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Introduction 

Oneof the essential parts of any computer 
system is a mechanism for allocating the proces- 
sors of the system among the various competitors 
for their services. These allocations must be 
performed in even the simplest system, for 
example, by the action of an operator at the 
console of the machine. In larger systems more 
automatic techniques are usually adopted; 
batching of jobs, interrupts and interval timers 
are the most common ones. As the use of such 
techniques becomes more frequent, it becomes 
increasingly difficult to maintain the conven- 
tional view of a computer as a system which does 
only one job at a time; even though it may at 
any given instant be executing a particular 
sequence of instructions, its attention is 
switched from one such sequence to another with 
such rapidity that it appears desirable to 
describe the system in a manner which accommo- 
dates this multiplexing more naturally. It is 
worthwhile to observe that these remarks apply 
to any large modern computer system and not just 
to one which attempts to service a number of 
on-line users simultaneously. 

This paper is concerned with a variety of 
ideas which bear on the analysis of a multi- 
processing system. Most of these ideas center 
around two fundamental issues: 

a. How decisions can be made about which 
instructions to execute next. Some of the basic 
ideas on this subject in the next two sections 
were originated by Saltzer. 

b. How programs are protected from them- 
selves and each other. Papers by Dennis and 
LeClerc have influenced the treatment of this 
subject. 

Detailed consideration is given to methods for 
multiplexing processors, and it is shown that 
suitable hardware and software can make it 
possible to schedule all the processing done 
by the system in a uniform manner, so that 
interrupt routines do not have to be treated 
differently from ordinary user programs. 
Finally, a variety of mechanisms are considered 
for interlocking and synchronizing parallel 
computations. 

Preliminaries 

We begin by defining some terms which will 
permit a precise discussion of what happens in 
a complex computer system. The most important 
of these terms is process. The intuitive basis 
for the idea represented by this word is the 
observation that certain sequences of actions 
follow naturally, one upon the other, and are 
more or less independent of other sequences. 
For example, a disk-to-printer routine and a 
matrix inversion program running on the same 
processor are two quite distinct programs, 
which can normally execute entirely indepen- 
dently of each other. The independence is not 
complete, however, since information may be 
written into the disk file by the inversion 
program while earlier information is read by 
the printer driver. Furthermore, the fact 
that clearly different programs are being 
executed is not essential; two inversions 
operating on different data would have just 
as much right to be considered distinct. 
Indeed, it might well be that a single inver- 
sion program could be coded in such a way that 
several parts of it could be in execution 
simultaneously. 

To summarize, the essential character- 
istic of a process is that it has, at least 
conceptually, a processor of its own to run 
on, and that the state of its processor is 
more or less independent of all the other 
processors on which all the other processes 
are running. Since there are usually not as 
many physical processors as there are processes, 
it becomes necessary to create enough logical 
processors by multiplexing the physical ones. 
Techniques for doing this are one of the 
subjects of this paper. 

The S t a t e  Vector 

We now consider more carefully what is 
involved in switching a physical processor 
from one process to another. When a processor 
is executing instructions, there exists a 
collection of information (called the full 
state vector) whic.h is sufficient to completely 
define its state at any given moment, in the 
sense that placing the processor in some 
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arbitrary state and then resetting it from the 
full state vector will cause execution of 
instructions to proceed as though nothing had 
happened. For a central processor of conven- 
tional organization the full state vector in- 
cludes: 

a. The contents of the program counter. 
b. The contents of the central registers 

of the processor. For convenience we will 
confine our attention to points in time between 
the execution of instructions at which registers 
directly accessible to the programmer are the 
only ones of interest. The use of address 
mapping schemes involving segmentation may make 
it necessary to consider also certain non- 
accessible registers involved in indirect 
addressing. This complication will be ignored. 

c. The address space of the processor and 
the contents of every address in it. By this 
we mean a list of all the legal memory addresses 
which may be generated by the program and the 
contents of each one. 

d. The state of all input-output devices 
attached to the processor. 

The information just specified consists of a 
rather large number of bits. Furthermore, it 
contains considerably more detail than is 
usually desired. In a time-sharing system, for 
example, the physical state of the input-output 
devices is not normally of interest to the 
program, and even the contents of the next word 
to be read from a file may not be information 
which we wish to associate with a process, since 
such an association makes it difficult for two 
processes to share the file. 

Similar considerations apply to the contents 
of the words in the address space; these might 
be changed by another process. The address 
space itself, however, has a better claim to be 
regarded as an integral part of the process. 
To clarify this point, we pause to consider (or 
define) exactly what the address space is. We 
may think of all the words which can possibly 
be addressed by any process as being numbered 
in some arbitrary fashion. Each word is then 
identified by its number, which we will call 
its absolute address. Note that we are not 
saying anything about the physical location of 
the words, and that the absolute address we 
have just defined has nothing to do with this 
location, but is simply a conceptual tool. Then 
the address space of a process (also called the 
map) is a function from the integers into the 
set consisting of the absolute addresses of all 
the words in the system and two symbols U and 
N. I.e., it associates with every address 
generated by the program an absolute address, 

or specifies that the address is undefined or 
not available. The address space may also 
carry information about the accessibility of 
a word for which it supplies an absolute 
address, specifying for example, that the word 
may not be written into. 

Observe now that what the address space 
really does is to define the memory of the 
process. Any of the words of this memory may 
~iso be part of the memory of some other process, 
which may refer to them with the same or differ- 
ent addresses. The words, however, are consi- 
dered to have an existence independent of their 
addresses in any particular address space. 

We recognize, then, that the definition 
we want for the state vector of a process is 
not a direct analog of the one used in system 
theory. In fact, it leaves unspecified a 
number of things which can affect the future 
execution of a process, namely just those 
things which we wish to think of as being 
shared between processes. With this point in 
mind, we define the state vector (or stateword) 
of a process to consist of the program counter, 
central registers and address space of the 
processor on which it is running. From the 
above discussion we conclude that the process 
can still exist even if it is not running on 
the processor, since the state vector carries 
sufficient information to allow it to be 
restarted. A process should be sharply 
distinguished from a program, which is a 
sequence of instructions in memory. We can 
speak of either a process or a processor execu- 
ting a program. The process is the logical, 
the processor the physical environment for this 
execution. It seems reasonable to say that the 
process is executing even if it is not running 
on any processor. 

In order to give practical substance to 
the distinction between process and program, 
it is necessary to require that execution of 
the program should not cause it to be modified. 
If this restriction is observed, it is clear 
that more than one process can be executing 
the same program at the same time. Note that 
it is not necessary to have more than one pro- 
cessor for this to be possible, since we do not 
insist that a process be running in order to 
be executing. To return to our matrix inversion 
example: in a particular problem it may be 
necessary to invert six independent matrices, 
and to this end six processes may be established, 
one to work on each matrix but all executing 
the same program. On the other hand# one of 
these processes may, after inverting a matrix, 
go on to execute a different program which 
calculates its eigenvalues. 
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O~eratiops on Processes 

In this section we take up some points 
which are independent of processor multiplexing. 
A number of these points center around the 
observation that a process does not always want 
to execute instructions even if there is a 
physical processor avail~ble. A typical example 
of such a process is a compiler which has ex- 
hausted its availzLble input and is waiting for 
more cards to be read. This is a special case 
of a very general situation, in which a process 
is waiting for some external condition to be 
satisfied and has nothing useful to do in the 
meantime. There are basically two ways in 
which this situation can be handled. The 
simplest is for the process to loop, testing 
a flag which records the state of the external 
condition. The objection to this scheme is 
that it is wasteful if there is any other pro- 
cess which could use the processor. Alterna- 
tively, the process can record somewhere the 
fact that it is waiting for, say, 14 cards to 
be read, and block itself. It will then execute 
no more instructions until the 14th card has 
been read and it has received a wakeup signal. 
The part of the system responsible for handling 
block and wakeup instructions will be called 
the scheduler. When a processor is executing 
instructions for a process, the process is said 
to be running. 

