On the Transfér of Ccmtrd! betwecon Contexts

B. W. Lampson, J. G. Mitchell and E. H. Satterthwaite
_ Xerox Research Center =
3180 Porter Drive i
Palc Alto, CA 84304, USA

'.Lectu_ré Notes in Computer Sciehce 19, .Sbringer, 1974, pp 1-81-203— :

Abstract

We describe a singla primitive mechanism for transferring controt from one
module to another, and show how this mechanism, together with suitable
facilities for record handling and storage allscation, can be used to construct

. a variety of highar-level transfer disciplines. Procedure and function calls,
coroutine linkages, non-loca! gotos, and slgnals can all be specified and
implemented in a compatible way. The conventions for storage allocation and
name pinding assoclated with control transfers are also under the programmer's
contro!. Two new control disciplines are defised: & generalization of
coroutines, and a facility for handling errors and unusual conditions which
arise during program execution. Examples are drawn from the Modular
Programming Language, in which all of the facllitles described are belng
Implemented. ’

1. Introdﬁctfon . =

Transters of control in programs can be divided Into two classes. A

focal transfer stays within the same plece of progrant text, and does not
change the naming environment.. A goto which does not Involve an exit

from & block has traditionally been the primitive local transfer operation, and
other operations have been described by translating them into sequences of
(possibly conditional) gotos and assignments. Recently there has been a

lot of effort to find a good set of higher-level local transfer operations,
motivated by an awareness that the undisciplined use of the goto results

in badly structured programs. The choice of if-then-else,

for-while and case constructs, sometimes augmented by

loop and exit operations, has met with wide acceptance. This Is -

not because of theoretical proofs. that they are sufficient to express any
computation, but because many years of experimentation with the possibllities
of the goto showed that it is most effectively used In a few stylized

ways, from which these constructs were abstracted, In fact, the arguments for
keeping goto aveallable In programming languages are based on the

observation that there are times when Its use cannot roadlly be cast In one of
these molds.

A global transfer, on the other hand, does more than alter the seguential

Butler
Text Box
Lecture Notes in Computer Science 19, Springer, 1974, pp 181-203

On the Transfer of Control between Contexts

flow of control. 1t usually Invokes a new plece of program text, and it always

affects the allocation of storage and the binding of names. This paper is about
. global transfers. In fact, it is an attempt to find a sultable primitive (which we

will call transfer) and to describe higher-level global transfers or

control disciplines by translating them Into sequences of

transfers, asslgn'ments and other data-handling operations.

There are two reasons why this seems worthwhile. First, it Is dif ficult to
describe clearly how the control disciplines in existing languages work
without resorting to the construction of a formal interpreter [Fisher].
Non-interpretive descriptions either contain large quantities of ambliguous
English prose, or they Involve operations (such as the Algol 60 copy rule for
procedure calls) which may be precise but are certainly not clear. If a
language can be used to describe itself, by defining certaln operations In terms
of sequences of simpler operations In the language, theé amount of conceptus) =
" baggage required to understand It can be reduced considerably.

Second, it is our oplnion that much remains to be learned about the proper -
choice of global transfer operations. Until recently very few languages. other
than assemblers gave the programmer any cholce of control operations. Simula
- f[Hoare and Dahl] and the new crop of languages for artificlal intelligence
have changed this situation to some extent, but it will be a long time before
the possiblilities for global transfers have been thoroughly explored. If
programmers have the opportunity to create their own control disclplines they
will certainly make a'lot of mistakes, but from this experlmentatlon wea can
hope to Iearn what works well and what does not.

From this discusslon the f!avor of the paper should be clear. We will define a
transfer primitive and then exploit the local expressive power of the
language to describe some control disclplines which we happen to like. This
is not a trivial job, since a 'gdqd discipline must satisfy a number of constraints:
. programming generality [De?fnls] independently constructed modules can
work together without having to know each other's internal structure. n
particular, each module can choose its names and Its storage allocation
strategles independently of the others;:
. compatibllity - modules using dif ferent disciplines can stlll communicate, or
the advantages of diversity will be completely overwhelmed by the
drawbacks of Babel;
. robustness - it Is easy to get things set up. and restrlctlons and caveats
are conspiclous by thelr absence;
. reconfigurability - connections betweeen modules can easily-be broken
and reestablished, so that debugging facliities can be spliced In and the
behavior of a module can be changed by attaching "adaptors" to Its external
connections.

This approach should not be misinterpreted. The fact that a construct can be
explicated in terms of simpler ones does not mean that the programmer must
have this decomposition in mind whenever he uses It. On the contrary, if he
uses it as part of his working vocabulary he will normally think of it as an
atomlic concept. The explication is helpful in making the definition precise,
and in answering questions about what will happen in unfamiliar situatlons; it
should be thought of in that light.

Questions about the binding of names are, In our view, ofthogonal to the study

VN INe 1ransiel U GO U JOlWwETDTH CUIILT AW

of transfers, and are not considered in this paper. In particular, rules for
binding non-local varlables and for linking separately complled modules are
not discussed.

