SOME REMARKS ON A LARGE NEW TIME-SHARING SYSTEM

Butler W. Lampson
Berkeley Computer Corporation
2398 Fourth Street
Berkeley, California 94710

September 15, 1970

-

During the last 18 months the Berkeley Computer Ccrporation (BCC)
has designed and constructed a large new multi-access system,

the BCC Model 500. Both hardware and software for this system
have been built from scratch, and the system is now operational.
This presentation describes the characteristics of the Model

500 which we now see as important to its success. . These may be
classed under four general headings:

. efficiency, obtained through specialized hardware

. reliability, which depends on redundancy, error-
checking and good protection mechanisms

. modularity in both hardware and software

high-level language programming

I Hardware

The Model 500 is an integrated hardware and software system de-
signed to support a large number (up to 500) of time-sharing users;
hence the name. This system consists of two central processors,
several small processors, a large central (core and integrated
circuit)memory, and rotating magnetic memory. The latter contains
more than 500X10° bytes, including approximately 12X106 bytes of
drum having a transfer rate of more than 5X1006 bytes per second.
These transfer rates allow a large number of processes to be
swapped in and out of core every second. For example, a small
user might have 104 bytes of private storage to be read from drum
and written back. It is possible to swap 250 such users in and out
in one second.

An unusual central memory design is needed to handle these drum
transfer rates without excessive interference with processors.

The Model 500 central memory consists of a fast memory device and
eight interleaved lus core modules. The fast memory interfaces
the eight core modules with the rest of the system through four
ports. Two of these ports are dedicated to the two CPUs; one
port handles all auxiliary memory traffic; and the remaining port
serves the rest of the system. The fast memory device contains
fast, associative "sticky registers" which interface the four ports
to the core modules. The basic function of the fast memory is to
allow simultaneous access by the four ports to the contents of

the core and to provide the access at better than core speed.
Simultaneous access is provided by a combination of the register
action and core address interleaving. This allows the CPUs to
execute programs while the auxiliary memory system is swapping
other programs in and out of core without inte: ference. The

fast memory will accept a request on each port every 100 nano-
seconds. This is a port request bandwidth of 40 Mhz. The core
modules, each with an access of two words per microsecond, pravide
a 16 Mhz transfer bandwidth. The difference in bandwidths is
tolerable since a port request may be satisfied by a register
without requiring a core access. Also, if a port request is re-
jected, it can be made again 100 nanoseconds later, thus enhancing
the probability for a reasonably early acceptance of a request.

In addition to the two central processors, the Model 500 has
three microprogrammed processors, each of which can execute

more than 107 operations/second. These microprocessors contain
read-only microprograms which implement the basic resource
management functions of the system. As a result, the CPUs spend
very little time executing operation system code, and can devote
almost all of their energies to user programs. That this is a
substantial consideration in increasing throughput can be seen
from the following considerations. The auxiliary memory processor
(AMC) must do all the work connected with the transfer of a page
between drum and core in less than 1 ms, since the drum transfers
a (6000 byte) page every 1.4 ms and some time must be left to
service the disk. 1In this time it is necessary to

allocate core or drum space
queue the request for the drum

select an optimal request at the current drum position,
bearing in mind the core requirements and state of
all the processes which have requests queued at that
position

clean up after the transfer is complete, check for
errors and update the tables which keep track of
the page's location

The AMC has enough computing power to do this work for two drums
and two disks transferring simultaneously. It is the equivalent
of several 6600s when performing its assigned tasks.

The character input/output processor (CHIO) has a throughput of
about 15,000 characters/second. This sounds unimpressive, but
these characters are coming from 30 multiplexed telephone lines,
each of which is carrying data from 50-100 terminals. All the
work reguired to buffer these characters and deliver them to the
correct user programs in the system is done by the CHIO. Errors
on the phone lines are detected and corrected by retransmission,
echoing to full-duplex terminals is correctly assigned to the
CHIO or the remote DCC, and the lines are multiplexed with an
overhead of about 3% for typical system output; no CPU time is
required for these functions. A third processor coordinates
interrupts, schedules the CPUs and performs diagnostic and
recovery operations. It is much less heavily loaded.

The central processor is designed to run compiled user programs
in an interactive environment. To make this operation. efficient,
its instruction set has been chosen as a suitable target language
for a compiler. Automatic byte and part-word addressing, bounds
checking on all array references, complete argument type checking
on function calls, monitoring of references to or stores into
selected variables, and read-only protection for the program all
minimize the amount of software checking required and make it
possible to communicate with the user in source-language terms.

To sum up, the Model 500 is not an unusually fast machine when

measured in instructions/second, nor does it use extremely fast
logic. It is the specialization of comparatively modest amounts
of hardware for particular purposes which make its overall
efficiency high.

II Reliability

A number of techniques are used to make the Model 500 system
highly reliable in spite of imperfect hardware and software.
Two of these are quite conventional:

. The system can run with half its memory, one of
two CPUs, one of many drums or disks

. all data and address transfers between modules
carry parity bits, and all data stored in core,
drum or disk memory also has parity information

Some other points may be less familiar:

. all parity errors, environmental warning conditions
and other errors detected by hardware are gathered
in system 'warning registers' accessible to the
error recovery software

. power comes from a motor-generator, so that de-
pendence on the utility company for constant
voltage is eliminated

. operators and electromechanical equipment other
than rotating memories are in a different room

. every page in the memory system carries a 48 bit
code which identifies it uniquely. All access to
memory requires possession of the correct code.
This prevents unintentional access to or destruct-
ion of data even if the system's tables which
keep track of the location of pages are damaged.

The software also contributes substantially to reliability:

. the supervisor is divided into modules protected
from each other by hardware

. the integrity of all system tables and all data can
be verified after an error, and all unaffected users
can continue without any disturbance. This process
takes about 15 seconds if it is not mecessary to
verify the disk, 10 minutes if it is.