From the point of view of the scheduler, 
then, the life history of a process is an 
alternation of running periods and blocked ones. 
Each running period is terminated by a request 
to the scheduler that the process should be 
blocked; this request may be made by the pro- 
cess itself or by some other process. Each 
blocked period is terminated by a wakeup signal 
whose characteristics we have just described. 
Since the process can do nothing to help itself 
while it is blocked, it must make arrangements 
to be woken before blocking itself. Let us 
consider what the nature of these arrangements 
might be. 

The simplest situation is one in which 
the process has requested some service to be 
performed and wishes to wait until it is 
completed. Typical services have to do with 
input-output: a process might block itself 
until an input buffer is filled. In this case 
the process performing the service is expected 
to provide the wakeup signal. This idea is so 
simple as to require only one further comment. 
A reciprocal situation is that of the input- 
output process: it expects to be woken by a 
demand for service and blocks itself when it 

has done its job. The situation can be 
sketched as in figure i. Readers familiar 
with the concept of co-routines will find 
this picture fsmiliar. 

Race Conditions 

A slightly more involved situation is 
shown in figure 2. Here the input is assumed 
to be buffered, so that the computing process, 
after making a request for input, is able to 
continue running for a while. In the figure 
it continues to run on buffered input data 
until after the input-output process has com- 
pleted its work and sent it a wakeup, which has 
no effect on an already running process. Final- 
ly, it blocks itself, but by this time the 
wakeup has passed and will never come again. 

This situation can of course be alleviated 
by having the input process set a flag indica- 
ting that it has filled the next buffer. The 
computing process could then test this flag 
and not block itself if the operation is com- 
plete. This approach, however, will only 
serve to make the bad situation shown in 
figure 2a less common; it will not eliminate 
it entirely, since it is still possible for 
the input process to send its wakeup in the 
interval between an unsuccessful test and the 
subsequent block. What is necessary is to 
reduce this interval to zero, which can be done 
with a simple device called a wakeup-waiting 
switch. There is one of these for each process. 
Whenever a wakeup signal arrives at a running 
process, the switch is turned on. Wherever 
the process is blocked, it is turned off, and 
the process can also turn it off explicitly. 
If a process tries to block itself and the 
wa~eup-waiting switch is on, the switch is 
turned off and the process is simply allowed 
to continue running without interruption. This 
sequence of events is illustrated in figure 2b. 

Note that a single switch for each process 
is quite sufficient. Any function which might 
be accomplished with a stack of wakeup signals 
handled by the scheduler can equally well be 
accomplished by communication through shared 
memory. The details of such communication are 
too obvious to be worth discussing; in general 
a simple task queue will suffice. 

The proper way to program a process which 
blocks itself periodically, like the ones in 
figure 2, is to check explicitly after a wakeup 
signal is received that there is in fact work 
to be done, and to block again if there is not. 
This procedure will circumvent the problems 



which would otherwise arise if the work for 
which a wakeup is received gets done before the 
process tries to block. Often the simplest way 
to make this check is with a loop back to the 
code which made the decision to block. Thus, 
for example, the following routine to read data 
from an input buffer being filled by another 
process: 

a. Is input buffer empty? 
b. If not, read data and exit. 
c. Otherwise, block 
d. When wakeup arrives, go to (a). 

An additional complication is introduced 
by the fact that it is not unusual for several 
processes to be blocked waiting for the same 
condition to occur. If this situation can arise, 
the process generating the wakeup must be pre- 
pared to send it not just to one process, but to 
an entire wakeup list of processes. Alterna- 
tively, it may be preferable to leave this 
process unaware of the problem and to make one 
of the processes being woken up responsible for 
sending wakeups to the others (if such action is 
appropriate; in the case of several processes 

competing for a single device it may not be). 
The possible existence of wakeup lists is not 
important to the basic scheme and has been men- 
tioned only to illustrate a complication which 
can be handled without difficulty. 

Suspension 

We now have two states for a process: 
blocked and running, and two basic operations 
on processes: block and wakeup. Let us consi- 
der what else is required. Two things are 
obvious: it is necessary to be able to create 
and destroy processes, and to establish 
restrictions on the kind of access allowed to 
one process by another. These problems, how- 
ever, have to do with the general mechanism in 
the system for granting capabilities, with 
which this paper is not concerned. The precise 
operations required to create a process will 
be considered in a later section. 

It is, however, very convenient for a 
process to have one other property in addition 
to being blocked or running. Suppose, for 
example, that a program involving several 
processes is being debugged on-line. A valuable 
tool in this situation is the ability to stop 
execution of the program, examine the state of 
things, and then continue as though nothing had 
happened. During the pause in execution, all 
the processes being debugged are suspended; 
i.e., they are prevented from executing. If a 

wakeup signal is directed at a suspended pro- 
cess, it is recorded and will be acted upon 
when the process is released. In other words, 
being suspended is a quality unrelated to being 
blocked; a suspended process can be either 
blocked or running, but it will execute no 
instructions until it is released. 

Approximately the same effect can be 
obtained by reading the state words of all the 
processes, destroying them, and then recreating 
them later and putting back the statewords. 
This approach, however, requires a potentially 
large amount of information to be recorded and 
then restored. It is also likely to be quite 
time consuming, especially since it is usually 
not possible to destroy a process at any arbi- 
trary point in its execution, e.g. when it is 
operating on system tables. Furthermore, if 
any wakeup signals for a process arrive after 
it has been destroyed, they will be lost, which 
is not very satisfactory. 

Ac~u~isition of Capabilities 

We conclude this section with a brief 
discussion of the relationship between processes 
and protection. It has been taken for granted 
so far, as in almost all of the published 
literature, that a process is the basic entity 
to which capabilities should be attached. Since 
this doctrine cannot easily be made to cover 
all situations, it is usually modified in 
running systems by more or less inelegant devi- 
ces for a~owing a process to have different 
capabilities depending on what it is doing. 

To make this point clearer, consider an 
ordinary unprivileged process which wishes to 
obtain permission to use a tape unit, for 
example. It will make some kind of "call on 
the system." That is, it will transfer to a 
system routine which will determine whether the 
process is authorized to use tape units and 
whether the specified unit is free. If every- 
thing is in order, the system will grant the 
desired permission. In order to avoid unneces- 
sar/ digression, let us assume that permission 
is granted by turning on a bit in the stateword, 
and that the hardware allows execution of 
instructions for this tape unit only when the 
bit is on. The point is that the process run- 
ning the system program must have much greater 
capabilities than the user process; it has at 
least the capability to set the hypothetical 
bit just introduced, and the user process does 
not have that capability or it would have set 
the bit itself. In fact# we can dispense with 
the bit if anyone can set it, since it would 
serve no useful purpose. 



This discussion suggests that the "call on 
the system" mentioned above is really a wakeup 
directed to a process with great capabilities, 
which we will call a system process. There must 
also be some mechanism for communicating data 
between user and system processes, so that the 
latter can find out what is wanted and the form- 
er obtain information about the fate of its 
request. We may assume that the two processes 
share some memory, and neglect a host of ques- 
tions about how such an arrangement can actually 
be implemented with reasonable efficiency. The 
situation is then quite clear: the user process 
puts information about its request into this 
shared memory, wakes up the system process, and 
blocks. The system process examines the request, 
modifies the user process stateword appropriate- 
ly, records what it has done in the shared 
memory, wakes up the user process and blocks. 
The entire interaction depends on cooperation 
between the two processes, which is precisely 
why it is a suitable mechanism for its purpose: 
the user process cannot force the system process 
to do anything, but can only call attention 
to its desires. 

It is worth noticing, however, that the use 
of two processes in the manner just discussed 
is completely different from the usual applica- 
tions of multiprocessing, where two processes 
are running (more or less) in parallel. Here 
no parallel execution takes place at all; the 
system process runs when, and only when, the 
user process is blocked. The entire transaction 
in fact looks exactly like a subroutine call 
and return implemented in a very clumsy way. 
The only reason that the system process is a 
process rather than a pro6ram is that it has 
capabilities which we wish to deny to the user 
process. 