The host language

* "The facilities described in this paper are implemented in a general purpose

system programming language called the Modular Programming Language

(WMPL), which is a component of a system for modular programming. NMPL
borrows much of its local character from Pascal [Wirth] and EL/1 [Wegbrelt].
In particular, it is a typed language In which nevw types can be bullt out of old
ones using record, arrey and pointer declarations. There ls)

also a way to prevent components of a record from being accessed except by
a group of procedures which are declared with it. Such a record Is called .
closed, and the procedures are called its handl/es. Flna!ly. itls

possible to declare a record type s as a direct extension of another

record type r, by adding additional components and handles. Exlenslon Is

the transitive closure of direct extension, and the set of all extensions of r iIs
the class of r. Closed records and classes were Inspired by the

class mechanism of Simula [Hoare and Dahi]; that language, however,
encourages the restriction of access to handles, but does not enforce |t.. The
control transfer operations use closed records and classes to construct and-
manipulate their data structures.

A construct patterned after Pascal's with Is used heavily as syntactic
sugar by the control disciplines. Any block can be prefixed by one or more
clauses of the form:

USING p,

*where p Is a pointer to & record of type r. Within the block the names of the

components of r can then be used without qualification. If c Is such a
component, then within the block c.Is short for p.c.

Contexts and frames)

The entities between which global transfers occur we call contex!s.

The definition which follows reflects our views about the properties which
such entities ought to have. Although nearly all of the transfer operations of
existing programming languages can be described within this framework, we
are not making any clalms for its universal applicabllity. Since we make use
of its properties in constructing control disciplines, our constructions will not
work in systems for which contexts ‘cannot be defined.

Within this framework we may restate the subject matter of this.paper:
. the nature of contexts, and their creation and destruction;

. minimal primitives which are sufficient to describe any transfer of control
between contexts;

. definition of good higher-level transfer disciplines;
. description of these disciplines In terms of the primitives.

A context consists of: .
. a pointer to the text of a program, which we shall abstract as an
array of objects called /nstructions whose Internal structure and

~ On the Transfer of Control between Contexts

properties are left undefined. We assume that the program Is not madifled

during execution;

. a binding rule for names, which we shall abstract as a functlon

mapping names Into pointers;

-; some local slorege, including an lnteger index lnto the program

text calied the progrem counter. '
3.1 Representatlon of contexts
A context Is represented by a frame, which Is a record whose
components contain the information needed to define the context. More
precisely, a context base Is a closed record type contalning a program
text pointer, a binding rule and a program counter; these components are
accesslble only to the control transfer primitives, which are the handles. A
context can almost he described as a member of the class of context bases.
Unfortunately, this description cannot quite be taken literally, because we)
‘need the transfer primitive to describe how procedures are called, and)
hence this primitive cannot be defined as a procedure. The other operations on
contexts, however, can properly be defined in this way.

itis Interesting to compare this sltuation with what happens lf we try to deﬂne
as a class some other type which is normally taken as primitive. A 32 bit
integer, for example, could be defined as a closed record containing a Boolean
array with 32 elements, and we could (rather clumsily) write procedures to
implement the standard arithmetic operations, without becoming involved In any
circularity. As with any other closed record, these procedures must cooperate
in maintaining the consistency of the representation: if add assumes that

the integer Is represented in 2's complement, then multiply had better not
assume sign-magnitude representation. All the questions of consistency are "
out in the open, haowever, since everything having to do with the closed record ’
is expressed in the declaratlcm of its handles.

For contexts the consistency requlrement has a new aspect. The procedure
-which creates a context, for instance, must build a data structure which Is
consistent not only with the other handles of the class context, but also with
the transfer primitive. This Is actually a rather strong requirement,

because the transfer primitive causes Instructions to be executed from the
program text. When this text was constructed, some assumptions were made
(by the compiler) about the environment which would be present during
execution of the program. The creation procedure is responsible for settlng up
the environment so that these assumptions are satisfied. If they are not, chaos
will result, since the foundation will be undermined on which the entire
representation of the program is based. If care is taken to satisfy the '
assumptions of the transfer primitive, then, we may think of a context as

a class, and the remalning discussion will proceed on that basls.

We will call'a pointer to a context an /Inport. The name is intended to

suggest the maln purpose of this type, which Is to be an operand for the
transfer primitive. A pointer to an Inport we will call an oulport, -)

with the idea that most of the control disciplines we are Interested in need thls
extra level of indirection so that transfers into a context can be trapped
when necessary. <.

3.2 Creation of contexts

On the Transfer of Control between Contexts

We now proceed to explore in detall how contexts are created. Our
discusslon concentrates on the logical structure of the creation process,
ignoring the details of the Implementation, in which much of the work Is done *
at,(:ompil.e or link time, and many of the operations described are coalesced
for efficlency. We say a good dea! about the treatment of the types of the
various objects involved in order to make it clear that everything we are doing
_is consistent with the constraints of a fully typed language.
Since a context is an Instance of a class, thers must be a sligle create .
primitive which takes some arguments and creates a context. The arguments to
create are:) '
. a record calied a program which contains
- an array of program text,
- the type of the frame record which the program expects,
. a frame record (which is not yet a context).
We will consider later where these records come from.

