the relation of every segment to every
other. An entry in this matrix, M.., says

i
either that segment j is not accessible from
i or that it is identified in i by the number
s (O~s<_lS) and that i is allowed certain kinds
of access to it (read, write, execute, privi-
leged, for example).

Scheduling

In this section we consider some algorithms
which may be used to implement a scheduler,
and complete the discussion of basic principles
with an analysis of processor multiplexing.
The scheduler consists of two sets of procedures
which are logically quite independent of each
other, and a data base which connects them.

User Interface

The first set of procedures may be called
the user interface. Its function is to imple-
ment the basic operations which may be called
for by a user process:

block
wakeup
suspend
release
test and reset wakeupwaiting switch
change priority (see below)

If processor multiplexing is not required this
is a very straightforward matter. We define
four arrays indexed by process or processor
number (these are equivalent if there is no
multiplexing):

run[i] is i if processor i is executing
instructions, O if it is not. This value
controls the processor.

suspend[i] is 1 if process i is suspended,
0 if it is not.

runstate[i] is O if the process was blocked
more recently than it was woken up, 1 otherwise.

wws[i] is 1 if the wakeup waiting switch for
process i is on, 0 if it is off.

These arrays, together with some other data to
be introduced shortly, constitute the scheduler
data base. Pseudo-Algol procedures for the
basic operations are:

procedure block(i); begin if wws[i]=O then
run[i]:=runstate[i]:=O else----'~s~i]:=O end;

procedure wakeup(i); be~If runstate[i]=l
then wws[i]:=l; runstate[i..~--1;-~ suspend[i]=O
then run[i]:=l end;

procedure suspend(i); begin run[i]:=O;
suspend[i]:=l end;

procedure release(i); begin suspend[i]:=O;
run[i]:=runstate[i] end;

inte~procedure trwws(i); begin trwws:=
wws[~[i]:=O end

In the absence of multiplexing this is the
entire implementation of the scheduler. It is
assumed that the action specified by one of
these procedures is taken instantaneously as
far as the rest of the system is concerned.
We defer a consideration of how this can be
done and of the general problems of interlocking
parallel processes to a later section. Note
that we have not said anything about how these
procedures are executed; it will be sufficient
for the moment to imagine a special processor
whose sole function is to do this.

Multiplexing

As soon as we begin to consider processor
multiplexing life becomes much more complicated
and more interesting. In order to introduce
the complications one at a time, let us assume
that the user interface procedures continue to
function as before, but that the array run no
longer directly controls the operation of a
processor. In fact, since there are no longer
enough processors to allow one to be assigned
to each program, the data base arrays are not
directly related to processors at all. To
specify the indirect relationship, we define
two more arrays:

processor[i] specifies the processor
assigned to process i. It is 0 if no processor
is assigned.

process[j] specifies the process running
on processor j. It is 0 if no process is
running.

A process i is called ready if run[i]=l but
processor[i]=O. The procedures which establish
connections between processes and processors
constitute the second half of the scheduler,
which is called the enforcer. The algorithm
used by the enforcer to assign processors is
called the scheduling algorithm. A very simple
and very unsatisfactory scheduling algorithm
might be the following:

ploop:

qloop:

i:=O
for j:=l st~ 1 until np do
if process[j]=O thgn be$i~-

i:=if i=nq then 1 else i+l;
if ~n[i]=Ov processor[lifO
~en o~qloop; processor[i]:=j;
p~ocess[j]:=i end

else if run[proce~[j]]=O then begin
pro~ss[j]:=processor[pro~s~:=O;
5oto qloop end;

6oto ploop;

Here RR is the number of processors, n qthe
number of processes. This procedure simply
cycles around the processes in fixed sequence,
assigning free processors to processes which
wish to run as it finds them. Again we assume
that where there is any possibility of confusion
the enforcer's actions are performed instantane-
ously.

Priorities

In order to improve on this algorithm it
is necessary for the scheduler to have some
idea about the relative importance of different
processes. For purposes of discussion we will
consider that two measures of importance exist:

an integer assigned to each process
called its priority. The enforcer
regards process i as more important
than process j if priority[i]>priority[j].
The array priority is added to the
scheduler data base.

The smount of time which has elapsed
since a process was ready and assigned
a particular priority. For processes
of equal priority the enforcer operates
on a first come, first served basis.

Two modifications to the user interface are
required to accommodate this new idea. One is
a change in wakeup which allows a priority to
be supplied along with the wakeup signal:

procedure wakeup(i,p); begin
if runstate[i]=l then wws[i]:=l;
~n~state[i]:=l; priority[i]:=p~
if suspend[i]:=O then run[i]:=l end;

The other is a new operation:

procedure chpri(i,p); begin priority[i]:=p
,e,nd;

These two operations make it possible to estab-
lish priorities for the various processes. The
way in which this is done will determine which
processes get to run, and will therefore have
an important influence on the behavior of the
system. It should be clear, however, that
priority assignment is not an integral part of
the scheduler, and it will therefore receive
only passing consideration.