. Since the 48-bit code on a page defines its position
in the directory system, it is possible to retrieve
all files from the disk even if the directory in-
formation is lost.

. extensive consistency checking in the supervisor
and microprocessors brings hardware errors and

program bugs to light before their consequences -
become disastrous or untraceable.

IIT Modularity

Of course being able to expand the system is important: more core,
drum, disk, proce:sing or communications capability may be required.
Equally important in the Model 500 design is the ability to sub-
divide it, so that a larger number of very small users can use it
with no more overhead than a few big users. For example, the

system could support about 2,000 terminals doing simple text editing
without any specialization of the basic operating system for this
application. Furthermore, a single more demanding user could be

substituted for a suitable number of these minimal users at any
time.

Essential to the kind of divisibility is rather precise machinery
for controlling the resources which can be expended by each user.
This is done with objects in the system called resource alloca-
tions, each of which authorizes the use of a minimum and maximum
amount of certain resources (CPU, drum, disk) during a specified
time. Resource allocations can be combined and split according
to obvious rules, and the restraints imposed by them are enforced
by the scheduler. Thus a program which has CPU resources of 10%
min., 15% max., can be sure that every 5 seconds he will get at
least 500 ms of CPU time, and not more than 750 ms. The maximum

is important to prevent the service from fluctuating wildly as
the system load changes.

Modularity in software depends on adequate protection and linkage.
In this system a program can be divided into sections whose inter-
relations can be specified with complete freedom. Several sections
can share the data required for the performance of a common task,
and at the same time preserve the privacy of other data. At one
extreme, it is possible to write a debugging system which main-
tains complete control over its subject program; at the other,
programs written with no thought of coexistence can be combined

in the same process, and the system will ensure that there is no
interference. An interesting and commercially important inter-
mediate case is a proprietary program which is to be used as a
subroutine by some other program. The privacy of both must be
protected, parameters must be passed back and forth, some data
files may have to be shared, and the use of the proprietary pro-
gram must be properly accounted for.

IV High-level Programming

It is generally recognized that programs written in high-level
languages are coded and debugged more quickly and are easier to
read and maintain than assembly-language programs. On the other
hand, system programs need access to all the facilities of the
machine, and their efficiency is a matter of great concern. It
is therefore necessary to have a language which is ‘powerful’' in
the right sense, with constructs which generate most useful

combinations of machine instructions, but without facilities
which cannot be implemented efficiently. The Model 500 System
Programming Language (SPL) was designed with these aims, and
has proved to be quite successful in achieving them, as is
evidenced by the following two statistics.

. hand examination of 2000 generated instructions
revealed that no more than 10% of the instructions
could be removed by hand coding a typical routine

. The BCC operating system, a highly machine-oriented
program of more than 10,000 instructions, contains
fewer than 100 explicit machine instructions

Important secondary design goals relating to interactive use
were that SPL be simple to use from a terminal, helpful in error
situations, and efficient in its use of machine resources when
responding to simple requests. We also felt it was important

to provide facilities for analyzing programs statically (for
example, obtaining information about the size of subroutines

or the places where certain variables are used) and monitoring
them dynamically (for example, by being able to run a program
until an arbitrary statement about the state of the world
becomes true). In short, SPL is meant to provide substantial
assistance in programming, debugging, and even low-level program
design, for users of our terminal-oriented system.

The result of these considerations is an integrated system

for composition, analysis, execution, -and manipulation of pro-
grams, with facilities covering the range from semi-novice to
expert in sophistication. SPL does not try to please everyone;
there is no decimal, scaled or multiple-precision arithmetic
for example. It does, however, satisfy the requirements of
most scientific and system programmers. The major novelty in
SPL is the fact that it allows source-language editing and
debugging and incremental compilation together with nearly
optimal use of the machine.

References

1. Lampson, B.W., "Dynamic Protection Structures,
Proc. AFIPS Conf. 35 (Fall 1969), pp 27-37

2. Lampson, B.W., "A Scheduling Philosophy for
Multiprocessing Systems, " Comm. ACM 11, 5(May
1968), pp 347-360.

3. Lee, Francis F., "Study of 'Look Aside' Memory, "
IEEE Trans. Computers, C-18, 11 (november 1969),
pp 1062-1064.

'AVIdSIQ QUVOEA3N fHILNIYD
INIT ANOD3S ¥3d SYILOVHVHD 00t ¢ (ST73A0W HLOH)

oom OU m | | Tz g fL€ ‘SE ‘€€ SIJALITNI] IVNIWNI] - |

T eanbra 'ONIINGIHIS (1) ' (¥OSSII0HAONIIY) - YIINAIHIS-OHIIW
*YIAXINAILINY SNG AYOW3) HOSSII0HdOUIIY -~ WAWdW
'STYNIWYIL

@33ds MO ‘X31dNA-T1N 922 OL dN IIANVH 1IN
' (40SSII0¥AOUII) ¥ILNAWO) SNOTLYIINAWWOY) VLV - 97

'$70 ¥9 OL dn 3IIANVH
20 —~ TN (HOSSIIONAONIIY) LNALAQ/LNAN] HILOVEVH) - OIH) & — yS1a
. LING ¥34SNVH] ANOW3Y AMVITIXOY - ALY o —f |— .
% PINIWIAOYNYW 3F9VHOLS ACHYANODIS ANV 9N!ddVMS wJOmhzou
| J—— —
' (40SSID0UOYIIY) ¥ITIOULNO) ANOWIY ANVITIXNY - Yy
10 .~ ¥S10
_ _
WY LY
o | I 0
. ° p— WNYa
¥ TINIMISOUIH R I
. —
1 ' R
- , . | q . — HMYC
1 \ 0IH) W
Ill'l\\\\'llll'll
¥3LNdH0D . . NOWEN TYLNT)
WY
L YL Y30V TN |
V412 NOVUL-6 0 43INTHd TYIHIYId Ndd nd