With these Inputs, create s]ob Is easy. It checks that the frame record’
actually presented is of the type specified by the program (using the faclllties
‘of the type system to find out what the frame's type is). Then it Inserts a
pointer to the program text array in the frame, initializes the program counter
to zero, and returns the frame record as a context.

A program must be derived eventually from a source file which has been
compliled by the MPL compiler. The output of the compiler is an object file
which contains the same Information as the program record. There Is an
operation called load which converts a file name Into a program record,

after checking as best it can that the file is In fact a legitimate object file (the:
type checking machinery cannot be expected to handle this situation perfectly,
since it has no control over the way in which Information Is stored in the flle
system). The only hard work load has to do Is to find space for the

program text array in the addressable memory of the machine on which the
program is running. How this is done depends on the detalls of the machine
and is not relevant to this paper. :

Constructing a frane ls more difficult. Again, we can break thls operatlon
down into two parts:
" . obtalning storage for the frame,
. initializing this storage properly and returning It as the frame.
Any record type in MPL has a creation operation assoclated with it which is
defined when the type Is declared. This operation accepts a block of storage
and perhaps some other parameters. and produces a record of the proper type.
1t is the only way to make such a record. The create primitive for .
contexts discussed above Is an example of such an operation.

An ordinary frame creator In MPL is & special case of this general mechanism,
with two distinctive characteristics. First, it usually has a standard program
text, for two reasons:

. frames tend to have a rather stylized form, so that the differences hatween
them can be efficiently encoded Into a data structure called a_frame
descriptor which can then be accepted as a parameter and interpreted
by the standard creator program.

. there Is another circularity probleam - someone has to create the frame

On the Transfer of Control between Contexts

creator. A standard creator can Itself be created in a standard way which
can be part of the initial system.
The frame descriptor is usually stored In the object flle along with the program
text. Use of this scheme Is not compulsory, however. All of the facllities for
creating records can be used to create frames.

The second Unusual thing about a frame creator is that it has to provide the
binding function for the context. Recall that this function maps the names used
in the program text into pointers to the objects which are bound to those
names by this incarnation of the program. This is done by a generalization of
the display which Is often used to implement the binding rules of Algol.
The names used by the program have the form rp.v, where rp is a pointer. to
the frame of some other context and v is a varlable local to'that context. We
call the set of frames r, s, t, ... referenced by a context In this way the
neighborhood of the context; it Is defined by a coliection rp, sp, tp, ... of

" pointers to the frames The context Is automatlcally prefixed with a clause of
the form .

_USING rp, sp, tp, ... : -

so that the program can refer to the varlables without quallflcatlon, just as 1t
refers to non-local varlables In Algol.- One element of the nelghborhood Is
always the argument record

To define the binding function, then. the creator has to define the _
 neighborhood, l.e. set the pointers rp, sp, tp, ... to the proper frames. The
type of each frame is of course fixed by the dec!aratlons In the source
program, but there may several frames of the'same type to choose from.” As
far as the typing and control mechanisms of the language are concerned, the
creator Is free to choose any of them. One familiar possibility is the Algol
rule, which takes the unique textually enclosing occurrence [Wang and Dahf].
In a more complex control environment, however, it may be difficult to define
such a unique occurrence, or the programmer may want more flexibllity in
defining the environment. In any event, the cholce of binding rule Is entirely
under the programmer's control and Is not relevant to the subject of thls paper.

3.3 Storage anocation

There remalns the questlon of stor‘age allocation for a frame. This must be
done with some care, since creating a context Is a rather common operation
which Is required, for example, by every call of an Algol-like procedure.” The
standard solution is to allocate frames from a stack; this works well in a
control discipline which ensures that contexts are created and destroyed In
last-In first-out fashion. Such & restriction would not be incompatible with the
basic control primitives, but it wouleévere!y constraln the set of compatible
higher-level disciplines which would be designed.

In order to avoid this problem, we have made a convention that frames are
-allocated on a heap; they can then be created and destroyed in any order. A
standard non-compacting, coalescing free storage allocator [Knuth] is used,
supplemented for speed by a vector of lists of available blocks for all the
commonly used sizes. To keep the vector short, frame sizes are quantized by
the compller so that they differ by about 10%. Thus the possible sizes might
be 10, 12, 14, 16, 18, 20, 22, ..., 200, 220, etc.- With this scheme only 40
sizes are required to span the range from 10 to 320, which Is a much greater
variation than Is likely to be encountered in practice. Furthermore, it s

UnN the iransier o Lonirol peitween Lontexts

always possible to sllocate a larger block than the one requested In order to
reduce external fragmentation.