We expect the enforcer to select from the
processes with run[i]=l those np which have
the highest priority at each instant. The
precise length of an instant will be considered
later; obviously we want it to be as short as
possible provided the overhead stays low. A

typical situation which the scheduling algorithm
might encounter in a two-processor system might
involve four processes computing with various
priorities, another four processes blocked for
ordinary input/output operations, and two pro-
cesses awaiting real-time interrupts. At one
moment the system should be running two of the
computing processes, at the next one of these
and then a process activated because of the
receipt of teletype input, and at the next two
top-priority real-time processes. See figure 3.

We now proceed to consider a possible
implementation of the multiplexing philosophy
just described. The idea behind this scheme
is that the scheduler should not be aware of a
process at all until it is woken up, i.e., it
should look only at processes on a list called
the ready list. This list should be organized
so as to make the selection of highest priority
processes as natural as possible and to facili-
tate the introduction of new processes. The
former requirement can be very simply satisfied
by keeping the process numbers of the ready
processes in a table of consecutive registers
in order of their priority. This arrangement
is, however, extremely inconvenient when it
comes to adding processes, since on the average
half of the list will need to be moved for each
addition.

A slight improvement can be effected by
replacing the table with a linked list, so
that insertion requires only a splicing of
pointers. It still requires a search through
the list, however, to find the appropriate
point at which to make the insertion. In order
to eliminate this search it will be necessary
to introduce more structure into the ready list.
One way to do this is the following: restrict
priorities to be integers in the range from 1
to n, and equip the scheduler with an n-word
table called the priority list. Each entry of
this table contains either 0 or a pair of
process numbers, plfp and plrp. Associated
with each process there are also two process
numbers, fqp[i] and bqp[i].

The significance of these arrangements is
as follows: every non-zero priority list entry
contains pointers to the head and tail of a
queue of ready processes which have the priority
given by the index of the entry in the priority
list. When a new process arrives, it is added
to the tail of the queue; processes are run
beginning at the head. The queue is kept as a
sy~netric list to facilitate deletions.

To clarify the ready list pointer structure,
the situation in figure 3 is displayed in full
in figures ~ and ~.

Management of the Ready List

In order to take advantage of this data
structure it is desirable to integrate the
enforcer with the user interface procedures,
since the enforcer needs to act only in response
to a block, wakeup, or change priority operation
(suspend and release, if they involve the
enforcer at all, are equivalent to block and
wakeup). Constant scanning of the scheduler
data base is therefore not necessary. The
pointer manipulations now become sufficiently
complex, however, that a description in words
seems more satisfactory than explicit procedures.

There are two basic cases in which the
enforcer is activated. The first is when a
process is woken up. It is necessary to

W1) Enter this process in the ready list
at the appropriate priority on the tail of the
queue (unless it is already on the ready list
at a higher priority).

W2) Check to see whether this priority
is higher than that of some running process.
If not, there is nothing to do.

W3) If so, switch the processor running
the lowest priority process so that it will run
the newly introduced process instead. The
abandoned process remains on the ready list
and will run in due course. It has been
pre,empted.

The second case is when a running process
blocks and its wakeup-waiting switch is not set.

B1) Remove its queue cell from the ready
list.

B2) Find the lowest priority running
process. Examine its forward pointer.

B3) If it is a pointer to another queue
cell, run the process in that queue cell, which
is now the lowest priority process.

B4) Otherwise, scan down the priority llst
from the entry at the priority level of the
lowest priority running process. When a non-
zero entry is found, run the process in the
queue cell pointed to by its head pointer.

A change priority operation, the only
other one which affects the enforcer, can be
implemented with the sequence

block
priority[i]:=new priority
wakeup

In practice, of course, this can be improved
upon, since there are many cases in which no
changes in processor assignment are called for.

If it is assumed that the priority llst and
the queue cells are kept in memory, then the
cost of block and wakeup operations in memory
references (assuming that queue pointers are
packed two per word) is

W1) Three references to enter a new cell
in a queue (one if level was empty). Two of
these (to splice pointers) can be made in
parallel. One more reference is needed to
record the new state of the process; it can be
made in parallel with all of the first three.

W2,B) One reference to switch processes
on a processor (not counting loading and storing
of the state vector), followed by another
reference to record the new state of the pre-
empted process. This assumes that the priority
and queue cell address of every running process
are kept in registers associated with the pro-
cessor running it.

B1) Three references to delete a process
(two if it is the only one on its priority
level). Two of these (to splice pointers) can
be made in parallel.

B3) Two references to get the process
number of the new lowest priority process if
it is on the same level as the current one.
Only one is required if the process blocked is
the lowest one, since the pointer to the next
one is obtained in the splicing operation.

B4) Two references also if it has lower
priority, plus references wasted in the scan.

The cost of the scan can be reduced to one
reference by providing abit word with one bit
for each priority level and turning this bit
on if the level is occupied. This scheme
requires an extra reference every time a level
becomes empty or ceases to be empty. Its
value therefore depends on the density of
empty levels.

If the actual lowest priority process
(the one farthest down the queue at the lowest
priority level) is not known, step B3 is
complicated by the possibility that we may
have to pass over queue cells for already
running processes. If there are many priority
levels containing only one process, the cost
of entering or deleting a process can be reduced
by one cycle if we treat this as a special case
and put the single process number directly in
the ready list.