 \ ¢ ¢

00c004d

'AVIdSIA QUVOEAIN fYILNINHd
ANIT ON0D3S ¥3d SYILIVYYHI 00€ ¢ (ST3AOW rkomv

thi2 WYL L€ ‘S€ ‘€€ S3IALITI] TUNIWNA] - |

T ®anbta 'ONITNAIHIS N4 ' (¥0SSII0NdOUIIY) - YTINAIHIS-04IIW
'HAXINILINY SN AYOWI| HOSSIIONAOUIIY - WEAWAN
'STYNIWYIL
133dS MOT ‘X31dNA-1Nd4 $22 OL dN JIANVH TIN
' (4OSSIIOUAOUDIY) ¥ILNAWO) SNOILYIINAWWO) ViV - 93(
*§77Q v9 OL dn 3ITANVH
14 ~ TN ' (YOSSTIOUAONITY) LNdLNQ/LNAN] ¥ILIVEVHY - QIH) » ¥s1a
- LIND ¥34SNVH]| AMOW3Y AWVITIXNY - NIWY . .
e ' INIWIOYNVW 3OVHOLS AGHYANOIIS NV ONIdJYMS STOHLNO) .
' (40SST0HAOUII|Y) ¥ITIOULNO) AMOWIY AUVITIXAY - Y
2@ |.|||J i AS1d
| _
WY Ny
® 1 M0 F—————
° ¢ — WYa
o
¥3INCIHISOYI I « — —=
1 790 " . — =
ﬁ \ - d « Ma
L 0IHd W
I W f————" . d —
W
W31NdK0d . AMOWAW T INTD
B LEGGIGEL
advl dvl Y3av ESLEREIR ;
YL~/ YOVHL-6 02 H3INIY TH¥3HAI¥3d Ndd Nd)

¢

SOFTWARE AND FIRMWARE INVENTORY
NOVEMBER 7, 1970

BERKELEY COMPUTER CORPORATION

II.

ITI.

Iv.

VI.

TABLE OF CONTENTS

INTRODUCTION
PROGRAMS WHICH INTERFACE USER
SUBSYSTEMS
UTILITY
MONITOR
940 EMULATOR
PARTS OF THE SYSTEM
DEVELOPMENT WORK

DIAGNOSTIC PROGRAMS

SUPPORT SOFTWARE

APPENDIX A - Software Inventory

APPENDIX B - Software Documentation

I - INTRODUCTION

This document contains an inventory of all the BCC
software and firmware. An abstract is presented for
each program which outlines briefly its function,
current state, and extent of documentation.

Programs operating on the BCC 500 fall into three

general operating environments depending on whether

they are coded in the Model 500 instruction set, the

940 emulated instruction set, or the micro-processor

firmware instruction set. All firmware has been written

in a commented assembly language and all of the 940 and

Model 500 programs have been written in high level system
programming compiler languages. Thus, in addition to

normal documentation, the program listings provide a straight
forward means for understanding.

In addition to an extensive set of design and implementation
documentation, a set of user manuals exist for most of the
user interface software. These include finished manuals

for the GE 400 series compatible system, initial manuals

for the XDS 940 emulated system, and system programmer level
manuals for the Model 500 system and all its constituent
parts. There are also broad brush overviews covering the
BCC 500 capabilities, the central processing units, the
communications system, and the BCC system programming language (SPL).

A considerable amount of operating software and firmware
has been developed in the year and a half that has been devoted
to this effort. This is due to the following points:

1. All software and firmware is written in efficient
high level languages.

2. Initial implementations were done on an XDS 940
system which had a Model 500 simulator on it.

3. Two years of design in a university environment
preceded actual implementation.

4, High caliber, experienced system programmers have
con51stently devoted much more time than is the case
in the usual programming environment. -

5. Critical algorithms and portions of the system
were first simulated before they were implemented.

6. A substantial set of diagnostics, test routines,
and debugging tools were developed.

All of these points, coupled with the hardware development,
has made it p0551ble for the BCC 500 system to be currently

operational in a limited capa01ty The system will now
support time sharing services sufficient to finish the
remaining tasks.

II.- PROGRAMS WHICH INTERFACE THE USER

940 SUBSYSTEMS

These subsystems originated on the SDS 940 and are completely
operational on the M). Most 940 subsystems can be converted
to the emulated 940 on M1l at minimal expense.

QED

This is a powerful editor capable of modifying any symbolic
file. It is the mainstay for maintaining all software.

NARP

This is a fast single-pass macro assembler. It is a very
convenient tool for creating assemblers for BCC processors.

QSPL

This is the 940 Quick System Programming Language. It is
intended for the programmer who desires complete control over
the programming environment. It's syntax is similiar to SPL
such that programs written in QSPL can be converted to SPL at
moderate expense.

DDT/QRUN

DDT is the 940 system debugger. It provides many features
including breakpoints, searches, symbolic typeout of cells,
and ability to write programs which facilitate debugging
programs. QRUN is DDT with the QSPL runtime imbedded in it.

SNOBOL

This is an interactive SNOBOL system including an editor,
compiler-interpreter, and debugger. It includes features to
control a subprocess which were used heavily on the SDS-940.
However, as the control I/0O stream logic has not been imple-
mented yet, the subprocess control features have not yet been
redone.

CAL ®

An interactive interpreted language for doing short numerical
problems.

MICRO/FNARP/DIMS

These three subsystems represent the two pass compiler for
microprocessor code and debugger.

MICRO: (Bo's comments)

Bob Van Tuyl

8. SYSTEM-TEST

Provides various facilities for monitoring the system,
testing the system, and changing the system. Includes a
debugger. Completely operational. See memo by Lewendal.