The transfer primitive .
As we have already seen, in order to handle transfers which change the
environment we need at least one language feature orthogonal to that subset of
the language':which Is used for programs which run In a single environmeant..

. This section describes a single primitive called transfer to meet this

requirement. We have tried to makae this primitive do a minumum amount of
work, leaving everything possible to be done by local code surrounding It in
the two contexts which are lnvolvad in tha transfer..

The basic transter prlmitlve. then. takes an Inport as its slngle argument. .
After it has been executed, the context which executed It is no longer runnlng, o
and the context specified by the Inport has started running at the location
specified by its program counter. In fact, this operation bears a striking
similarity to the primitive used In Multics for switching control from one

process to another [Saltzer], where the system scheduler, running within a

. *user process, picks another process to run and transfers to it. The

dif ference is that in Muitics there is no relationship between the processes
except for that established by the implementation of the scheduler.

in our case, however, we almost always want to pass some kind of return fink
and some arguments to the new context. We do this by establishing the
convention that the link should be put into a global variable called I/nk,
and the argument into another global called args, before the
transfer is executed. The context being entered must use the values of
these varlables, if it cares, before doing another transfer. Since this
convention Is followed In all our examples, thse remalnder of the paper uses a
three-argument primitive

transfer(destination inport, ¥eturn outport, argument polnter)..

~ as an abbreviation for -

dest := destination inport; link := return outport;

args := argument polinter; transfer;
In the implementation the globa! variables dest link and args are of
course machine registers. RN

For obvious reasons we make args a pointer to the argument. record
From the point of view of the type machinery, this will be a "universal” pointer
which carries Iits type with it. When the recelving context tries to use It, a

- run-time type check Is needed to ensure that it actually has the proper type.

in most cases, however, this check can be done at binding time, as we shau
see Iater. A _—

Note that the transfer primitive says nothing about what Is to be done

with the link or the arguments, and it does not create any contexts or allocats
any storage. All of this is the responsibility of higher-level conventions or
control disciplines, and the existing local features of the language, together
with transfer, are sufficient to permit almost all of the transfer operations
we know about to be programmed. An actual implementation, of course, may -
favor certailn disciplines by pre-defining them In a standard prologue and -

generating especially good code for them, as ours does for the port, procedure
and signal disclplines described be!ogv.

On the Transfer of Control between Contexts

6. Conventions for compatible transfers

In defining control disciplines, we would like to have as much compatibility as
pqs;sible. so that it Is possible to leave a context using one discipline and enter
.a second context using a dif ferent one. To make this work, we must be
careful about storage allocation and about the rules for handling the arguments
and return links. We have already discussed a suitably general method for
allocating frames. This section conslders the other general problems
encountered in designing a fairly broad set of compatible control disciplines.

The transfer primitive allows for a single argument, which is normally a =~ - -7
pointer to the record containing the arguments which the user wanted to pass.
The semantics of binding a formal parameter, say x, to an actual parameter,
say 14, Is very simple. The sender of the argument record assigns the actual
parameter to a suitably named component of the argument record (actualargs.x
= 14). When he has flnished constructing the record and Is ready to transfer,
he does :
args := actua!args- transfer(destlnatlon)
" The recelver does.
formalargs := args,
and (automattcally) prefixes hls block with the clause
USING formalargs,
where formalargs ls declared to have the type of the argument record he
’ expects. ’ :

The effect of all this is that:
. the low-level convention for passing arguments s very simple - one
" polnter Is passed;
. the entire collection of arguments is treated as a unit, so that it can be
passed on unchanged by a context which Is simply doing monitoring or
tracing and Is not interested in the Internal structure of the arguments,)
.« the receiver can reference the formals with the usual syntax;
. the language facilities for constructing and decomposing records are
automatically available for arguments. These allow, among other things
~ component values to be specifled by name, by position or by detfault;
,— a record to be decomposed by assigning it to an extractor; a
- syntactic construct which looks exactly like a record constructor except
that all the components are treated as left-hand-sldes of asslgnment
operators; :
- variable-length records.
In this way a fairly elaborate set of facilities Is made to do double duty
wlthout any need to introduce new semantics into the language.
P—
To preserve generality. we must ensure that the storage occupled by the
. argument record will not be reused until the receiver is through with it. 1t is
undesirable to put this storage in the sender's frame, as Is customary in Algol
implementations, because the sender's frame may not live as long as the
recelver (e.g. when the sender is a returning procedure; this case can be
handled specially in Algol because of the restrictions on what a function can
return). We therefore allocate separate storage for the arguments, and require
. the receiver to free this storage when he Is done with It.