If we approach the discussion of capabili- 
ties from a different viewpoint, it will become 
clear why very few systems use the multiple 
process scheme described above. The first 
point to observe is that instead of thinking 
of a process as starting out with no power and 
acquiring capabilities, one may think of it as 
starting out with absolute power and then being 
restricted by the system's protection mecha- 
nisms. This is of course the customary way of 
looking at things; the word "absolute" is 
especially appropriate on a mapped machine, 
since protection is usually enforced primarily 
by the map and the ability to use absolute 
addresses allows a process to do anything. Let 
us consider briefly the fundamental character- 
istics of pro~ection systems. 

The simplest way of describing what is 
required is to say that certain processes must 
be prevented from executing certain words as 
instructions, namely those which violate the 
constraints of the protection they operate 
under. For purposes of implementation, however, 
it has proved convenient to make a further 
distinction and say that a process must be 
prevented from 

i. Accessing, changing or transferring 
control to certain words in the physical 
memory of the machine (memory protection). 

2. Executing instructions with certain 
operation codes, which are often called privi- 
leged (control protection). 

To accommodate the first requirement a variety 
of arrangements has been tried, which fall 
into two general classes, namely the protection 
of particular physical regions of core and the 
provision of an address mapping function which 
transforms every address generated by the pro- 
gram before sending it to the physical memory. 
The latter scheme is generally recognized as 
superior, and has been discussed at some length 
by various authors. We turn our attention here 
to the problems of control protection. 

Protection Systems 

What might be called the minimal solution 
to these problems, and one which has been 
implemented on many machines, is the provision 
of two modes called "monitor" and "user", or 
"master" and "slave" modes. In the first, or 
monitor, mode all the instructions of the 
machine can be executed, including those which 
change the address space of the process. In 
user mode, on the other hand, all the opcodes 
which might interfere with the operation of the 
system or of another user are prohibited. This 
prohibition is usually enforced by causing a 
switch into monitor mode and a transfer to a 
standard system routine whenever attempted 
execution of a privileged opcode is detected. 
These include any opcode which is undefined. 
or which halts the machine, all input-output 
opcodes, and all opcodes which invoke the 
scheduling or address mapping hardware. 

One of the implications of this kind of 
organization is that calls on the system, say 
in the form of a switch to monitor mode and a 
transfer to one of a small number of standard 
entry points, must be provided for any operation 
which a user program may be authorized to per- 
form and which requires execution of privileged 
instructions. Because the ability to execute 



such instructions attaches to a process, and 
because there are only two possible states 
which a process can be in as far as its autho- 
rity to execute such instructions is concerned, 
there is no way of avoiding a call to a system 
routine every time the need for a privileged 
instruction arises. Furthermore, this routine 
will in general have to check the validity of 
the call every time it is entered. Some improve- 
ment can be obtained by providing a number of 
different modes in which various classes of 
instructions are prohibited, but the number of 
input-output devices attached to a system is 
likely to be large enough to prevent this 
approach from effecting much improvement, since 
in general every device must be protected 
independently of every other one. Matters are 
still worse when it comes to mass storage devi- 
ces and it is desired to allow access only to 
certain areas of the device. 

An alternative approach to the whole pro- 
blem of control protection, and one which is 
capable of eliminating the problems we have 
been considering, is to attach the authority 
to execute privileged instructions not to the 
process executing them but to the memory loca- 
tions from which they are executed. Almost any 
memory protection scheme for a time-sharing 
system will allow an area of memory to be made 
read-only to a process. A system routine which 
controls the memory protection hardware can 
obtain read/write access to this area and there- 
fore can put into it anything it likes. What 
we envision now is an extension of the memory 
protection mechanism which allows this area to 
be made not merely read-only, but also privi- 
leged. If a memory location is part of a 
privileged area, then the control protection 
hardware will allow a privileged instruction 
fetched from this location to execute. Other- 
wise, execution of such an instruction will be 
suppressed. 

The system then simply arranges that the 
memory available to any process which is 
authorized to execute privileged instructions 
contains those instructions which the system 
wants to allow the process to execute, and no 
others; the process executes them by addressing 
them with an execute instruction. The result 
of such an arrangement is that from the point 
of view of the system control protection is 
absorbed into memory protection: the ultimate 
authority which a process can exercise is 
determined by the memory it can write, since 
not only the ability to execute privileged 
instructions but also the state of the memory 
protection system itself is determined by the 

contents of certain areas of memory. A process 
can do anything if it can write into privileged 
memory and can set up the memory protection 
for itself or for another process. 

It therefore follows that to change the 
capabilities of a process it suffices to change 
the map. The operation of waking up a system 
process can be replaced by a subroutine call 
which makes some memory accessible which was 
formerly forbidden. One popular implementation 
falls back temporarily on the monitor mode 
concept--a transfer of control which changes 
the protection (called a leap) must go through 
a standard routine which, running in monitor 
mode, is not subject to the usual restrictions 
of the system. This scheme is completely 
general and quite elegant; its only drawback 
is that leaps are likely to be slow. 

A mapping scheme proposed by Evans and 
Le Clerc eliminates this objection and extends 
the idea. Its foundation is the observation 
that a single procedure does not require access 
to the entire address space of the process of 
which it is a part. This consideration leads 
to an addressing scheme in which each segment 
is able to address a small number (say 16) of 
other segments. Each of these may in turn 
address other segments, so that the entire 
or global address space may be very large, even 
though the local address space, or that directly 
accessible from a single segment, is quite 
small. This arrangement has substantial advan- 
tages in terms of address bits saved. Its more 
important contribution, however, is the organi- 
zation which it forces on the programmer and 
enforces on his behalf: each part of the 
program is able to address exactly that data 
which it needs, and nothing else. 

Such a drastic reduction in the number of 
entities which can be independently protected 
(segments) also permits a new approach to the 
specification of protection. It is now possible 
to put the bits specifying the protection of a 
segment A not on the segment itself but on the 
link between A and the segment B which refers 
to it, since B can refer only to 16 segments. 
The protection information for an entire process 
is then specified not by a vector of protection 
bits for each segment, but by a matrix M which 
defines the relation of every segment to every 
other. An entry in this matrix, M.., says 

i 
either that segment j is not accessible from 
i or that it is identified in i by the number 
s (O~s<_lS) and that i is allowed certain kinds 
of access to it (read, write, execute, privi- 
leged, for example). 



Scheduling 

In this section we consider some algorithms 
which may be used to implement a scheduler, 
and complete the discussion of basic principles 
with an analysis of processor multiplexing. 
The scheduler consists of two sets of procedures 
which are logically quite independent of each 
other, and a data base which connects them. 

User Interface 

The first set of procedures may be called 
the user interface. Its function is to imple- 
ment the basic operations which may be called 
for by a user process: 

block 
wakeup 
suspend 
release 
test and reset wakeupwaiting switch 
change priority (see below) 

If processor multiplexing is not required this 
is a very straightforward matter. We define 
four arrays indexed by process or processor 
number (these are equivalent if there is no 
multiplexing): 

run[i] is i if processor i is executing 
instructions, O if it is not. This value 
controls the processor. 

suspend[i] is 1 if process i is suspended, 
0 if it is not. 

runstate[i] is O if the process was blocked 
more recently than it was woken up, 1 otherwise. 

wws[i] is 1 if the wakeup waiting switch for 
process i is on, 0 if it is off. 

These arrays, together with some other data to 
be introduced shortly, constitute the scheduler 
data base. Pseudo-Algol procedures for the 
basic operations are: 

procedure block(i); begin if wws[i]=O then 
run[i]:=runstate[i]:=O else----'~s~i]:=O end; 

procedure wakeup(i); be~If runstate[i]=l 
then wws[i]:=l; runstate[i..~--1;-~ suspend[i]=O 
then run[i]:=l end; 

procedure suspend(i); begin run[i]:=O; 
suspend[i]:=l end; 

procedure release(i); begin suspend[i]:=O; 
run[i]:=runstate[i] end; 

inte~procedure trwws(i); begin trwws:= 
wws[~[i]:=O end 

In the absence of multiplexing this is the 
entire implementation of the scheduler. It is 
assumed that the action specified by one of 
these procedures is taken instantaneously as 
far as the rest of the system is concerned. 
We defer a consideration of how this can be 
done and of the general problems of interlocking 
parallel processes to a later section. Note 
that we have not said anything about how these 
procedures are executed; it will be sufficient 
for the moment to imagine a special processor 
whose sole function is to do this. 