"9, SPL

The interactive SPL system consists of a compiler, debugger,
editor, Model 500 simulator, and executive. This is a highly
integrated and efficient system and has been used to produce
most of the software running on the Model 500. The SPL
system runs in 940 emulation mode on the Model 500 and has
run in the past on an actual 940. The Model 500 simulator
allowed implementation and debugging of the Model 500 system
to occur on a 940 before the BCC hardware was ready. SPL
does not yet run with the Model 500 instruction set. See
documents CSED/M-12, SPLDS/W-17, SPLAL/W-16, SPLEP/W-21,
SPLAPF/W-25, SPLEX/W-32, SPL/M-1.2, PREP/M-10, UPREP/M-11.

10. CROSS-REFERENCE

This program takes an arbitrary number of files of symbolic
information and produces a file containing an alphabetic list
of all references to each symbol. Its main features include
a fast sort and a yet-to-be-overflowed symbol table. The
program is operational. See memo by Van Tuyl.

11. READ PAPER TAPE

Read paper tape is a program which is used to read and edit a
paper tape made off-line by a secretary.

It incorporates some very simple rules for erasing characters
and lines of text. The editing conventions were designed to
be quite natural and easy to learn.

12, USER LIBRARY

This is a standard set of declarations and programs designed
to give the casual user of SPL a convenient starting point
for writing programs. It is in final stages of debugging.

UTILITY
1. The Command Processor

This program recognizes the user's command and processes
it. The commands may be built in commands such as RELEASE,
SAVE-CURRENT, STATUS, RESET, etc. or they nay be link names
or file names. The QUIT command is not yet implemented.
See document CMP/W-6.

2. Process Creation and Manipulation

This program contains the routines necessary for process
creation. It will provide automatic resource allocation
and now provides user extensions such as command and file

search control by the Process-Profile. See document
PMTSPT/W-2.

3. Sub-process Creation and Manipulation

This program handles the Utilities needed for sub-process
manipulation as well as providing the user with a simple
way of creating and attaching sub-processes. This program
also maintains tables which extend the user's controls as
well as protect him somewhat from the intricacies of the
Monitor. See documents SPCAP/W-33, PMTSPT/W-2.

4. Control Input/Output Streams

This program handles the users control I1/0, i.e., that I/0
which is usually thought of as controlling a process or
sub-process, usually a terminal. This program allows a sub-
process to be terminal driven, file driven, or sub-process
driven. See document CIOSUC/W-31.

5. File Handler

This program contains the usual mechanism for manipulating

files except the actual reading and writing of the files.

The primary feature of this section is the abbreviated name
searching routines. These routines are also used by other

parts of the system. This program also implements the Utility
side of the file locking mechanism. It also provides the user
with simplified techniques for using the system access and
security mechanism. See dccuments M1FS/W-1§, SCBFS/W-9, FNS/W-4.

6. User Profile Manipulation

This program provides the calls necessary for manipulation
of the User Profile. The User Profile contains information
about user validity and capabilities. It also provides for
user creation and Account and Group considerations. See
document AUD/W-7.1l, PM/W-48.

7. Trap and Error Logic

This program provides for all system and user caused traps
and errors. It attempts to reflect user caused traps or
errors to the user i1f necessary. However, it will handle
all problems including those the user program is not
prepared to handle. See document IWS/W-11.1.

8. The Utility also contains miscellaneous routines for
support purposes such as time and date routines and error
message generators.

9. Listener

The Listener is a system extension routine. It has two
distinct parts which will probably be split into two separate
processes at a later date.

The first part is the initializer. This is needed when the
system is brought up fresh, i.e. no files exist. The Listener
reads an Initial Drum (Disk) Load tape which contains the
initial system software configuration. It creates the
necessary MIB objects and copies the files from tape to drum.
It then goes into its second phase which is to listen to the
unattached device lines.

When a line becomes active, the Listener carries on a con-
versation with the CHIO and DCC to connect the line and
initialize certain system tables. The Listener then creates

a process to carry on necessary conversation to verify the
user. This process is called the Enter process. The Listener
passes the line to this process. See document UTENT/W-26.

1. Enter @

This routine carries on the dialog necessary to establish

the wvalidity of the user and his resources. It runs in the
user ring. When the user is validated it creates a process

or restarts a process to perform the users task. By definition
all processes created by ENTER have a Utility attached as the
first sub-process. See document UTENT/W-26.

11. Logout

The Logout routine cleans up the users world and if necessary
causes the process to be destroyed or causes it to be saved
away for a later restart and hangs up and ~eturns the line.

12. Profile Maintenance

User ring program which through simple user dialog manipulates
the users profile or the process profile. An owner (group,
account) may manipulate other profiles if they have access

and control. Users are created and deleted with this routine.
See document PM/W-48.

13. File Maintenance

File-Maintenance routine allows manipulation of MIB objects
given that the user has sufficient access.

14. Operators Control Routine

Allows the account, group, or systems owner to make certain
observations about and have control over his customers
(users). Terminals may be shut off or turned on, resources
allocated, etc. See document TM/W-50.

MONITOR
1. The File System

This code keeps track of all objects - lik= files, processes,
etc., - belonging to users in the system. It implements our
access and protection schemes for these objects. There is a
currently working version of this system. There are plans to
re-work it to make it more efficient. See document SCBFS/W-9.

2. The Interrupt and Wakeup System

The IWS processes wake-ups directed toward a process by the
system and implements our means of inter-process communication.
The IWS is a working part of the system. A more efficient
version has been written but not yet incorporated into the
system. See document IWS/W-11.1.