Copying the entire argument into the recelver's frame would be another

‘On the Transfer of Control between Contexts

_alternative, but is Is unattractive for variable length argument records and in

situations where a recelver is not interested in the values of the arguments,
but Is simply going to pass them on to someone else. Copying does work well
for short argument records, however, especially since the record can be
constructed in the machine's registers. and this strategy Is used for records of-
less than 6 words. ‘ ~

Corout!nes and ports

In this sectlon we take up a palr of controf d.sc!pllnes vhich treat the two .
parties to a transfer as equals. In particular, this means that no creation of -
contexts or ailocation of storage is Involved It & transfer, and that the relation
between the parties Is symmetric - each thinks that It Is calling on the other
one. - :

. 61 Coroutines

A coroutine (more or tess as In Simula [Hoare and Dahl]; see also

- [mcliroy] and [Conway]) is a context which, when entered, continues

execution where it laft off the last time It relinquished control. Local storage
survives unchanged from exit to entry (as In & Fortran procedure, Interestingly
enough). This is the simplest control discipline, and the easlest to describe.
Each context Is pointed to by static inports set up at link time. Hence a
transfer passes no return outport, The linkages are- normally symmetrlc, as
shown in figure 1.

. There are three problems Wlth coroutines of this kind as a generé!-burpose "

control disclpline. One is that, because of the fixed linkages, a coroutine
cannot be used to provide a service to more than one customer. A procedure,
by contrast, Is Ideally suited for this purpose, since It Is created as a result of

a call and destroyed when lts work is done. :

A second d!fflcu!ty Is that the control Is enttrbly anarchlc. There Is nothlng tc
prevent control from entering a coroutine In an entirely unsymmetric way. For
example, In figure 1 context Q might gain cortrol over Inport a from line s1 of
P, even though its program counter is at ti. |f subjected to an appropriate
discipline this kind of control transfer might be useful, but no such disclpline

is present In the simple coroutine schemo.

6.2 Initiatization of coroutlnes

The third problem is proper Inltfahzataon of & collection of coroutmes. Recall
that a transfer from context P to context Q does not change Q's program
counter, but simply causes execution to resume at the point where it stopped,
or at the beginning if Q has never run before. Since no buffering of args

or link is provided by transfer, Q must save thelr values before

doing another transfer. In general it will de this properly only If It is

sitting immediately after a transfer to P. (n figure 1, for example, If P s
started first, it will transfer to Q at si, but @ will transfer to R and

thus lose P's argument record.

This dif ficulty can be reduced by Initializing more cautlously, as follows:
(a) Start each context in turn by transfering to it, let it run up to its

On the Transfer of Control between Contexts

first transfer, and stop it before It sets up args and link.
(b) Carefully choose one of the contexts and restart it by transferring
to it.
Step (a) is unattractlve because It requires a kind of control over the Internal
activities of the contexts which is quite different from what'Is needed for
"normal transfers. Step (b) has more serious problems, which wiil become
apparent on further examination

Suppose in figure 1 that P is actmg as a producer of data and Q as a consumer -
who may occasionally return a reply. The fact that P and Q play dif ferent’
roles is concealed In the figure by the identical form of the skelatal program
text. In figure 2 this difference has been brought out by expanding the - '
argument handling associated with each transfer Into send and
receive operations. The sequence of processing Is:

P setup - send - transfer - recelve - compute - send - transfer -

Q. setup - = transfer - recelve - compute - send - transfer -

The two sequences are Identlcal except for the phase at lnitlanzatlon. in both
- cases there Is a send - transfer -~ recelve sequence which is the
expansion of the slmple transl‘er of .figure 1.

The difference in pbase is quite Important however, for step (b) of our
cautious initializatiof procedure. If we choose P to restart, it wiil immediately
transfer to Q, which will immediately transfer back, and P's-first
message will be lost. If, on the other hand, we choose Q to restart, all wm be
well. Unfortunately, it is hard to see how to make the proper choice ln more

: complex sutuattons (If indeed it is always possible)

6. 3 Processes and messages as a model

Rather than maklng further attempts to patch up the slmp!e coroutine dlsclpline.
we now turn to a much more powerful scheme: processes executing In parallel
and communicating via event channels. This, of course, Is more power than

we need or want, but by extracting the essential functions of the paraliclism
and message buffering we can design a control discipline with understandable ~
properties whlch preserves the strengths of coroutines while avoldlng thelr
prob!ems. BT , N

The idea of processes executing in parallel we assume to be familiar
[Dijkstra]. A message channel is an object on which two baslc actions can be
performed by a process: send a message and receive a message. A)
message Is an arbltrary record, and _the channel can buffer an arbitrary number
of messages. An attempt to recelve a message from an empty channel causes
the recelving process to walt until a message Is sent to that channel. There Is
‘no constraint on the number of processes which can send or recelve messages
on a given channel. This facllity Is synthesized from two operating systems
[Lampson, Brinch Hansen]; we have suppressed many detalis whlch are
irrelevant to our purpose. .

Any transfer operation can now be modeled by some combination of

send and receive. We don't have to worry about loslng messages,

because of the buffering provided by the channels; each process wili get
around to processing Its messages In due course. Norlis the order in wh!ch

10

On the Transfer of Control between Contexts

processes run of any Importance; In fact, it is not even defined, except when
processes must wait for messages. We stili need a convention which allows
one process to provide service for many customers, however. We get it by
analogy with the link parameter of the transfer primitive: an everit

channel on which to return a reply goes along with sach message.