Observe that the algorithms described
above can be implemented in a mechanism,

q

independent of any processor which is able to
read and write memory, accept block and wakeup
requests, and send to a processor the informa-
tion that it should dump the process it is now
running and start executing another one. If the
process number of the new process is held in a
fixed memory location unique to the processor,
then only one control line is required from the
scheduler to each processor. The line simply
says: switch processes.

If we neglect the possibility of wakeup
signals which come from the outside world, how-
ever, it is also clearly possible for everything
to be done by one of the processors being
scheduled. Since every scheduling operation is
initiated by an ordinary user process, there is
no problem in finding a processor to do the
work. The only other difficulty is in getting
a processor to switch processes. This may be
done with a signal which any processor can send
to any other,,including itself, provided this
signal is not sent until all the other manipu-
lations connected with the scheduling operation
have been completed. See Saltzer for a more
detailed discussion of this point.

Timers

So far we have seen two mechanisms which
can cause a process to lose its processor:

it may be blocked, by itself or by some
other process

it may be pre-empted by a higher priority
process.

If every process could be counted on to run for
only a short period before blocking, these
mechanisms would be entirely sufficient. Un-
fortunately, in the real world processes run
for sufficiently long periods of time that it
is necessary to have some method for stopping
their execution, or at least reducing their
priority, after a certain amount of time has
elapsed.

The period for which a process is allowed
to run before such disagreeable things begin
to happen to it is usually called a quantum.
It may vary with the priority, the process,
the time of day or anything else, and how its
value is established is a policy decision with
which we are not concerned. Some attention
must be paid, however, to the methods by which
the policy decision, once arrived at, is to be
enforced. It is desirable that these methods
should allow as much flexibility as possible
in the choice of quantum and should not add
significantly to the cost of scheduling.

What we wish to do is to attach to each
process as part of its stateword an integer
which we call a timer. When the process is
running, the timer is held in a hardware regis-
ter and decremented at fixed intervals. When
it reaches zero, the process is forced to
transfer to a standard location where the
system leaves a transfer to a routine which
decides what to do. Two alternatives seem
plausible:

i. Assign a lower priority to the process,
an action which may cause it to be deprived of
its processor.

2. Leave the process at the same priority,
but give preference to all the other processes
at the same priority level.

Neither one, however, need be built into the
scheduling mechanism.

The choice of an initial setting for the
timer is another policy decision, which can be
made when the process is blocked or when it is
woken up. The latter alternative is somewhat
more appealing, since it allows for the possi-
bility that different wakeup signals may arrive
for the process, with different priorities and
requiring different amounts of time. The draw-
back is that a wakeup signal must carry an
additional piece of information. In either
case we may observe that the choice of quantum
and the action to be taken when it is exhausted
can, like the assignment of priority, be left
within limits to the discretion of the user.

One other point which ought to be brought
out in regard to the kind of priority multi-
plexing scheme we have been discussing: it
does not guarantee that a ready process will
ever be run; if enough processes of higher
priority exist, it will in fact not be run.
This may be exactly what is intended, but if
it is not, the design of the priority and
quantum assignment algorithms must take the
unpleasant possibility into account. This
might be done by restricting the frequency
with which a process may enter the ready list
with high priority. Another alternative is to
restrict the length of time it may run at high
priority, although this one may be subverted
by the fixed overhead imposed by the need to
swap in the memory for the process. Still a
third approach is to increase the priority of
processes which have been waiting for a long
time at lower levels.

Fixed Time Scheduling

Everything that we have said so far about
wakeup signals has implied that they originate

D

in some definite action on the part of some
unblocked process, whether this process be
within the system or entirely external to it.
A signal originated by an external process
might be the result of a circuit breaker
opening. There is one particular class of
wakeup signals, however, which demand special
consideration, and these are the signals ari-
sing from the elapse of specified intervals of
time. It is extremely common for a process to
wish to block itself until, say, noon arrives,
or for ~ seconds to give a user opportunity to
respond to some stimulus, or for that fraction
of I00 ms remaining since it was last awakened
if it wishes to give attention to some input
signal at that interval.

Another important case arises from the
following observation: there is a large class
of applications for which a user sitting at a
teletype prefers a uniform 2-second response
time to one which has, say, a uniform distribu-
tion between -5 and 2 seconds, or even one
which is .5 seconds with probability .75 and
2 seconds the rest of the time. This is a
fortunate circumstance from the point of view
of the system, since it is only required to
provide service sometime within a 2-second
period chosen at its convenience. It does,
however, require reasonably flexible timing
facilities, both to give warning of the close
approach of the deadline and to delay the
generation of output until 2 seconds have
elapsed.

Such requirements can of course be satis-
fied by the provision of an interval timer for
each one; when a process blocks itself for
n,~s, one of these timers is set for that
interval and the signal which it will emit on
its expiration is routed to the process. This
solution is, however, obviously wasteful in the
extreme.

To improve on it we create a list called
the fixed-time list, each entry of which
contains:

i.

2.
B.

list.

A process number and priority.
A time.
A pointer to the next entry on the

The contents of the first entry on this list
is kept in a fast register and the time con-
stantly compared with a real-time clock. As
soon as the latter becomes greater, the speci-

fied process is woken up, the entry put on a
free storage list, and the contents of the
new first entry loaded into the registers.
Any process desiring service at a fixed time
simply puts the proper entry on this list and
blocks itself. Note that it is possible for
the contents of the registers to be changed by
the appearance of a request with time earlier
than that now in them.