3. The Trap-Handling System

This system fields traps caused by malfunctioning user programs
and either takes corrective action or reflects the traps back
into a user program prepared to deal with them. There is a
working version. There are plans to make it more sophisticated.
See document IWS/W~11l.1.

4., The Process Memory System

This system handles page-faults, maintains the working set

of a process, protects the memory of one sub-process from

that of another, and performs other memory management functions
with the process. A version of the PMS is currently working.

A new and more efficient version has been written but not yet
put into the system. See document PMS/M-19.

5. The Sub-Process System

This system divides the process into up to 8 sub-processes,

which are more or less independent programs which can com-
municate with each other, share memory, and protect themselves
from malfunctions of other sub-processes. See document MISPS/M-7.

6. Resource and Scheduling System

This supervises the distribution of system resources among the
users and processes in the system. Only a primitive version of
the RSS is in the current system. A more complete version is
being written. See document BSRA/W-27.

EMULATOR

1. BCC 940 EMULATOR

The Emulator is a large program which provides a Monitor
and Executive for programs which run in 940 mode on the
Model 500.

Every system call, made by a 940 mode program being executed
under the control of the Emulator, is either directly per-
formed by the Emulator, or is transformed into system calls

to the Model 500 system. This has been operational for 4 months.

III - PARTS OF THE SYSTEM

1. Auxiliary Memory Controller (AMC)

The AMC is implemented on a BCC microprocesscr. Some of
the microcode implements a processor (APU) which is similar
to the SDS 940. Another major part of the microcode imple-
ments a watch dog which responds to stimuli from the CPU,
drum and disk. The rest of the microcode implements sub-
routines which are fixed and must be fast.

The Phase 1 has been redesigned twice since it first became
operational. The first rewrite allowed more efficient
allocation of the drum. It is operational. See AMC Phase
1 Notes.

2. Communications System Phase 1

This consists of microcode for the CHIO to run 16 teletypes.
It is part of the current system and has been operational
for six months. See IHTWD/W-38, ATINFIC/W-37, FOO/S-2.1,
The BCC Communication System.

3. CPUs

a. Micro-code for Phase 1 CPU, having an instruction rate
2x1¢- per second. The code is 27 micro-code boards long,
each board containing 64 words of 90 bits each.

The micro-code includes routines for address calculation,
fixed point multiply/divide, 6 kinds of shifts, string,

field and array operations, floating point arithmetic, sub-
routine jumps, mapping, processor-state switching and Xds-940
emulation. See CPUPG/M-14.1, MICPU/M-4.4, TSTX/W-45. This
CPU has been operational for several months.

b. Micro-code for Phase 1.5 CPU, instruction rate is 5xlﬁ5
per second. Similar to the Phase 1 code with general im-
provements and service routines for the instruction prefetch
unit added. This CPU is now running an experimental version
of the Monitor/Utility.

Microscheduler Microprocessor
Microscheduler

This microprogram does in-core scheduling and handles
real-time interrupts for the system. Operational for
several months. See PRUN/W~-8, USI/W-14.

Integral Test Processor

This microprogram emulates an approximate 940 subset.
It resides in the same microprocessor as the micro-
scheduler with which it shares the capability of that
processor. The ITP is used for system checkout and
maintenance. Operational for several months. See
ITPEX/W-22, ITPRM/W-23.

SYSDDT

SYSDDT is a debugging, monitoring, and hardware support
program which runs in the UTP (microscheduler-test
processor) microprocessor. It provides facilities for
examining memory, starting and stopping the various
processors, reconfiguring the system for certain hardware
conditions, taking statistics on system operation, and
writing short programs to run in any processor. SYSDDT
is fully operational. See SDDTCOM/W-46.

Model 30
Model 3@ Driver

This is a program which multiplexes requests and data
to tape units, card readers, and printers attached to
the M3@. It has been operational for several months.
See M3g/s-7, M3¢gT/M-18.1.

Initial Program Library

This is an ITP program which allows magnetic tapes to be
read and written. It resides in the microscheduler's
private memory and is used to bring up the system on a
bare machine. It has been operational for several months.
See memo by Thompson.

M3gcoM

This program allows any number of processes to
communicate with the peripheral equipment connected
to the 36¢-3¢. To be used mainly by the Disk Backup
System and Print program. The program is in the
latter stages of debugging. See DKBK/S-26.

IV - DEVELOPMENT WORK

Subsystems

a. FORTRAN IV compiler is completely written and has
been 90% debugged in a 940 environment. The translation
to SPL is complete. It must now be compiled in the
Model 500 environment before final checkout can proceed.
Two man-months estimated for completion. User manual is
completed.

b. The FORTRAN IV run time package is completely written
and about 50% debugged. One man-month estimated to
completion.

c. An Extended BASIC compiler is completely written and
90% debugged in a 940 environment. The SPL translation

is complete. It must now be compiled in the Model 500
environment before final checkout. One man-month estimated
for completion provided FORTRAN is completed first. User
manual is completed.

" d. The Extended BASIC run time package is completely
written and 50% debugged. Two man-weeks estimated to
completion provided the FORTRAN run time is completed first.

e. The GE Executive (command processor) is 80% written
and debugged.. Two man-weeks estimated for completion.
User manual is completed.

f. The GE file system is 90% written and 80% debugged.
Two man-weeks estimated to completion. User manual is
completed.

g. The GE editor is 90% written and 80% debugged. Two
man-weeks estimated to completion. User manual is completed.
h. Disk Backup System is a program for backing up disk
files on magnetic tape. This program will be responsible
for maintaining the permanency of disk files. It is in
the latter stages of debugging. See DKBK/S-26.

i. The Print System provides a facility for queuing print
requests. Initial version operational. Final version
depends on M3¢ Communications Program.