6.4 Ports ., e . , B

e

The process~channe! model has added three essential features to the coroutlne LT
discipline:- :

. parallel executlon‘

. buffering of messages;

. Indirect access to processes through message channels. -
Flgure 3 illustrates the structure of a symmetric connection. We now proceed
. to adapt these features to a sequential, unbuffered environment. The first step

is to define a new type for symmetric transfer of control, called a port,.
to replace the <{channel, outport> pairs in figure 3 [Balzer, Krutar]. Each port
is likewise a pair, consisting of an Inport IP and an outport OP. P polnts to
the context which wil} get control when a transfer is made through th!s
port, and OP is where the return link will be stored.

We can avold the need for paraliel executlon in a straightforward way, by
modeling the notion of "a process walting for a message on a channel” with
the new concept of "a context being pending on an lnport®. -Since a ‘
process can only be waiting on one channel, we will insist that a context can
only be pending on one inport. Now, If all transfers are to pending

inports, it will always be possible to run the context to which a transfer

is directed, and there wiii be no need for parallel execution. A transfer
which does nhot obey this rule will not be executed, but Instead wlill cause a
control faull, with consequences which we will explore shortly. ‘
.Rather than explicitly assoclating the attribute "pending" with each Inport, we
can observe that an inport is a capability to start execution of a context, and
interpret the pending rule as a requirement that only one non-null inport at a
time should exist for each context. The Inport components of all the other
ports associated with a context will be null, and a transfer to a nuil

inport will cause a control fauit. We thus complicate the semantics of
transfer as little as possible.

Note that the pending rule has nothing to do with the transfer primitive,

but is a convention which we Introduce in order to construct a usefut
higher~level contro! discipline, that of ports. Even within this context, it may

be proper to break the rule If it can be shown that no untoward consequences
will result. Since the-rule is strictly internal to the port discipline, it stands or
falls solely on the consistency of that discipline, and it is entirely Independent
of the requirements of any other, separate convention for control transfers. .
We do, however, want it to be compatible with a procedure dlsclpllna-
fortunately, th's causes no trouble.

A context gets to be pending on an Inport In the same way that a process gets
to be walting for a message on a particular channel: by executing a -
receive operation on the port containing that inport. There Is a definite
relationship between the value of the program counter and the pending Inport:

. the program is at the point where-it expects control to arrive over that port.

11

On the Transfer of Control between Contexts

As a result, there is nd heed for message buffering In a successful port
transfer, since the receiving context iIs ready and wlmng to plck up the
message at once,

»

6.6 Control faults and message buffering

During normal execution a controt fault Indicates an error, an attempt to
transfer control to a context which was not interested in receiving it in that
way. During initialization, on the other hand, a control fault may simply be an
‘Indication that there Is another context to start. When' a fault occurs,
therefore, control Is passed to the owner of the faulting context; the
owning context must decide whether another context should be started. The
mechanism by which this Is done Is described In section 9. Here we confine
ourselves to the local consequences of the fault., The argument used above to
show that no message buffering is required depended on the absence of
control faults. When a fault does occur, what actlon should be taken to
ensure that no messages are lost?

: 'Flrst of all If no message is belng sent (l.e. args Is null) there Is no need ,
for buffering. For instance, when two contexts have a strict
producer-consumer relationship, transfers from the consumer to the
producer involve no message. This explains why no special action was
needed during the simple coroutine initialization (discussed In section 8.2
above) when we chose to restart the consumer. -

When a control fault occurs during a transfer from P to Q (see figure 5)
and args is not null, we actually have to do something. We would like)
not to introduce any new kinds of objects, and not to complicate any existing
operations. Since our repertoire of objects and operations is limited, things
look unpromising at first sight. Fortunately, however, we do have contexts at
our disposal, and within a context we can embed any kind of speclal
processing and storage we want as long as it interfaces properly to the rest
of the world . .
In particu!ar. what we can do is to construct a buffer context B with a .
standard program text, and local storage within which we keep the argument.
We want B to emit the argument the next time control is transferred to P
through the port a. To get this effect, we put an inport for B Into a's inport
component, and save the inport for P which normally is there in B's local
storage. When B gets control, it will restore P's inport, transmit the saved
argument and destroy itself. It does this by executing:
a.lnport := savedinport; transfer(DC, B, (a, savedargument)); .
where DC is a system-provided context which destroys B and then does:
transfer(a.outport, address(a.inport), savedargument);
The cost of all this machination is quite moderate (which Is not actually very
important, since control faults take place only at Initialization if there are no
errors), and it has the great advantage that normal transfers are not
complicated at all by the requirements of control faults. Flgure 6 illustrates
the successive stages of Initialization for our famlliar two-context example.