This arrangement ensures that the schedu-
ler will at all times be aware of the require-
ments of processes which wish to run while it
remains ignorant of those whose wakeup time has
not yet arrived. In case there are not enough
processors to run all the processes demanding
service, the priority mechanisms of the schedu-
ler can be relied upon to allocate processors
to the most important ones. This means that,
given information about the distribution of
processes at various priorities, it is possible
to compute beforehand what kind of service a
process can obtain at a given priority level
or, alternatively, what priority it must have
to obtain a given level of service. For those
processes on the fixed time list precise infor-
mation is available. For those being woken up
in other ways only probabilities can be known
beforehand. This uncertainty can be eliminated
by assigning higher priorities to the fixed-
time processes than to any others, or, if the
cost of this scheme is unacceptable, it is
still possible to work out expected average
and maximum delays. Since the system can
enforce its decisions about priority and run-
ning time, it can guarantee the correctness of
its estimate for these delays (barring hardware
failure or bugs in the system programs). The
important point is that no computations need to
be made when it is time to wake up a process;
everything can be worked out when the process
makes a request for service, and it can be
informed exactly what kind of response can be
obtained at what price.

Guaranteed Service

Some elementary observations about this
response may be in order here. These are
intended to suggest the scope of the problem;
very little attention has been given to it,
and much work needs to be done. Let us ignore
the existence of non-fixed-time processes for
simplicity, and let us also assume that no time
elapses between the arrival of a wakeup signal
and the execution of the first useful instruc-
tion of a process. Then if there are n proces-
sors we can guarantee to n processes any kind
of service they may require, simply by giving

them all the highest priority. After that,
life becomes a little more complex, and some
information must be required of the processes
about the frequency, quality and duration of
service which they require, This information
might include any of the following items:

i. With what frequency will the process
wakeup? Must it run at fixed times, or only at
fixed intervals with an arbitrary origin? For
most sampling processes the latter will suffice.
What times and intervals does it wish to run at?

2. What errors in the satisfaction of the
above requirements can be tolerated, and with
what probability. Is it acceptable, for instance,
to miss i percent of the samples entirely? This
might frequently be the case. What is the
desired distribution of error versus frequency
of occurrence. Perhaps a 2 ms error is com-
pletely acceptable, one of ~ ms tolerable I0
percent of the time, and one of i0 ms intolera-
ble. Or perhaps 40~As accuracy is required with
0 tolerance for greater error. Presumably a
real system will have a minimum error, deter-
mined by the response time of the scheduler,
which is independent of priority.

3. How long will the process run each
time? Perhaps no more than 200~. Perhaps i
ms usually, 2 ms IO percent of the time. To
what extent can it tolerate interruptions?
Must it perform ~ ms of computation in 5 ms of
real time, or is it acceptable for 7 ms of real
time to elapse?

Needless to say, not all users will be able or
willing to supply accurate information about
all of these items. For those who do not, the
system can make worst-case assumptions and
charge accordingly; an incentive is thus provi-
ded for the user to state his requirements as
precisely as possible.

When all this information has been collec-
ted for all the fixed-time processes and suita-
ble statistics and worst case information
supplied for the others, a routine can be run
to figure out what service can be provided with
what probability. This routine will certainly
be complex and slow if it is to do a good job,
but this is not particularly objectionable,
since it runs only when a user requests a
different grade of service, not whenever he is
served. Too frequently running of the routine
can be discouraged by charging for it. As each
new request for service comes in, it is thus
possible to determine whether it can be satis-
fied (together with all the other requests
already accepted) and at what cost; and if not,
what service can be provided. The user can

thus obtain precise information about what to
expect. If the system is overloaded, of course,
some users will not be able to get what they
want. The proper response to this situation is
to expand the system (if the user requests are
justified; this is of course a policy decision
which cannot be made by the system); if the
service allocation routine is good, there can
be reasonable assurance that the system is doing
as well as it can.

H_a.rdware Implementation

The concepts and techniques described in
the last three sections have been developed to
provide the sole scheduling mechanism for a
reasonably large time-shared system. Nearly
all such systems in existence or under develop-
ment are based on a dichotomy between two
different schedulers: one implemented in
hardware and usually called the interrupt
system, the other implemented in software and
used to schedule user programs. Such an orga-
nization has a number of drawbacks. First of
all, it leads to a sharp distinction between
interrupt routines, which are regarded as part
of the basic system, usually run in some unpro-
tected mode, and cannot call on the system
services available to ordinary programs; and
user processes, which cannot respond directly
to external signals and cannot run for short
periods of time without incurring overhead
considerably greater than their running time.

Secondly, the software scheduling system
is usually quite slow and cumbersome. It
requires a considerable amount of time to
convince both the processor hardware and the
system software that a different process is
being run, and the computation required to
properly handle the highly non-uniform load of
user processes is substantial. As a result
the time required to schedule a process is on
the order of milliseconds, except possibly for
a very small class of processes which can be
given special treatment. On the other hand, a
process scheduled in this way can call on all
the services which the system provides without
taking any special precautions (can, for example,
open a disk file, which is a highly non-trivial
operation), and it runs within the elaborate
framework of protection normal for a user
process which prevents it from damaging other
users or degrading the service too much and
insulates it from the many of consequences of
its own folly.