Monitor

a. Interrupt/Wakeup System. The IWS has been com-
pletely rewritten, and is awaiting integration into
the system along with the necessary debugging to
accomplish that.

b. Software Lock. (software locking mechanism) Simple
forms of Dijkstra's P and V synchronization have been
written and are awaiting the integration of the new IWS
mentioned above. Similar mechanisms have been designed,
but not programmed for locks on the user's directory and
on individual objects (files, etc.).

c. File System Rewrite. The file system rewrite has had
some redesign done, but little actual programming or
modification of the existing system has been done.

d. Resource Allocation Programs. (monitor level) The
design for statically allocated resources has been done.
Dynamically allocated resources, while partially designed,
is dependent on the design of the Scheduler, which is

not yet complete. See Resource Allocation.

e. Accounting Monitor Call. This call has been designed,
and would take approximately one week to implement.

f. Crash Recovery. Reconstructs a good system from the
wreckage of one which has failed. This program is in
final debugging phase.

Microprocessors

a. AMC 1.03. The final redesign of the phase 1 AMC.

This AMC includes many new features designed to speed

monitor operations. It also includes logic to improve
the flow of processes through core.

b. Phase II AMC

1) QSPL simulation of all microcode routines has
been completed. This is being used as a pattern
for the microcode.

2) The microcode has been written for about 90% of
the routines and the declaration package is
virtually complete. Of the 90% which has been
written, 70% has been looked over very carefully
and is ready for serious debugging.

¢. Communications System Phase 2

This consists of microcode for two processors; the DCC
and the CHIO, and a CHIOINIT function in the monitor.
The communications system when working will connect the
BCC 500 to several remote computers which will do bit
scanning of teletypes. The remote computer can also
connect to higher speed devices such as line printers.

The status of the communications system is that the
individual processors have been extensively tested, but
the system as a whole has not yet been run. There is
very high confidence that no major software/firmware
difficulties will occur in bringing up the Phase 2
communications system. The CHIOINIT function is written
but undebugged. No other code is needed to run the Phase
system except the DCC test program. To take advantage of
all of the communications system features, however, more
DCC code must be written.

*

d. Data Communications Computer Microcode

The low-speed device bit scanning, multiplexing and
error—-correction procedures of the communications system
are implemented by this code. 1In final debugging stages.

e. DCC Loader-Unloader

A self-contained routine to load binary paper tapes into
the DCC and to dump portions of DCC core in loadable
format. In final debugging stages.

£. Phase 2 CPU

High—leﬁel logic design and microprogramming for the
Phase 2 CPU address calculation unit and instruction
execution unit. The design work has been suspended.

L)

Other

.]
a. Utility Accounting Program.

This is called by the Utility at logon and logoff of
each user and also at a pre-set interval. This program
makes a monitor call to get current information which it
massages and then puts (temporarily) on a one-page file
called the Message Buffer. When the Message Buffer is
full, it gets dumped onto the system DAEL. It is coded
except for the intricacies of locking the Message Buffer

and setting up a timed call of the program. It has not
been debugged. The daily update program is 80% written
with no debugging. The group multiplexing program is
completely written and 40% debugged. The billing program
is completely written with no debugging. See FSOC/S-36
and several memos.)

b. Shell 9240 Emulator

This emulator provides the Monitor and Executive for Shell
Development Corporation's 940 system. It differs from the
BCC 940 Emulator in that 1) it is emulating a different
Monitor and Executive, and 2) it provides for all the
Executive commands of the Shell system. In particular all
commands are directly interpreted by the Emulator rather
than by the Executive supplied by the Utility. This work
has not been completed.

¢c. Parameter Collection

Parses a command line according to syntax supplied by a
program, prompts for missing parameters and generates error
messages. It is being coded.

d. Disk and Drum Diagnostics

A fairly sophisticated drum and disk diagnostic has been
written and is virtually debugged. It uses a special
purpose APU program which simulates the Phase II AMC's
mode of direct I/O so that the program will run with only
trivial changes on the Phase II.

V - DIAGNOSTIC PROGRAMS

1. Disk Diagnostic

Disk diagnostic (KTEST) intended to run under the time
sharing system; this program's main purpose is the
identification of faulty records on the disk file due
to surface imperfections. The program operates in

a. sequential addressing mode and
b. random addressing mode.

This program is written in 940 assembly language and is
fully operational.

2. Drum/Disk Exercizer

This ITP program reads and writes pages of pseudo-random
data on a drum or disk using the APU direct I/0 feature
and reports errors detected by the AMTU during these
operations. Error reporting is governed by the setting

of switches in the Sense Switch Register. Also, as an
option, the data read from the device can be compared with
that written and discrepancies reported. Parameters set
in core include number of reads, writes, pages, area on
the device, and type of operation. This program is
complete and in use daily.

3. Drum Basher

This APU routine runs the drum at full speed in order to
test the memory system. It has been operational for
several months. It has been rewritten in microcode but
the boards have not been built yet.

4, DCC Test Program

This program makes a fairly elaborate test of the DCC to
see if it and the microcode are working properly. This
program, which has been working for three months, tests
all of the important parts of the DCC microcode.

5. ITP Diagncstic
A self-contained diagnostic program for the ITP which

verifies the proper functioning of microprocessor and
microcode. Operational.

6. Diagnostic for APU

This program runs on the APU and checks a subset of the
instructions. A companion program runs on the ITP and
prints a message whenever an error is discovered.
Operational.

7. CPU Test Programs (4 packages)

The set of four test programs exercises every micro-
instruction in the CPU. 1In case of an error a message is
given indicating the instruction which failed, the correct
and the bad results. These test programs do not use the
Monitor and require only a minimum of working hardware.
(Memory and ITP) The four packages are as follows:

a. Test of the addressing logic

b. Test of instruction execution

c. Test of subroutine and Monitor calls
d. Test of traps.