6.6 Linkage faults

We also want to be able to do dynamic linking, as In Nultics [Bensbussan et. -
al], so that we must be prepared to deal with a transfer through an

12

On the Transfer of Control between Contexts

outport which has not yet been defined. Fortunately, the techniques we have
developed can handle this situation without difficulty. Undefined outports are
initialized to point to a standard context which constructs a buffer context, if
necessary, to save the argument of the transfer which caused the linkage
fault, and then passes the fault on to the owner of the faulting context. If the

- owner fills in the outport and transfers to It, everything will proceed

exactly as for a control fault. Indead, It Is quite possible that a control fault
will then occur. '

6.7 Raiirocad switchlng

As we have already pointed out In passing, the outport component of a port is
used to hold the return link passed by transfer. Figure 6 makes the

purpose of this arrangement clearer. If context Q transfers through port

q which is joined to context R through port r, then r.outport Is set to q. A
subsequent transfer through r will then return control to Q. If later P
transfers through p to r, then r.outport will be reset to p, so that controf will
subsequently return to P. This action, which resembles the actlon of a
spring-loaded rallroad switch, aliows many-to-one connections of ports, and
provides the memory required to return contro! correctly. Switching Is done by .
the receiving context, since it is part of the port control discipline and has -
nothing to do with the transfer primitive. Often It produces no changse, -

as for example In the transfers from R back to P or Q. To preserve -
compatibility with procedure returns (sectlon 7.3) we make the convention that
a null link suppresses switching., -

Procedures

Procedures have semantics much like that of Algol procedures. The
implementation makes use of aimost all the facl!ltles which have been
described in the preceding sectlons.

7.1 Procedure calls

If pis dec!ared as a procedure. then p(a b,..) Is a procedure call, just as It
would be a port call if p had been declared as a port. There are two v
dif ferences: s)
. a procedure p Is simply an outport' all procedure calls from a given / OY] L |
context share a single inport In the frame, called the shared fnport. i
Since only one such call can be outstanding at a time (because of the)*""1‘_*‘
pending rule), the pair (p, shared Inport) behaves exactly like a port. '
. there Is no switching done when control returns from a procedure call,
because the call is regarded as a completed event, which may be repeated
but cannot be resumed.

Because of the way In which responsibliity Is distributed during a ' ‘Ew_[

transfer, these attributes of a procedure csll are not visible to the 7
context which recelves control, but are solely the local responsibliity of the (& L

0
context making the call.

7.2 Procedure entry

Whenever a procedure Is entered, a context P must be created. This Is done

13

On the Transfer of Control between Contexts

by another context C calied the creator, as discussed In section 3. Since the
transfer which resuits in creation of a procedure context is not special In
any way, the creator must also take care to start the newly created context
and pass It the argument supplied by the transfer. Furthermore, C must
leave itself ready to create additional contexts, since the procedure may be
entered recursively. Thus there must be a unique Inport for C, and the
behavior of C must be constant with respect to all transfers through that
inport. On the other hand, C is basically an artifact Introduced to obtain a
uniform control interface, and there Is no reason for It to be Involved In the
return of control from P.

The consequence of these design constraints is that the transfer operation =~
which suspends the creator is used in a somewhat unconventiong! manner.

The link that was recelved in C when it was started is simply passed on

to P. The inport through which control arrived in C remains unchanged, and C
loops right after the transfer to P, so that it will execute the sama code

the next tlme it gets control.

The following, somewhat slmplufled code describas the body of a typlcal
procedure creator:
start: q := ALLOCATE(frameslze). -

q.pc : lnitialpc- q.neighborhood := accasslink;

q.sharedport := NIL; q.startport := q;

transfer(q.startport, /ink, args);

goto start
When the creator is created, the values of the local varlables framesize and
Initlalpc are extracted from the text of Q, and accesslink Is sst up based on
the rules for defining the binding function.

This code is misleadingly long Iy_w__the sense that a clever Implementation can -
achieve the effect It describeS with just a few machine Instructions, and it is
too short in the sense that the "ALLOCATE" operator conceals some add(tlonal
complexity; It has been discussed ln section 3.

7.3 Procedure return

A procedure context has an outport called returnport into which it puts
link when it is entered. A first stab at its return sequence would be:
transfer(returnport, NiL, returnargs); '

- but this won't do, because it ignores the fact that the context must be
destroyed as part of the return. The caller cannot be expected to take care of
this, since he doesn't necessarily know that he called a procedure. The actual
return, then, Is more tike the sequence-ised by a buffer context (section 8. 5)

transfer(DP, self, (returnport, returnargs));
where DP is a standard context which destroys /ink and then does
transfer(returnport, NiL, returnargs);
Note that this, like the procedure call described in section 7.1, Is fully
compatible and does not, for example, depend on any assumptions about the
nature of the context pointed to by the returnport. Furthermore, an arbitrary.
return record can be transmitted. The null /ink suppresses rallroad
switc. 1g If the call was made through a port (see section 8.7).

8. Signals

14

On the Transter of Control between Contexts

Finally, we take up a control disclpline designed to handle exceptlonal events’
efficiently and conveniently. The basic elements of this disclpline are:
. a set of names for events. called s/gnal codes (e.g. "out of storage",
“overflow");
. for each context, an ordered set of outports called handlers;
. a system procedure csalled the signaller whose argument s Is a palr
(signal code, argument record).