Multiplexing 

As soon as we begin to consider processor 
multiplexing life becomes much more complicated 
and more interesting. In order to introduce 
the complications one at a time, let us assume 
that the user interface procedures continue to 
function as before, but that the array run no 
longer directly controls the operation of a 
processor. In fact, since there are no longer 
enough processors to allow one to be assigned 
to each program, the data base arrays are not 
directly related to processors at all. To 
specify the indirect relationship, we define 
two more arrays: 

processor[i] specifies the processor 
assigned to process i. It is 0 if no processor 
is assigned. 

process[j] specifies the process running 
on processor j. It is 0 if no process is 
running. 

A process i is called ready if run[i]=l but 
processor[i]=O. The procedures which establish 
connections between processes and processors 
constitute the second half of the scheduler, 
which is called the enforcer. The algorithm 
used by the enforcer to assign processors is 
called the scheduling algorithm. A very simple 
and very unsatisfactory scheduling algorithm 
might be the following: 

ploop: 

qloop: 

i:=O 
for j:=l st~ 1 until np do 
if process[j]=O thgn be$i~- 

i:=if i=nq then 1 else i+l; 
if ~n[i]=Ov processor[lifO 
~en o~qloop; processor[i]:=j; 
p~ocess[j]:=i end 

else if run[proce~[j]]=O then begin 
pro~ss[j]:=processor[pro~s~:=O; 
5oto qloop end; 

6oto ploop; 



Here RR is the number of processors, n qthe 
number of processes. This procedure simply 
cycles around the processes in fixed sequence, 
assigning free processors to processes which 
wish to run as it finds them. Again we assume 
that where there is any possibility of confusion 
the enforcer's actions are performed instantane- 
ously. 

Priorities 

In order to improve on this algorithm it 
is necessary for the scheduler to have some 
idea about the relative importance of different 
processes. For purposes of discussion we will 
consider that two measures of importance exist: 

an integer assigned to each process 
called its priority. The enforcer 
regards process i as more important 
than process j if priority[i]>priority[j]. 
The array priority is added to the 
scheduler data base. 

The smount of time which has elapsed 
since a process was ready and assigned 
a particular priority. For processes 
of equal priority the enforcer operates 
on a first come, first served basis. 

Two modifications to the user interface are 
required to accommodate this new idea. One is 
a change in wakeup which allows a priority to 
be supplied along with the wakeup signal: 

procedure wakeup(i,p); begin 
if runstate[i]=l then wws[i]:=l; 
~n~state[i]:=l; priority[i]:=p~ 
if suspend[i]:=O then run[i]:=l end; 

The other is a new operation: 

procedure chpri(i,p); begin priority[i]:=p 
,e,nd; 

These two operations make it possible to estab- 
lish priorities for the various processes. The 
way in which this is done will determine which 
processes get to run, and will therefore have 
an important influence on the behavior of the 
system. It should be clear, however, that 
priority assignment is not an integral part of 
the scheduler, and it will therefore receive 
only passing consideration. 

We expect the enforcer to select from the 
processes with run[i]=l those np which have 
the highest priority at each instant. The 
precise length of an instant will be considered 
later; obviously we want it to be as short as 
possible provided the overhead stays low. A 

typical situation which the scheduling algorithm 
might encounter in a two-processor system might 
involve four processes computing with various 
priorities, another four processes blocked for 
ordinary input/output operations, and two pro- 
cesses awaiting real-time interrupts. At one 
moment the system should be running two of the 
computing processes, at the next one of these 
and then a process activated because of the 
receipt of teletype input, and at the next two 
top-priority real-time processes. See figure 3. 

We now proceed to consider a possible 
implementation of the multiplexing philosophy 
just described. The idea behind this scheme 
is that the scheduler should not be aware of a 
process at all until it is woken up, i.e., it 
should look only at processes on a list called 
the ready list. This list should be organized 
so as to make the selection of highest priority 
processes as natural as possible and to facili- 
tate the introduction of new processes. The 
former requirement can be very simply satisfied 
by keeping the process numbers of the ready 
processes in a table of consecutive registers 
in order of their priority. This arrangement 
is, however, extremely inconvenient when it 
comes to adding processes, since on the average 
half of the list will need to be moved for each 
addition. 

A slight improvement can be effected by 
replacing the table with a linked list, so 
that insertion requires only a splicing of 
pointers. It still requires a search through 
the list, however, to find the appropriate 
point at which to make the insertion. In order 
to eliminate this search it will be necessary 
to introduce more structure into the ready list. 
One way to do this is the following: restrict 
priorities to be integers in the range from 1 
to n, and equip the scheduler with an n-word 
table called the priority list. Each entry of 
this table contains either 0 or a pair of 
process numbers, plfp and plrp. Associated 
with each process there are also two process 
numbers, fqp[i] and bqp[i]. 

The significance of these arrangements is 
as follows: every non-zero priority list entry 
contains pointers to the head and tail of a 
queue of ready processes which have the priority 
given by the index of the entry in the priority 
list. When a new process arrives, it is added 
to the tail of the queue; processes are run 
beginning at the head. The queue is kept as a 
sy~netric list to facilitate deletions. 



To clarify the ready list pointer structure, 
the situation in figure 3 is displayed in full 
in figures ~ and ~. 

Management of the Ready List 

In order to take advantage of this data 
structure it is desirable to integrate the 
enforcer with the user interface procedures, 
since the enforcer needs to act only in response 
to a block, wakeup, or change priority operation 
(suspend and release, if they involve the 
enforcer at all, are equivalent to block and 
wakeup). Constant scanning of the scheduler 
data base is therefore not necessary. The 
pointer manipulations now become sufficiently 
complex, however, that a description in words 
seems more satisfactory than explicit procedures. 

There are two basic cases in which the 
enforcer is activated. The first is when a 
process is woken up. It is necessary to 

W1) Enter this process in the ready list 
at the appropriate priority on the tail of the 
queue (unless it is already on the ready list 
at a higher priority). 

W2) Check to see whether this priority 
is higher than that of some running process. 
If not, there is nothing to do. 

W3) If so, switch the processor running 
the lowest priority process so that it will run 
the newly introduced process instead. The 
abandoned process remains on the ready list 
and will run in due course. It has been 
pre,empted. 

The second case is when a running process 
blocks and its wakeup-waiting switch is not set. 

B1) Remove its queue cell from the ready 
list. 

B2) Find the lowest priority running 
process. Examine its forward pointer. 

B3) If it is a pointer to another queue 
cell, run the process in that queue cell, which 
is now the lowest priority process. 

B4) Otherwise, scan down the priority llst 
from the entry at the priority level of the 
lowest priority running process. When a non- 
zero entry is found, run the process in the 
queue cell pointed to by its head pointer. 

A change priority operation, the only 
other one which affects the enforcer, can be 
implemented with the sequence 

block 
priority[i]:=new priority 
wakeup 

In practice, of course, this can be improved 
upon, since there are many cases in which no 
changes in processor assignment are called for. 

If it is assumed that the priority llst and 
the queue cells are kept in memory, then the 
cost of block and wakeup operations in memory 
references (assuming that queue pointers are 
packed two per word) is 

W1) Three references to enter a new cell 
in a queue (one if level was empty). Two of 
these (to splice pointers) can be made in 
parallel. One more reference is needed to 
record the new state of the process; it can be 
made in parallel with all of the first three. 

W2,B) One reference to switch processes 
on a processor (not counting loading and storing 
of the state vector), followed by another 
reference to record the new state of the pre- 
empted process. This assumes that the priority 
and queue cell address of every running process 
are kept in registers associated with the pro- 
cessor running it. 

B1) Three references to delete a process 
(two if it is the only one on its priority 
level). Two of these (to splice pointers) can 
be made in parallel. 

B3) Two references to get the process 
number of the new lowest priority process if 
it is on the same level as the current one. 
Only one is required if the process blocked is 
the lowest one, since the pointer to the next 
one is obtained in the splicing operation. 

B4) Two references also if it has lower 
priority, plus references wasted in the scan. 