8. CHIO Test Program

This test program has a large number (>150) of routines,
each testing a micro-code subroutine in the character
input/output (CHIO) processor. The program also contains
a simulator for an error-free communication line (EFCL)
to facilitate the debugging of the Data Communications
Computer (DCC)-M1l linkage.

9. Core Memory Diagnostic
Generates worst-case and random test patterns for

diagnosing core modules in the 500 system. This program
is completed.

VI - SUPPORT SOFTWARE
1

1. Save Drum Program

This program saves the current state of the running
system onto drum or disk, and restores it at a later
time. Status: Completed.

2. MICRO/FNARP/DIMS

These three subsystems represent the two pass compiler
for microprocessor code and debugger. See document
MICRO/M-8.

MICRO: a‘compiler for translating programs written
in a convenient higher level language into the 90-bit
microcode words used by the BCC microprocessors. MICRO

has been completely operational for well over a year.

FNARP: this is the second pass of the compiler. Micro
outputs symbolic output to FNARP. FNARP is NARP which
contains some extensive macros to output the correct
format to DIMS.

|
DIMS: this is the debugger which includes the micro-
processor simulator. All microcode generated in the
past year has been tested to some degree with this
debugger.

3. Microprocessor Simulator

This simulates BCC microprocessors including DCCs. This
program which generates both a matrix of the bits needed
for the ROMs and a paper tape that can be used to control
the drilling machine that makes the printed circuit board
has been ?perational for one year. See document PIG/M-13.

4. MNODT .

This is a micro-coded debugger for the microscheduler.
It is completed and has been used successfully for about
four months. See document MNODT/W-34.

5. TPDDT.

This program runs on the test processor and allows the
engineers to write and debug programs. It has been
operational better than one year. See document TPDDT/W-3.1.

6. Scan Simulator

This program simulates the bit scanning algorithms of a
DCC as well as the characteristics of medium speed lines.

7. Simulator for TSU, Drum, and Disk

This program used in the debugger described below to
simulate the interface between the AMC and the drum and
disk.

8. Debugger for AMC

This program fits over the microprocessor simulator con-
taining the microcode for the AMC. It allows the APU
programs written for the AMC to be debugged. It provides
some reasonably powerful debugging aids, such as break-
points, searches, and listing features. See document
DBAMC/W-43.

9. GE Dump Tape Translator

Program for reading files from a GE dump tape. Completely
operational on the 940. This is used to bring files from
400 series GE systems into the BCC-GE compatible system.

10. WIRE-LIST

From a list of pin number and signal names produce a list
of wires, organized by signal name. The specific purposes
were accuracy, repeatability, legibility (for debuggers)
and easy conversion to formats required by automatic
wirewrapping machines. :

This process has been running for over a year. It was

first written in SNOBOL 4. Recently it has been rewritten
for speed reasons in QSPL. All the processors and the CPUs
of our system were wired automatically by wirelists produced
by these programs. See document WL/M-22.

11. Operator Precedence Table Builder

This program generates operator precedence tables
from BNF descriptions of the syntax of expressions.
See document OPREC/R-4.

12. Lexical Analyzer Table Builder

This program generates the tables for a table driven
lexical analyzer and keyword tables. See document
GELAI/R-5.

13. DCC, aPU, ITP, and TP2 Assemblers

These four assemblers produce machine code for the
four mentioned microprocessors. See documents RPASS/M-21,
PTPP/W-35.1. :

14. Read,. Punch, and Verify Paper Tapes

This program is used to check for errors on long
punched tapes.

15. Directory for Incore Debugging

This program takes a symbol table generated by the assembler
and produces an alphabetic list of the symbols and their
locations.

16. Bootstrap Loaders for ITP, TP2

These loaders are imbedded in a program which prefixes
the loader- to a core image of a program which is to be
loaded into the processor. See document PTPP/W-35.1.

17. Free Storage Allocator

An efficient subroutine for implementing a free stérage
allocator. Implemented in QSPL. See memos by Van Tuyl.

®

18. SNOWFLAKE

A package of routines written in SPL to make SNOBOL-like
pattern matching facilities callable from SPL programs.
Largely checked out..

APPENDIX A

INVENTCRY OF SOFTWARE

Programs Which Interface User
1. Subsystems

QED

NARP

QSPL

DDT/QRUN

SNOBOL

CAL

KDF-BACKUP
SYSTEM-TEST

SPL
Cross—-Reference
Read-Paper-Tape-Made-by-Secretary
SPL-User~Library

2. Utility

Command Processor

Process Creation and Manipulation
Sub-Process Creation and Manipulation
Control I/0 Stream

File Handler

User Profile Manipulation

Trap and Error Logic

Listener

Enter

Logout

Profile Maintenance

File Maintenance

Operator Control Routine

3. Monitor

File System

Interrupt and Wakeup System
Trap Handling System

Process Memory System
Sub-Process System

Resource and Scheduling System

4, 940 Emulatqr

Parts of the System -
1. Auxiliary Memory Controller

Microcode
Auxiliary Processing Unit Code

2. Character Input/Output Processor

i
. |
Phase 1 Microcode

3. CPUs

Microcode for CPU 1.8
Microcode for CPU 1.5

4, Microscheduler Microprocessor

Microscheduler microcode
Integral Test Processor (ITP) ‘
System Monitoring and Debugging Program

5. Model 30

Model 30 Code
Initial Program Library (IPL) ;
M3 Communication Program ‘

Development Work
1. Subsystems

Fortran IV

Basic

GE Executive, Editor
Disk Backup System
Print

2. Monitor

Interrupt/Wakeup System
Software T.ocking Mechanism ’
File System

Resource Allocation
Accounting Monitor Call
Automatic Crash Recovery

|

|

. |

3. Microprocessors !
|

{

Phase 1.3 AMC

Phase 2 AMC .’
Phase 2 Communications System |

Data Communications Computer Microcode
Phase 2-CPU

4, Other

l

!
Accounting System)
Shell Emulator \
Parameter Collection !
Drum and Disk Diagnostic \

|

Diagnostic Programs

Disk Diagnostic (on time sharing system)
Drum/Disk Exercizer !
Drum Basher (full speed)
DCC Test Programs