Thirdly, it is nearly impossible to estab-
lish any kind of communication between the
priority system established by the interrupt
hardware and the one defined by the software.

The usual rule is simply that all interrupt
routines take precedence over any "normal"
processes. It is, of course, possible to
persuade the software scheduler to in effect
turn an interrupt routine into an ordinary
process, but this is a messy and time-consuming
procedure. Related to this problem is the fact
that the interrupt system's priority scheme is
not likely to be satisfactory in demanding
situations; many routines need much more flexi-
bility to establish their priorities than the
hardware can conveniently allow, especially
where the set of interrupts which are expected
during any given five-minute period is a small
and varying subset of all those which might be
handled in a week.

A fourth point which is somewhat unrelated
to the first three is that most interrupt
systems do not switch enough of the state of a
processor automatically. The most obvious
omission in most of them is the interval timer
and elapsed time clock.

Policy and Administration

These considerations suggest that it might
be worthwhile to develop a system which would
eliminate interrupts and drastically speed up
the software scheduler by centralizing all
responsibility for assigning processors to
processes into one mechanism. A basic objection
to any such proposal might well be the follow-
ing: once something has been built into hard-
ware it is very difficult to change. Scheduling
algorithms are not well understood, and it is
not likely that we can lay down rules today for
deciding what processes to run which will satis-
fy us next year. Therefore, we should not
freeze our present inadequate ideas into the
system forever.

To see why this argument is weak, observe
that a broad distinction can be made between
a P01icy-makin~ and an administrative module
in a system. The latter performs some function
in a manner controlled by parameters supplied
to it by the former. Of course, it is true
that the organization of an administrative
module affects the kinds of parameters that
can be fed to it, and consequently determines
the system's policy within certain limits.
These limits are very wide, however, in many
cases of practical interest. Consider, for
example, an input-output buffering system. By
adjusting the number of buffers, the blocking
factor, the organization of buffers into pools
and the priorities of files competing for
buffers, the behavior of the system can be
varied over a wide range.

Similarly with a scheduler: its behavior
is determined by the priority assignment algo-
rithms, the choice of quanta for running proces-
ses and the action taken on quantum overflow,
as well as by decisions of the swapper and the
input-output system. The scheduler itself
simply provides a framework for enforcing the
decisions taken by policy modules.

Furthermore, the scheduler is such a basic
part of the system that it is difficult to see
how it could be drastically altered without a
complete revision of the rest of the system.
The effort required for such a change is pro-
bably greater than that required to rebuild any
reasonable piece of hardware, so that the flexi-
bility offered by software is likely to be
illusory.

A Hardware Scheduler

With these preliminaries out of the way,
let us consider how an interrupt system might
be replaced by a more powerful mechanism. The
functions of an interrupt system are three:

to continually monitor a fairly large number
of external signals and take appropriate
action when one of them changes state.

to start a processor executing instructions
for a new process within a fairly small
number of microseconds after an interrupt
arrives, regardless of what it is doing at
the time.

to recognize a sequence of priorities among
interrupt signals and keep the processors
executing the highest priority ones.

To replace it we clearly need a piece of equip-
ment which functions independently of the pro-
cessors being scheduled, and which is capable
of examining say fifty external lines, recog-
nizing that one of them is high, putting a
process on the ready list and giving it a
processor, all within a period of perhaps lOxxs.
Present-day hardware technology allows such a
device, which we will henceforth call the sched-
uler, to be built with a read-only microprogram
memory and some small number of internal regis-
ters, say 5 or 10, and to operate with a cycle
time of 100 to 200 ns. The major delays it
encounters are due to the main memory of the
system. This, however, is likely to be orga-
nized in numerous modules, so that the scheduler
can make several references to main memory in
parallel if this is convenient.

All the external interrupt lines are
directed into the scheduler, which in its
normal state loops constantly, examining them

and the request lines from the processors for
activity. Associated with each line is a fixed
core location (possibly relative to a programa-
ble base register). When the scheduler finds an
active line it goes to this location to find out
what to do. In most cases the line will carry
a wakeup signal, and the core location will con-
tain either O# which causes the signal to be
ignored, or the arguments for a wakeup operation,
which are a process number and a priority. The
process number is actually a pointer to a block
of words which contain:

the state word for the process (or its core
or drum address).

bits which specify whether it is blocked 3
ready, or running, what processor it is
running on, whether it is suspended or not,
and the wakeup waiting switch.

forward and backward pointers for the ready
list queue it is on, if any.

If the process is ready or running at a higher
priority than its current one, there is nothing
to do. Otherwise, it must be added to the
ready list or moved to the appropriate level;
the steps required to accomplish this have
already been presented. If its priority is
high enough it must be given a processor, which
is done by storing its stateword address into a
standard place and sending the selected proces-
sor a switch signal. The scheduler then sets
the status bits for the newly running process
and for the one which has been pre-empted and
goes on its way.