The cost of the scan can be reduced to one 
reference by providing abit word with one bit 
for each priority level and turning this bit 
on if the level is occupied. This scheme 
requires an extra reference every time a level 
becomes empty or ceases to be empty. Its 
value therefore depends on the density of 
empty levels. 

If the actual lowest priority process 
(the one farthest down the queue at the lowest 
priority level) is not known, step B3 is 
complicated by the possibility that we may 
have to pass over queue cells for already 
running processes. If there are many priority 
levels containing only one process, the cost 
of entering or deleting a process can be reduced 
by one cycle if we treat this as a special case 
and put the single process number directly in 
the ready list. 

Observe that the algorithms described 
above can be implemented in a mechanism, 
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independent of any processor which is able to 
read and write memory, accept block and wakeup 
requests, and send to a processor the informa- 
tion that it should dump the process it is now 
running and start executing another one. If the 
process number of the new process is held in a 
fixed memory location unique to the processor, 
then only one control line is required from the 
scheduler to each processor. The line simply 
says: switch processes. 

If we neglect the possibility of wakeup 
signals which come from the outside world, how- 
ever, it is also clearly possible for everything 
to be done by one of the processors being 
scheduled. Since every scheduling operation is 
initiated by an ordinary user process, there is 
no problem in finding a processor to do the 
work. The only other difficulty is in getting 
a processor to switch processes. This may be 
done with a signal which any processor can send 
to any other,,including itself, provided this 
signal is not sent until all the other manipu- 
lations connected with the scheduling operation 
have been completed. See Saltzer for a more 
detailed discussion of this point. 

Timers 

So far we have seen two mechanisms which 
can cause a process to lose its processor: 

it may be blocked, by itself or by some 
other process 

it may be pre-empted by a higher priority 
process. 

If every process could be counted on to run for 
only a short period before blocking, these 
mechanisms would be entirely sufficient. Un- 
fortunately, in the real world processes run 
for sufficiently long periods of time that it 
is necessary to have some method for stopping 
their execution, or at least reducing their 
priority, after a certain amount of time has 
elapsed. 

The period for which a process is allowed 
to run before such disagreeable things begin 
to happen to it is usually called a quantum. 
It may vary with the priority, the process, 
the time of day or anything else, and how its 
value is established is a policy decision with 
which we are not concerned. Some attention 
must be paid, however, to the methods by which 
the policy decision, once arrived at, is to be 
enforced. It is desirable that these methods 
should allow as much flexibility as possible 
in the choice of quantum and should not add 
significantly to the cost of scheduling. 

What we wish to do is to attach to each 
process as part of its stateword an integer 
which we call a timer. When the process is 
running, the timer is held in a hardware regis- 
ter and decremented at fixed intervals. When 
it reaches zero, the process is forced to 
transfer to a standard location where the 
system leaves a transfer to a routine which 
decides what to do. Two alternatives seem 
plausible: 

i. Assign a lower priority to the process, 
an action which may cause it to be deprived of 
its processor. 

2. Leave the process at the same priority, 
but give preference to all the other processes 
at the same priority level. 

Neither one, however, need be built into the 
scheduling mechanism. 

The choice of an initial setting for the 
timer is another policy decision, which can be 
made when the process is blocked or when it is 
woken up. The latter alternative is somewhat 
more appealing, since it allows for the possi- 
bility that different wakeup signals may arrive 
for the process, with different priorities and 
requiring different amounts of time. The draw- 
back is that a wakeup signal must carry an 
additional piece of information. In either 
case we may observe that the choice of quantum 
and the action to be taken when it is exhausted 
can, like the assignment of priority, be left 
within limits to the discretion of the user. 

One other point which ought to be brought 
out in regard to the kind of priority multi- 
plexing scheme we have been discussing: it 
does not guarantee that a ready process will 
ever be run; if enough processes of higher 
priority exist, it will in fact not be run. 
This may be exactly what is intended, but if 
it is not, the design of the priority and 
quantum assignment algorithms must take the 
unpleasant possibility into account. This 
might be done by restricting the frequency 
with which a process may enter the ready list 
with high priority. Another alternative is to 
restrict the length of time it may run at high 
priority, although this one may be subverted 
by the fixed overhead imposed by the need to 
swap in the memory for the process. Still a 
third approach is to increase the priority of 
processes which have been waiting for a long 
time at lower levels. 

Fixed Time Scheduling 

Everything that we have said so far about 
wakeup signals has implied that they originate 
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in some definite action on the part of some 
unblocked process, whether this process be 
within the system or entirely external to it. 
A signal originated by an external process 
might be the result of a circuit breaker 
opening. There is one particular class of 
wakeup signals, however, which demand special 
consideration, and these are the signals ari- 
sing from the elapse of specified intervals of 
time. It is extremely common for a process to 
wish to block itself until, say, noon arrives, 
or for ~ seconds to give a user opportunity to 
respond to some stimulus, or for that fraction 
of I00 ms remaining since it was last awakened 
if it wishes to give attention to some input 
signal at that interval. 

Another important case arises from the 
following observation: there is a large class 
of applications for which a user sitting at a 
teletype prefers a uniform 2-second response 
time to one which has, say, a uniform distribu- 
tion between -5 and 2 seconds, or even one 
which is .5 seconds with probability .75 and 
2 seconds the rest of the time. This is a 
fortunate circumstance from the point of view 
of the system, since it is only required to 
provide service sometime within a 2-second 
period chosen at its convenience. It does, 
however, require reasonably flexible timing 
facilities, both to give warning of the close 
approach of the deadline and to delay the 
generation of output until 2 seconds have 
elapsed. 

Such requirements can of course be satis- 
fied by the provision of an interval timer for 
each one; when a process blocks itself for 
n,~s, one of these timers is set for that 
interval and the signal which it will emit on 
its expiration is routed to the process. This 
solution is, however, obviously wasteful in the 
extreme. 

To improve on it we create a list called 
the fixed-time list, each entry of which 
contains: 

i. 

2. 
B. 

list. 

A process number and priority. 
A time. 
A pointer to the next entry on the 

The contents of the first entry on this list 
is kept in a fast register and the time con- 
stantly compared with a real-time clock. As 
soon as the latter becomes greater, the speci- 

fied process is woken up, the entry put on a 
free storage list, and the contents of the 
new first entry loaded into the registers. 
Any process desiring service at a fixed time 
simply puts the proper entry on this list and 
blocks itself. Note that it is possible for 
the contents of the registers to be changed by 
the appearance of a request with time earlier 
than that now in them. 

This arrangement ensures that the schedu- 
ler will at all times be aware of the require- 
ments of processes which wish to run while it 
remains ignorant of those whose wakeup time has 
not yet arrived. In case there are not enough 
processors to run all the processes demanding 
service, the priority mechanisms of the schedu- 
ler can be relied upon to allocate processors 
to the most important ones. This means that, 
given information about the distribution of 
processes at various priorities, it is possible 
to compute beforehand what kind of service a 
process can obtain at a given priority level 
or, alternatively, what priority it must have 
to obtain a given level of service. For those 
processes on the fixed time list precise infor- 
mation is available. For those being woken up 
in other ways only probabilities can be known 
beforehand. This uncertainty can be eliminated 
by assigning higher priorities to the fixed- 
time processes than to any others, or, if the 
cost of this scheme is unacceptable, it is 
still possible to work out expected average 
and maximum delays. Since the system can 
enforce its decisions about priority and run- 
ning time, it can guarantee the correctness of 
its estimate for these delays (barring hardware 
failure or bugs in the system programs). The 
important point is that no computations need to 
be made when it is time to wake up a process; 
everything can be worked out when the process 
makes a request for service, and it can be 
informed exactly what kind of response can be 
obtained at what price. 

Guaranteed Service 

Some elementary observations about this 
response may be in order here. These are 
intended to suggest the scope of the problem; 
very little attention has been given to it, 
and much work needs to be done. Let us ignore 
the existence of non-fixed-time processes for 
simplicity, and let us also assume that no time 
elapses between the arrival of a wakeup signal 
and the execution of the first useful instruc- 
tion of a process. Then if there are n proces- 
sors we can guarantee to n processes any kind 
of service they may require, simply by giving 



them all the highest priority. After that, 
life becomes a little more complex, and some 
information must be required of the processes 
about the frequency, quality and duration of 
service which they require, This information 
might include any of the following items: 

i. With what frequency will the process 
wakeup? Must it run at fixed times, or only at 
fixed intervals with an arbitrary origin? For 
most sampling processes the latter will suffice. 
What times and intervals does it wish to run at? 