ITP Diagnostic

APU Diagnostic

CPU Test Programs |
CHIO Test Programs |
Core Memory Diagnostic

|
|

Support Software ‘

Save System on Drum
Microprocessor Compiler/Assembler
Microprocessor Interactive Slmulator/Debugger
Microcoded Octal DDT
Bare Machine Debugging Program (for ITP TP2)
Bit Scanning Simulator 1
TSU, Drum and Disk Simulator
AMC Debugger
Read-GE-Tape) |
Wire-Listing
Operator-Precedence-Generator !
Lexical-Analyzer-Generator !
Assemblers for:

DCC |

APU ‘

ITP

TP2
Read and Punch Paper Tapes with Error Checking
Directory for Incore Debugging |
Boot Strap Loader for ITP, TP2
Free Storage Allocator -
SNOWFLAKE ' i

APPENDIX B - SOFTWARE DOCUMENTATION

NUMBER TITLE

FOO/S-2 CHIO/CPU: Interface

M3g/S-7 Communications with the IBM Model 30
BCCPU1l/S-10.1 Special and Branch Condlﬁions in CPUl
PIF/S-21 - Specification of Program Image Files
COMCON/S-22 Command Writing Conventions
~RC/S-23) The Remote Concentrator Design
CS/s-24 The Communications SysLem-—Phase II
INITT/S-25 System Initialization Tape

DKBK/S-26 Disk Backup Subsystem

TEXTF/5-27 M1 Text File Standard

RPU/S-33 The Remote Processor Unit

MMS/S-35 Memory Management System

FSOD/S-36 Format of System Owner's DAEL
SPL/M-1.2 SPL Reference Manual

MISPS/M-7 MCALLs on the Model 1 Sub~Process System
MICRO/M-8 MICRO Reference and User Manual
PREP/M-10 Phase One Preprocess Interface
UPREP/M~-11 Phase One Unpreprocessor, Interface
CSED/M-12 M1CS Phase One Language Editor
PIG/M-13 Interactive Microprocessor Simulator
CPUPG/M-14.1 CPU Programmers Guide

AKOCS/M-15 Character Sets

PTES/M-16 Paper Tape Reading and Punching
PCNR/M-17 CHIO Phase 1 Test Routines
M3@gT/M-18.1 Model 30 Trivia

PMS/M~-19 Process Memory System

DCODT/M~-20 DCODT Reference Manual

RPASS/M-21 The Remote Processor Assembler
WL/M-22 Wirelisting

MM1/W-1 Memory Management

PMTSPT/W-2 MCALLs for Manipulating PMT and SPT
TPDDT/W-3.1 Test Processor DDT

FNS/W-4 System 1 File-Naming System
MICPU/W-4.4 Model 1 CPU Reference Manual

CWS/W-5 The Core Working Set

CMP/W-6 The Command Processor

AUD/W-7.1 The Account and User Dlrectorles
PRUN/W-8 Running a Process

SCBFS/W-9 System Calls to the Basic File System
MIFS/W-10 Model 1 File System

IWs/wW-11.1 Interrupt and Wake-up System
CSED/W-12 Preliminary Description of Compiler System Editor
USI/W-14 Micro-scheduler Implementatlon

SYSP/W-15.1 System Parameters

NUMBER

SPLAL/W-16
SPLDS/W-17
SINIT/W-19
CPUINT/W-20
SPLEP/W-21
ITPEX/W~22

ITPRM/W-23
SPLAPF /W-25
UTENT/W-26
BSRA/W-27
MCHIO/W-28
SSIN/W-29
MPREC /W-30

CIOS/W-31
SPLEX/W~-32
SPCAP/W~-33
MNODT/W-34
PTPP/W-35.1
PROC/W-36

ATINFIC/W-37

IHTWD/W-38
DITP/W-39
FAROUT/W~-40
OHWOW/W-41 -
DBAMC/W-43
MPT/W-44
TSTX/W-45
SDDTCOM/W-46
APUD/W-47
PM/W-48
P2CSS/W-49
T™/W-50
PAMC/W-51

TRGEN/R-2
SPLGR/R-3
OPREC/R-4
GELAI/R-5
GEFEQU/R-8

SSE/T-5

TITLE

Facilities for Allocation in SPL

SPL Command Language and Debugging System

System Initialization and Erxor Recovery

CPU Interruptability

SPL Conventions for System-Defined Entry Points

External Interfaces for the Integrated Test
Processor

Integral Test Processor Reference Manual

Allccation and Program Format in SPL

The Utility Enter Dialog

Basic System Resource Allocatlon

CHIO Functions in Basic System

Software System Initialization

Microprocessor Crash Procedures
Initialization and Breakpoints

Control Input/Output Streams

SPL Executive Commands

Sub-Process Capabilities

MNODT

Procedures for TP Programs

Processes

An Efficient Multiplexing Algorithm

CHIO Implementation Phase''l

ITP Diagnostic Program

An Error-free Communications Line

Local Echoing in the Communications System

Microprocessor Debugger for the AMC

Microprocessor Test Program

CPU Test Programs

SYSDDT Commands

APU Diagnostic Program

Profile Maintenance

Software for the Phase 2 Communications System

Terminal Management

Phase 1 AMC Notes

M1CS Phase One Tree Generator .

SPL Grammar and Precedence

Support Software for Operator Precedence Parsing
GE Lexical Analyzer Implementation

GE FORTRAN Equivalence Algorithm

Standard for Syntax Equations