Processor Switching

The processor which receives the switch
signal must store the stateword of the process
it is currently running in the proper place,
which it is responsible for remembering, and
pick up the address of its new stateword from
the cell where the scheduler left it. Note
that the stateword of a process is always asso-
ciated with the process itself and never with
the one which pre-empts it. This means that it
is not necessary to exit from "interrupt rou-
tines" in the order in which they are entered.
In fact, the whole idea of an interrupt routine
does not have much meaning. The time required
to store a stateword and pick up a new one will
depend on memory speed and the number of central
registers, but with a memory of reasonable band-
width and 1,~s cycle time it should not be more
than 4 or 5,z~.

The stateword, of course, defines the
process. The information it contains, together
with a minimal amount of other status informa-
tion and temporary storage for essential system

routines, is all that is needed to allow a
process to run (although to do anything useful
it will have to have some user program and data
storage as well). All this data can be held
in a block of memory locations which we may
call the context block. The address of this
block is then sufficient information to give to
a processor when it starts to run the process,
and the operation of creating a process consists
precisely in creating a new context block. The
layout of a context block is shown in figure 6.

In a paged swapping system it will probably
be convenient to assign a page to the context
block, which may then be identified by its drum
address if it is not in core. Of course, it is
not possible for a processor to run the process
if its context block is out of core, but the
scheduler can detect this situation and wakeup
a system process instead. This process, which
might be called the context block swapper, can
then take responsibility for bringing the con-
text block into core and waking up its process
again.

The algorithms for block and change priori-
ty have already been considered and present no
new problems. The treatment of the timer has
also been considered. Recall that it does not
involve the scheduler at all; decisions about
what to do when a timer trap occurs are matters
of policy and must be left as flexible as
possible.

It should be pointed out that there is a
distinction between interrupts, which are wake-
up signals, and traps, which are forced trans-
fers of control within a single process. This
distinction is made very sharp by a hardware
scheduler, which has complete jurisdiction over
wakeups but knows nothing about traps. In
addition to the timer trap~ there are also like-
ly to be traps for various conditions having to
do with memory addressing, for protection vio-
lations, for floating-point overflow, and
possibly for a variety of other conditions. A
call on the system by a user process is also a
kind of trap, and indeed in some systems it
takes the same form as an illegal instruction
execution. This observation should illuminate
the relationship of a trap to a wakeu~ signal,
especially in the light of our earlier discus-
sion of system calls.

Locks

Need for Interlocking Processor, s

It is very often the case in a large system,
whether it be an entire time-sharing complex or
simply an applications program, that independent

processes work on the same data base. When the
data base is being modified, it is generally not
in a fit state to be looked at. It is therefore
necessary for a process which intends to modify
the data base to lock out any other process
which might want to modify or look at it. The
sequence of events required is

1. Test the lock to see if it is set. If
so, loop in this step. If not, go on.

2. Set the lock. There must not be any
opportunity between steps one and two for an-
other process to set the lock. If this event
should occur, both processes would proceed to
access the data base simultaneously, exactly
the condition we are trying to avoid.

B. Examine or modify the data base.
4. Clear the lock.

In some cases these precautions are required
only when data are being changed. At other
times, especially when pointers are involved,
it is dangerous even to look at the data if
another process might be modifying them. The
details will vary with the specific application,
but the nature of the problem remains the same.

Possible Implementations

At least two techniques exist for imple-
menting locks. The first is to provide a
machine instruction of the following general
form: test the contents of the memory word
addressed. If it is negative, skip. Otherwise
make it negative and take the next instruction.
If we call this instruction TSL for test and
set lock, then the sequence

TSL LOCK
BRU OK branch unconditionally
BRU *-2

will not allow control to reach OK unless the
lock has been found not to be set, and when
control does reach OK the lock will be set
again. Probably two memory references to LOCK
will be required by TSL. If this is the case,
access to that cell by any other process must
be inhibited between the two references of the
TSL.

This mechanism allows an arbitrary number
of locks to exist. A lock is cleared by sto-
ring some positive number in the lock cell. A
minimum of two instructions must be executed,
and a minimum of four memory cycles is required.
The biggest drawback is that a process hung up
waiting for a lock to be cleared expends memory
cycles without doing any useful work. These

memory references degrade the performance of
the rest of the system.

An alternative method is to supply each
process with a lock register consisting of n
bits. The equivalent of TSL hangs the process
until a specified bit is off, then turns it
on and proceeds. Two instructions are still
required, but only two memory references. The
cost of waiting for a lock to clear is simply
the cost associated with the processor which is
delayed; there is no drain on the rest of the
system. There are two drawbacks: the number
of different locks which may be set is limited
by the length of the lock register, and a phy-
sical connection between processors other than
the memory is required, even though it is a
simple one. Furthermore, it is not clear what
to do with the lock register if a process is
blocked and the processor given to another
process.

If processors are being shared, either
method has the following further drawback.
Suppose there is only one processor, and that
process A is running, sets a lock, and is
deprived temporarily of its processor in favor
of process B, which attempts to set the same
lock. Process B will hang, but the lock will
never be cleared, since A will never be able to
continue (unless B is pre-empted by a timer
runout). This is rather serious. The difficul-
ty can be avoided by increasing the priority of
process A so much that it cannot be pre-empted,
but this scheme has obvious disadvantages.

The problem is handled in most existing
systems by precisely this means, however.
"Increasing the priority of process A" is
accomplished by disabling the interrupt system,
so that any interrupt signals which come in are
stacked until an enable instruction is executed.
The process which executes the disable instruc-
tion will run without interference, since on
most systems all the mechanisms for taking the
processor away from it are dependent on inter-
rupts.