2. What errors in the satisfaction of the 
above requirements can be tolerated, and with 
what probability. Is it acceptable, for instance, 
to miss i percent of the samples entirely? This 
might frequently be the case. What is the 
desired distribution of error versus frequency 
of occurrence. Perhaps a 2 ms error is com- 
pletely acceptable, one of ~ ms tolerable I0 
percent of the time, and one of i0 ms intolera- 
ble. Or perhaps 40~As accuracy is required with 
0 tolerance for greater error. Presumably a 
real system will have a minimum error, deter- 
mined by the response time of the scheduler, 
which is independent of priority. 

3. How long will the process run each 
time? Perhaps no more than 200~. Perhaps i 
ms usually, 2 ms IO percent of the time. To 
what extent can it tolerate interruptions? 
Must it perform ~ ms of computation in 5 ms of 
real time, or is it acceptable for 7 ms of real 
time to elapse? 

Needless to say, not all users will be able or 
willing to supply accurate information about 
all of these items. For those who do not, the 
system can make worst-case assumptions and 
charge accordingly; an incentive is thus provi- 
ded for the user to state his requirements as 
precisely as possible. 

When all this information has been collec- 
ted for all the fixed-time processes and suita- 
ble statistics and worst case information 
supplied for the others, a routine can be run 
to figure out what service can be provided with 
what probability. This routine will certainly 
be complex and slow if it is to do a good job, 
but this is not particularly objectionable, 
since it runs only when a user requests a 
different grade of service, not whenever he is 
served. Too frequently running of the routine 
can be discouraged by charging for it. As each 
new request for service comes in, it is thus 
possible to determine whether it can be satis- 
fied (together with all the other requests 
already accepted) and at what cost; and if not, 
what service can be provided. The user can 

thus obtain precise information about what to 
expect. If the system is overloaded, of course, 
some users will not be able to get what they 
want. The proper response to this situation is 
to expand the system (if the user requests are 
justified; this is of course a policy decision 
which cannot be made by the system); if the 
service allocation routine is good, there can 
be reasonable assurance that the system is doing 
as well as it can. 

H_a.rdware Implementation 

The concepts and techniques described in 
the last three sections have been developed to 
provide the sole scheduling mechanism for a 
reasonably large time-shared system. Nearly 
all such systems in existence or under develop- 
ment are based on a dichotomy between two 
different schedulers: one implemented in 
hardware and usually called the interrupt 
system, the other implemented in software and 
used to schedule user programs. Such an orga- 
nization has a number of drawbacks. First of 
all, it leads to a sharp distinction between 
interrupt routines, which are regarded as part 
of the basic system, usually run in some unpro- 
tected mode, and cannot call on the system 
services available to ordinary programs; and 
user processes, which cannot respond directly 
to external signals and cannot run for short 
periods of time without incurring overhead 
considerably greater than their running time. 

Secondly, the software scheduling system 
is usually quite slow and cumbersome. It 
requires a considerable amount of time to 
convince both the processor hardware and the 
system software that a different process is 
being run, and the computation required to 
properly handle the highly non-uniform load of 
user processes is substantial. As a result 
the time required to schedule a process is on 
the order of milliseconds, except possibly for 
a very small class of processes which can be 
given special treatment. On the other hand, a 
process scheduled in this way can call on all 
the services which the system provides without 
taking any special precautions (can, for example, 
open a disk file, which is a highly non-trivial 
operation), and it runs within the elaborate 
framework of protection normal for a user 
process which prevents it from damaging other 
users or degrading the service too much and 
insulates it from the many of consequences of 
its own folly. 

Thirdly, it is nearly impossible to estab- 
lish any kind of communication between the 
priority system established by the interrupt 
hardware and the one defined by the software. 



The usual rule is simply that all interrupt 
routines take precedence over any "normal" 
processes. It is, of course, possible to 
persuade the software scheduler to in effect 
turn an interrupt routine into an ordinary 
process, but this is a messy and time-consuming 
procedure. Related to this problem is the fact 
that the interrupt system's priority scheme is 
not likely to be satisfactory in demanding 
situations; many routines need much more flexi- 
bility to establish their priorities than the 
hardware can conveniently allow, especially 
where the set of interrupts which are expected 
during any given five-minute period is a small 
and varying subset of all those which might be 
handled in a week. 

A fourth point which is somewhat unrelated 
to the first three is that most interrupt 
systems do not switch enough of the state of a 
processor automatically. The most obvious 
omission in most of them is the interval timer 
and elapsed time clock. 

Policy and Administration 

These considerations suggest that it might 
be worthwhile to develop a system which would 
eliminate interrupts and drastically speed up 
the software scheduler by centralizing all 
responsibility for assigning processors to 
processes into one mechanism. A basic objection 
to any such proposal might well be the follow- 
ing: once something has been built into hard- 
ware it is very difficult to change. Scheduling 
algorithms are not well understood, and it is 
not likely that we can lay down rules today for 
deciding what processes to run which will satis- 
fy us next year. Therefore, we should not 
freeze our present inadequate ideas into the 
system forever. 

To see why this argument is weak, observe 
that a broad distinction can be made between 
a P01icy-makin~ and an administrative module 
in a system. The latter performs some function 
in a manner controlled by parameters supplied 
to it by the former. Of course, it is true 
that the organization of an administrative 
module affects the kinds of parameters that 
can be fed to it, and consequently determines 
the system's policy within certain limits. 
These limits are very wide, however, in many 
cases of practical interest. Consider, for 
example, an input-output buffering system. By 
adjusting the number of buffers, the blocking 
factor, the organization of buffers into pools 
and the priorities of files competing for 
buffers, the behavior of the system can be 
varied over a wide range. 

Similarly with a scheduler: its behavior 
is determined by the priority assignment algo- 
rithms, the choice of quanta for running proces- 
ses and the action taken on quantum overflow, 
as well as by decisions of the swapper and the 
input-output system. The scheduler itself 
simply provides a framework for enforcing the 
decisions taken by policy modules. 

Furthermore, the scheduler is such a basic 
part of the system that it is difficult to see 
how it could be drastically altered without a 
complete revision of the rest of the system. 
The effort required for such a change is pro- 
bably greater than that required to rebuild any 
reasonable piece of hardware, so that the flexi- 
bility offered by software is likely to be 
illusory. 

A Hardware Scheduler 

With these preliminaries out of the way, 
let us consider how an interrupt system might 
be replaced by a more powerful mechanism. The 
functions of an interrupt system are three: 

to continually monitor a fairly large number 
of external signals and take appropriate 
action when one of them changes state. 

to start a processor executing instructions 
for a new process within a fairly small 
number of microseconds after an interrupt 
arrives, regardless of what it is doing at 
the time. 

to recognize a sequence of priorities among 
interrupt signals and keep the processors 
executing the highest priority ones. 

To replace it we clearly need a piece of equip- 
ment which functions independently of the pro- 
cessors being scheduled, and which is capable 
of examining say fifty external lines, recog- 
nizing that one of them is high, putting a 
process on the ready list and giving it a 
processor, all within a period of perhaps lOxxs. 
Present-day hardware technology allows such a 
device, which we will henceforth call the sched- 
uler, to be built with a read-only microprogram 
memory and some small number of internal regis- 
ters, say 5 or 10, and to operate with a cycle 
time of 100 to 200 ns. The major delays it 
encounters are due to the main memory of the 
system. This, however, is likely to be orga- 
nized in numerous modules, so that the scheduler 
can make several references to main memory in 
parallel if this is convenient. 

All the external interrupt lines are 
directed into the scheduler, which in its 
normal state loops constantly, examining them 



and the request lines from the processors for 
activity. Associated with each line is a fixed 
core location (possibly relative to a programa- 
ble base register). When the scheduler finds an 
active line it goes to this location to find out 
what to do. In most cases the line will carry 
a wakeup signal, and the core location will con- 
tain either O# which causes the signal to be 
ignored, or the arguments for a wakeup operation, 
which are a process number and a priority. The 
process number is actually a pointer to a block 
of words which contain: 

the state word for the process (or its core 
or drum address). 

bits which specify whether it is blocked 3 
ready, or running, what processor it is 
running on, whether it is suspended or not, 
and the wakeup waiting switch. 

forward and backward pointers for the ready 
list queue it is on, if any. 

If the process is ready or running at a higher 
priority than its current one, there is nothing 
to do. Otherwise, it must be added to the 
ready list or moved to the appropriate level; 
the steps required to accomplish this have 
already been presented. If its priority is 
high enough it must be given a processor, which 
is done by storing its stateword address into a 
standard place and sending the selected proces- 
sor a switch signal. The scheduler then sets 
the status bits for the newly running process 
and for the one which has been pre-empted and 
goes on its way. 

Processor Switching 

The processor which receives the switch 
signal must store the stateword of the process 
it is currently running in the proper place, 
which it is responsible for remembering, and 
pick up the address of its new stateword from 
the cell where the scheduler left it. Note 
that the stateword of a process is always asso- 
ciated with the process itself and never with 
the one which pre-empts it. This means that it 
is not necessary to exit from "interrupt rou- 
tines" in the order in which they are entered. 
In fact, the whole idea of an interrupt routine 
does not have much meaning. The time required 
to store a stateword and pick up a new one will 
depend on memory speed and the number of central 
registers, but with a memory of reasonable band- 
width and 1,~s cycle time it should not be more 
than 4 or 5,z~. 

The stateword, of course, defines the 
process. The information it contains, together 
with a minimal amount of other status informa- 
tion and temporary storage for essential system 

routines, is all that is needed to allow a 
process to run (although to do anything useful 
it will have to have some user program and data 
storage as well). All this data can be held 
in a block of memory locations which we may 
call the context block. The address of this 
block is then sufficient information to give to 
a processor when it starts to run the process, 
and the operation of creating a process consists 
precisely in creating a new context block. The 
layout of a context block is shown in figure 6. 

In a paged swapping system it will probably 
be convenient to assign a page to the context 
block, which may then be identified by its drum 
address if it is not in core. Of course, it is 
not possible for a processor to run the process 
if its context block is out of core, but the 
scheduler can detect this situation and wakeup 
a system process instead. This process, which 
might be called the context block swapper, can 
then take responsibility for bringing the con- 
text block into core and waking up its process 
again. 

The algorithms for block and change priori- 
ty have already been considered and present no 
new problems. The treatment of the timer has 
also been considered. Recall that it does not 
involve the scheduler at all; decisions about 
what to do when a timer trap occurs are matters 
of policy and must be left as flexible as 
possible. 

It should be pointed out that there is a 
distinction between interrupts, which are wake- 
up signals, and traps, which are forced trans- 
fers of control within a single process. This 
distinction is made very sharp by a hardware 
scheduler, which has complete jurisdiction over 
wakeups but knows nothing about traps. In 
addition to the timer trap~ there are also like- 
ly to be traps for various conditions having to 
do with memory addressing, for protection vio- 
lations, for floating-point overflow, and 
possibly for a variety of other conditions. A 
call on the system by a user process is also a 
kind of trap, and indeed in some systems it 
takes the same form as an illegal instruction 
execution. This observation should illuminate 
the relationship of a trap to a wakeu~ signal, 
especially in the light of our earlier discus- 
sion of system calls. 

Locks 

Need for Interlocking Processor, s 

It is very often the case in a large system, 
whether it be an entire time-sharing complex or 
simply an applications program, that independent 



processes work on the same data base. When the 
data base is being modified, it is generally not 
in a fit state to be looked at. It is therefore 
necessary for a process which intends to modify 
the data base to lock out any other process 
which might want to modify or look at it. The 
sequence of events required is 

1. Test the lock to see if it is set. If 
so, loop in this step. If not, go on. 

2. Set the lock. There must not be any 
opportunity between steps one and two for an- 
other process to set the lock. If this event 
should occur, both processes would proceed to 
access the data base simultaneously, exactly 
the condition we are trying to avoid. 

B. Examine or modify the data base. 
4. Clear the lock. 

In some cases these precautions are required 
only when data are being changed. At other 
times, especially when pointers are involved, 
it is dangerous even to look at the data if 
another process might be modifying them. The 
details will vary with the specific application, 
but the nature of the problem remains the same. 

Possible Implementations 

At least two techniques exist for imple- 
menting locks. The first is to provide a 
machine instruction of the following general 
form: test the contents of the memory word 
addressed. If it is negative, skip. Otherwise 
make it negative and take the next instruction. 
If we call this instruction TSL for test and 
set lock, then the sequence 

TSL LOCK 
BRU OK branch unconditionally 
BRU *-2 

will not allow control to reach OK unless the 
lock has been found not to be set, and when 
control does reach OK the lock will be set 
again. Probably two memory references to LOCK 
will be required by TSL. If this is the case, 
access to that cell by any other process must 
be inhibited between the two references of the 
TSL. 

This mechanism allows an arbitrary number 
of locks to exist. A lock is cleared by sto- 
ring some positive number in the lock cell. A 
minimum of two instructions must be executed, 
and a minimum of four memory cycles is required. 
The biggest drawback is that a process hung up 
waiting for a lock to be cleared expends memory 
cycles without doing any useful work. These 

memory references degrade the performance of 
the rest of the system. 

An alternative method is to supply each 
process with a lock register consisting of n 
bits. The equivalent of TSL hangs the process 
until a specified bit is off, then turns it 
on and proceeds. Two instructions are still 
required, but only two memory references. The 
cost of waiting for a lock to clear is simply 
the cost associated with the processor which is 
delayed; there is no drain on the rest of the 
system. There are two drawbacks: the number 
of different locks which may be set is limited 
by the length of the lock register, and a phy- 
sical connection between processors other than 
the memory is required, even though it is a 
simple one. Furthermore, it is not clear what 
to do with the lock register if a process is 
blocked and the processor given to another 
process. 

If processors are being shared, either 
method has the following further drawback. 
Suppose there is only one processor, and that 
process A is running, sets a lock, and is 
deprived temporarily of its processor in favor 
of process B, which attempts to set the same 
lock. Process B will hang, but the lock will 
never be cleared, since A will never be able to 
continue (unless B is pre-empted by a timer 
runout). This is rather serious. The difficul- 
ty can be avoided by increasing the priority of 
process A so much that it cannot be pre-empted, 
but this scheme has obvious disadvantages. 

The problem is handled in most existing 
systems by precisely this means, however. 
"Increasing the priority of process A" is 
accomplished by disabling the interrupt system, 
so that any interrupt signals which come in are 
stacked until an enable instruction is executed. 
The process which executes the disable instruc- 
tion will run without interference, since on 
most systems all the mechanisms for taking the 
processor away from it are dependent on inter- 
rupts. 

A General Interl0ckin 6 Mechanism 

If the first method described above (TSL) 
is used, the following solution to this problem 
is possible. When a process tests a lock and 
finds it set, it blocks itself. The wakeup 
signal is supposed to be the clearing of the 
lock. It is definitely not desirable, however, 
to require that the process clearing the lock 
be aware of other processes which desire to 
be woken when it is cleared, since the tribula- 
tions of these other processes are not the pro- 
per business of the former, but rather of the 



scheduler. Secondly, there may be more than 
one process waiting for the same wakeup. 

We proceed to describe a technique which 
overcomes both of these problems and which has 
many other applications as well. For the sake 
of clarity a particular version of this tech- 
nique is described in great detail. This ver- 
sion has some significant drawbacks, but since 
a full discussion of them and consideration of 
how they may be avoided would require many 
pages and would not be particularly relevant 
to the problem of locks which we are considering, 
it has been omitted. The reader who is offended 
by the details about to be described is invited 
to skip over them, remembering only the basic 
method for handling locks which has been out- 
lined in the last paragraph. 