A General Interl0ckin 6 Mechanism

If the first method described above (TSL)
is used, the following solution to this problem
is possible. When a process tests a lock and
finds it set, it blocks itself. The wakeup
signal is supposed to be the clearing of the
lock. It is definitely not desirable, however,
to require that the process clearing the lock
be aware of other processes which desire to
be woken when it is cleared, since the tribula-
tions of these other processes are not the pro-
per business of the former, but rather of the

scheduler. Secondly, there may be more than
one process waiting for the same wakeup.

We proceed to describe a technique which
overcomes both of these problems and which has
many other applications as well. For the sake
of clarity a particular version of this tech-
nique is described in great detail. This ver-
sion has some significant drawbacks, but since
a full discussion of them and consideration of
how they may be avoided would require many
pages and would not be particularly relevant
to the problem of locks which we are considering,
it has been omitted. The reader who is offended
by the details about to be described is invited
to skip over them, remembering only the basic
method for handling locks which has been out-
lined in the last paragraph.

The device about to be described is pro-
bably a minimum perturbation of conventional
hardware. What we do is to complicate the
indirect addressing mechanism of the hardware,
so that if an indirect address chain leads
through a word with a certain bit set, the next
word in memory will be executed as an instruc-
tion. Very likely it will be a subroutine call.
A desirable refinement is to allow this to take
place on a read access, a write access or both.
Two bits in the indirect address word are re-
quired for this. Once this convention has been
adopted by the hardware it is no longer possible
in general to use an instruction word, say, as
an indirect address, since these two bits will
be interpreted in a manner inconsistent with
their use in the instruction. This suggests
that it might be desirable to restrict the
application of the convention to special load
and store instructions. In fact, however, most
systems will probably have indirect address
words with many more address bits than an
instruction word, in order to allow for the
addressing of a large amount of memory. If this
is true, the addition of two mode bits is not
serious. Indeed, many more mode bits would be
desirable to control the way in which the indi-
rection proceeds from level to level.

We now make the convention that a lock L
will always be referenced indirectly through
another cell, say L1. Initially, when no one
is waiting for the lock to be cleared, things
look like this

L DATA -i lock set
L1 ZRO L indirect word pointing

to L

If someone blocks waiting for the lock, this
becomes

L DATA -i
L1 ZRO L2, 1

CALL WAKEUPi
L2 ZRO L

where the tag on Li will cause a store instruc-
tion which indirects through it to execute the
CALL of a routine to wake up the blocked process.
If a second process wishes to block, it will add
another link to the indirect chain, making it

L DATA -i
L1 ZRO L3,1

CALL WAKEUPi
L3 ZRO L2,1

CALL WAKEUF2
L2 ZRO L

A process wishing to test the lock will do the
following

1. TSL* L1
This is counted as a read reference to memory,
not a store.

2. If the lock is set (i.e., if the TSL
skips) construct a two word pair, say at LN,
with the contents of L1 in the first word and
a call to a wakeup routine in the second.

3. Store
ZRO LN, i

in L1
4. Block
9. Goto i

This sequence will work even if several pro-
cesses are waiting on the same lock. They will
all be woken up (if there are enough processors)
but only one will get to set the lock. The
others will have to block again. Various permu-
tations of the order in which entries are put on
the indirect chain can be envisioned.

The wakeup routine must do the following things

i. Put the two words addressed by Li into
Li and Ll+l.

2. Execute the instruction which addressed
L1. This may cause more wakeup routines to be
called, and will eventually clear the lock.

3. Generate the wakeup signal.
4. Return to the program which cleared

the lock.

If it is known that the instruction which
caused the routine to be called was a lock
clear, and if it is not desired to wake up more
than one process when this event occurs, then
step 2 can be omitted.

Short-Term Interlocks

It will not have escaped the observant
reader that some stages of the block and wakeup
sequences outlined here will require their own
lock mechanisms. If other programs tamper with
the indirect chain or with the lock between
steps 1 and 3 of either sequence, disaster will
occur. Because of the very special character
of the two critical sequences it seems quite
reasonable to introduce a special-purpose pro-
tection mechanism to safeguard them. It is
extremely desirable that this mechanism should
have very low overhead, since it must be invoked
whenever a lock is set but will be of use only
infrequently. It is also desirable that it
should be applicable in other situations where
execution of a small number of instructions
must be protected, e.g. the operations of ob-
taining cells from a free storage list or return-
ing them to it; the time required for these
operations is so small that even the rather fast
method we have described would more than double
the execution time.

We therefore introduce one more instruction
called PROtect, whose function is to ensure that
during some short period after the execution of
PRO:

a. The process which executes the PRO
cannot lose its processor.

b. No other PRO can be executed. If an-
other processor attempts to do a PRO, it is
forced to wait until the current one is com-
plete. Simple hardware synchronization tech-
niques can ensure this.

The "short period" mentioned above is probably
best measured in memory references by the pro-
cessor and about 15 is probably the right
number. Time is not satisfactory since the
amount of time required to execute an instruc-
tion is unlikely to be predictable in advance,
and instruction executions is even worse, since
an indirect addressing loop can cause the pro-
cessor to hang without executing any instruc-
tions. Since a PRO cannot hang up a processor
for more than a small number of memory cycles
it does not need to be a privileged instruction.