The device about to be described is pro- 
bably a minimum perturbation of conventional 
hardware. What we do is to complicate the 
indirect addressing mechanism of the hardware, 
so that if an indirect address chain leads 
through a word with a certain bit set, the next 
word in memory will be executed as an instruc- 
tion. Very likely it will be a subroutine call. 
A desirable refinement is to allow this to take 
place on a read access, a write access or both. 
Two bits in the indirect address word are re- 
quired for this. Once this convention has been 
adopted by the hardware it is no longer possible 
in general to use an instruction word, say, as 
an indirect address, since these two bits will 
be interpreted in a manner inconsistent with 
their use in the instruction. This suggests 
that it might be desirable to restrict the 
application of the convention to special load 
and store instructions. In fact, however, most 
systems will probably have indirect address 
words with many more address bits than an 
instruction word, in order to allow for the 
addressing of a large amount of memory. If this 
is true, the addition of two mode bits is not 
serious. Indeed, many more mode bits would be 
desirable to control the way in which the indi- 
rection proceeds from level to level. 

We now make the convention that a lock L 
will always be referenced indirectly through 
another cell, say L1. Initially, when no one 
is waiting for the lock to be cleared, things 
look like this 

L DATA -i lock set 
L1 ZRO L indirect word pointing 

to L 

If someone blocks waiting for the lock, this 
becomes 

L DATA -i 
L1 ZRO L2, 1 

CALL WAKEUPi 
L2 ZRO L 

where the tag on Li will cause a store instruc- 
tion which indirects through it to execute the 
CALL of a routine to wake up the blocked process. 
If a second process wishes to block, it will add 
another link to the indirect chain, making it 

L DATA -i 
L1 ZRO L3,1 

CALL WAKEUPi 
L3 ZRO L2,1 

CALL WAKEUF2 
L2 ZRO L 

A process wishing to test the lock will do the 
following 

1. TSL* L1 
This is counted as a read reference to memory, 
not a store. 

2. If the lock is set (i.e., if the TSL 
skips) construct a two word pair, say at LN, 
with the contents of L1 in the first word and 
a call to a wakeup routine in the second. 

3. Store 
ZRO LN, i 

in L1 
4. Block 
9. Goto i 

This sequence will work even if several pro- 
cesses are waiting on the same lock. They will 
all be woken up (if there are enough processors) 
but only one will get to set the lock. The 
others will have to block again. Various permu- 
tations of the order in which entries are put on 
the indirect chain can be envisioned. 

The wakeup routine must do the following things 

i. Put the two words addressed by Li into 
Li and Ll+l. 

2. Execute the instruction which addressed 
L1. This may cause more wakeup routines to be 
called, and will eventually clear the lock. 

3. Generate the wakeup signal. 
4. Return to the program which cleared 

the lock. 

If it is known that the instruction which 
caused the routine to be called was a lock 
clear, and if it is not desired to wake up more 
than one process when this event occurs, then 
step 2 can be omitted. 



Short-Term Interlocks 

It will not have escaped the observant 
reader that some stages of the block and wakeup 
sequences outlined here will require their own 
lock mechanisms. If other programs tamper with 
the indirect chain or with the lock between 
steps 1 and 3 of either sequence, disaster will 
occur. Because of the very special character 
of the two critical sequences it seems quite 
reasonable to introduce a special-purpose pro- 
tection mechanism to safeguard them. It is 
extremely desirable that this mechanism should 
have very low overhead, since it must be invoked 
whenever a lock is set but will be of use only 
infrequently. It is also desirable that it 
should be applicable in other situations where 
execution of a small number of instructions 
must be protected, e.g. the operations of ob- 
taining cells from a free storage list or return- 
ing them to it; the time required for these 
operations is so small that even the rather fast 
method we have described would more than double 
the execution time. 

We therefore introduce one more instruction 
called PROtect, whose function is to ensure that 
during some short period after the execution of 
PRO: 

a. The process which executes the PRO 
cannot lose its processor. 

b. No other PRO can be executed. If an- 
other processor attempts to do a PRO, it is 
forced to wait until the current one is com- 
plete. Simple hardware synchronization tech- 
niques can ensure this. 

The "short period" mentioned above is probably 
best measured in memory references by the pro- 
cessor and about 15 is probably the right 
number. Time is not satisfactory since the 
amount of time required to execute an instruc- 
tion is unlikely to be predictable in advance, 
and instruction executions is even worse, since 
an indirect addressing loop can cause the pro- 
cessor to hang without executing any instruc- 
tions. Since a PRO cannot hang up a processor 
for more than a small number of memory cycles 
it does not need to be a privileged instruction. 

Details 

We can now write out the lock testing 
sequence in full: 

START PRO 
TSL * L1 
BRU OK 
LDA CALLWK pick up instruction 

to call wakeup routine 

LNI 

STA LN+l 
LDA LNI 
XMA L1 
STA LN 

ZRO LN, 1 

exchange memory and the 
A register 

The PRO extends at least to the STA instruction. 
To clear the lock, we write 

CLEAR LDA =0 
PRO 
STA * L1 

The store indirect may cause a transfer to the 
wakeup routine. The PRO is necessary to prevent 
the lock from being cleared while someone is in 
the process of setting it. The wakeup is done 
by: 

WAKEUP ZRO 0 the return link is 
stored here 

LDX 
LDA 
STA 
LDA 
STA 
LDX 
EXUX 

WAKE 

BER 

L1 
XO 

L1 
X 

load indexed 

1 
Ll+l 
WAKEUP 
0 execute the instruction 

which addressed <l 
wakeup the process res- 
ponsible for this 
routine 

WAKEUP return to the 
instruction after the 
STTA* of the CLEAR 
sequence 

The PRO needs to cover only the first three 
instructions of the wakeup sequence. 

Conclusions 

With this much machinery (PRO is the only 
new instruction which is really essential) we 
have a very satisfactory system for interlocking 
independent processes. Short sequences of 
instructions can be protected by PRO; if every 
other sequence of instructions which is executed 
by another process and references the sensitive 
data is also covered by a PRO, it is not possi- 
ble for two such sequences to be executed 
simultaneously. Larger operations on shared 
data bases can be interlocked with locks in 
memory. The cost of setting and clearing such 
a lock is only a few instructions. 

The methods we have been discussing depend 
on cooperation among the processes referencing 
a shared data base and on correct programming 



of each reference to the data. As van Horn and 
others have pointed out, the bugs introduced by 
incorrect handling of this problem occur in a 
random and generally irreproducible manner and 
are very difficult to remove. Van Horn has 
proposed a scheme which enforces proper handling 
of shared data; it does however require more 
substantial hardware modifications than the 
methods suggested here. 
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computing process 

input-output process 

Figure ! : Receiprocally blocked processes. Solid horizontal 

lines indicate running periods~ dashed ones blocked 

periods. The arrows are wakeup signals. 



computing process 

input-output process 

(a) Race condition improperly handled. The second wakeup is lost. 

computing process 

input-output process 

A 

(b) Race conditions handled correctly. The cusps are attempts 

to block thwarted by the wakeup-waiting switch. 

Figure 2: Race Conditions in the Scheduler 
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(a) A possible state of the system. The running processes 

are boxed, the ready ones underlined. Numbers indicate 

priorities; the highest priority is 1. 
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(d) Two urgent real-time processes are running. 

numbers in parentheses. 

Figure 3: Running, ready and blocked processes in a two-processor 

system. 



I 

O"J 

i 

tQ 

q"o 

i 

i. 
G~ 



Priority rlfp rlrp 

1 9 9 

2 io io 

3 o o 

4 5 5 

5 o o 

6 1 7 

7 3 3 

8 4 8 

Figure 5a: Ready list for Figure 3d 

Process Priority fqp rq~ processor run 

1 6 2 ~6 0 1 

2 6 7 i 0 1 

3 7 *7 *7 0 I 

4 8 8 *8 o l 

5 4 *4 *4 o 1 

6 - - - 0 0 

7 6 *6 2 0 i 

8 8 *8 4 0 i 

9 i *i *i 2 i 

i0 2 *2 *2 i i 

Figure 5b: Ready list queues for Figure 3d 
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Figure 6: Contents of a context block 