Details

We can now write out the lock testing
sequence in full:

START PRO
TSL * L1
BRU OK
LDA CALLWK pick up instruction

to call wakeup routine

LNI

STA LN+l
LDA LNI
XMA L1
STA LN

ZRO LN, 1

exchange memory and the
A register

The PRO extends at least to the STA instruction.
To clear the lock, we write

CLEAR LDA =0
PRO
STA * L1

The store indirect may cause a transfer to the
wakeup routine. The PRO is necessary to prevent
the lock from being cleared while someone is in
the process of setting it. The wakeup is done
by:

WAKEUP ZRO 0 the return link is
stored here

LDX
LDA
STA
LDA
STA
LDX
EXUX

WAKE

BER

L1
XO

L1
X

load indexed

1
Ll+l
WAKEUP
0 execute the instruction

which addressed <l
wakeup the process res-
ponsible for this
routine

WAKEUP return to the
instruction after the
STTA* of the CLEAR
sequence

The PRO needs to cover only the first three
instructions of the wakeup sequence.

Conclusions

With this much machinery (PRO is the only
new instruction which is really essential) we
have a very satisfactory system for interlocking
independent processes. Short sequences of
instructions can be protected by PRO; if every
other sequence of instructions which is executed
by another process and references the sensitive
data is also covered by a PRO, it is not possi-
ble for two such sequences to be executed
simultaneously. Larger operations on shared
data bases can be interlocked with locks in
memory. The cost of setting and clearing such
a lock is only a few instructions.

The methods we have been discussing depend
on cooperation among the processes referencing
a shared data base and on correct programming

of each reference to the data. As van Horn and
others have pointed out, the bugs introduced by
incorrect handling of this problem occur in a
random and generally irreproducible manner and
are very difficult to remove. Van Horn has
proposed a scheme which enforces proper handling
of shared data; it does however require more
substantial hardware modifications than the
methods suggested here.

References

1. Dennis, Jet al, Machine Structures Group
Memos 19, 40, 41, M.I.T., Cambridge, Mass.
(1966).

2.

.

.

Dennis, J. B., "Segmentation and the Design
of Multiprogrammed Computer Systems," JACM
_~, 4 (Oct. 1965), pp. 589-602.

Dennis, J., and Van Horn, E., "Programming
Semantics for Multiprogrammed Computations,"
CACM 9_, 3 (March 1966) pp. 143-155.

LeClerc, Jean-Yves, "Memory Structures for
Interactive Computers," Project Genie
Document 40.10.110, University of California,
Berkeley (May, 1966).

. Saltzer, J. H., "Traffic Control in a
Multiplexed Computer System," MAC-TR-30
(Thesis), M.I.T., Cambridge, Mass.
(July, 1966).

. Van Horn, E. C., "Computer Design for
Asynchronously Reproducible Multiprocessing:
MAC-TR-34 (Thesis), M.I.T., Cambridge,
Mass. (November 1966).

computing process

input-output process

Figure ! : Receiprocally blocked processes. Solid horizontal

lines indicate running periods~ dashed ones blocked

periods. The arrows are wakeup signals.

computing process

input-output process

(a) Race condition improperly handled. The second wakeup is lost.

computing process

input-output process

A

(b) Race conditions handled correctly. The cusps are attempts

to block thwarted by the wakeup-waiting switch.

Figure 2: Race Conditions in the Scheduler

z/o,4

I,l

z/o,4

I,l

I/0,3

1,2

C,7 Ci,8

z/o,6 iio,8

ComDuting processes

Processes blocked for I/O

(a) A possible state of the system. The running processes

are boxed, the ready ones underlined. Numbers indicate

priorities; the highest priority is 1.

c, 7 c,9

I/O,3 I/0,6 I/0,8

1,2

Another possible state

Ci~ Ci7 Cil8

I/0,3 II0,6 I/Oi8

1,2

A higher-priority process becomes ready

c,6(2) c,7(3) ~.~(4)

II0,3(6) I/0,6(7) I/0,8(8)

[-E~](lO)

(b)

Process

I Vo,~+ I

1,1

(c)

o,6(1)

Iio,4(9)

(d) Two urgent real-time processes are running.

numbers in parentheses.

Figure 3: Running, ready and blocked processes in a two-processor

system.

I

O"J

i

tQ

q"o

i

i.
G~

Priority rlfp rlrp

1 9 9

2 io io

3 o o

4 5 5

5 o o

6 1 7

7 3 3

8 4 8

Figure 5a: Ready list for Figure 3d

Process Priority fqp rq~ processor run

1 6 2 ~6 0 1

2 6 7 i 0 1

3 7 *7 *7 0 I

4 8 8 *8 o l

5 4 *4 *4 o 1

6 - - - 0 0

7 6 *6 2 0 i

8 8 *8 4 0 i

9 i *i *i 2 i

i0 2 *2 *2 i i

Figure 5b: Ready list queues for Figure 3d

program counter

central registers

clock

map

status information

user number, capabilities, etc.

temporary storage for

system routines

k

Figure 6: Contents of a context block