8.4 Signaliing

Anyone can sugnal the occurrence of an event by calling the s!gnaller w!th the
approprlate signal code as an arqument, thus:
signal(OutOfStorage, spaceneeded);
The second argument may be an arbltrary record whlch can be used to pass
additional information to the handler. There Is also an optional third argument
which specifies the-context in which the signa! should be generated; usually
this is the current context. An identifier declared as a signal code is treated
‘by default like an Identifier declared as a procedure: a search is made,
according to whatever binding rules are In force, for a definition which can
be bound to the identifier. The value of a signal code is simply an lnteger. ,
guaranteed to'be different for different codes. Its only purpose Is to permit
~ two signal codes to be compared for equality

The signaller calls the first handler, passing it s_ ‘as an argument. If the
handler returns to the signaller, its result r Is & pair (action, return record). If
the action is reject, the signaller tries the next handler; If it Is

resume, the sugnaﬂer returns tha return record to its caller.

Usua!ly each context supphes a handler, starting wlth the current context and
the handlers are ordered by a_pointer in each context called the signal

port, which ¢an be set by the-user. The default choice of signal port for a
procedure Is the return link. Thus If all the contexts were Algol procedures,
the effect would be to search up the stack, trylng each procedure to see [f it
was interested In the signal. .

Normally, handlers are declared In line with the program text of the context

which will supply them, and there is convenient syntax for declaring a harndler
~ with each control transfer and with each block. If several handlers are :

declared in a context, they are concatenated into a single one, using the same

rule that the signaller uses. These declared handlers have the form of case

statements which test the value of the signal code. By writing any as a

case, however, the programmer can get hold of all the signals that go by and
~ apply his own tests to them. B

.Thus. for example, ohe can write:
begin) .
enabling OutOfStorage.
begin print("Storage exhausted”); exit computation end’

. BuildTable(x, y
enabdbling OutOfStorage(spaceneeded integer):
if tablespace > 1000 then return

15

On the Transfer of Control between Contexts

GetTableSpace(spaceneeded)
else reject);

end

If the OutOfStorage signal is generated within the call of BuildTable, it will .
first be given to the handler assoctated with the call of BulldTable, and then te
the handler for the block. The first (innermost) handler checks to see If more
space Is available. If so, it obtains the space and returns it to the context
which did the signalling. [If not, It rejects the signal, and It Is passed to the
handler for the block, which prints an error message and does a (structured).
non-local goto. The consequences of this last action are. discussed later. S

The handlers have the same semantlcs as ordlnary procedures, differlng only ln)
~ the syntax for declaring them. Furthermore, the programmer is free to provide
“his own handler for a context; all he has to do is to put an outport into the-
component called handier in the context's frame. The handlers declared with
enabling have some advantages, however. A great deal of trouble Is
taken to make the cost of declaring a handler small, since it Is assumed that
signals are unusual, so that most declarations will nhever be Invoked. In fact,
entering the scope of a declared handler does not cause any Instructions to be
executed. Instead, the compiler generates some recognizable {nstructions .
‘which do nothing, and distributes them strategically in the program text where .
the s&gnaller can flnd them. .

~When the slgnaller gets to a context which has no explicit handler, then, it
examines the program text for in-line handlers. f one Is found, {ts assoclated
program text is located from the clues left by the compl!er. and lt Is called in
the usual way :

.This scheme for handling signals has a good deal In common with the
ON-condition facllities of PI/1. There are also a number of dlfferences,
however: :
&8) enabling a handler In MPL Is a declaration, not an executable statement~
b) the program has much greater control of signal handnng than in Pi/1. In
particular: :
. any and reject together allow declsions about slgnal handllng
to be made in a very flexible way;
. if this isn't good enough, the user can write his own handler, rather
than use enabling;
c) arguments can be passed with a. slgnal and results can be returned as ln
the example above;
d) the zero time-cost for enab!ing a-handler makes the facllity very
attractive to use.

8.2 Unwinding .

Sometimes Is Is necessary to abandon a computation In mid-flight and restart
from some eatrlier point. We call this operation unwinding. For example,

when an error Is detected in a complier, the current state becomes useless and
we want to make a fresh start, perhaps with the input advanced to the next-
statement of the source program. In general when this happens there Is some
coltection of contexts which are no longer useful and should be destroyed. To

16

On the Transfer of Control between Contexts

deal with this situation, we need:
a) a way of deciding which contexts should bo destroyed;
b) a procedure for destraying each context in an orderly way;
‘c) some place to send control when the unwinding Is complete. 7

If there are a lot of contexts around which are not related hierarchically, It is
not at all clear who should bs destroyed during unwinding. We therefore
provide a standard procedure which does the right thing for nested procedure
calls, and leave it to the programmer to write his own unwinder for more
complex sltuations, using the operatlons of the naxt two paragraphs. The
standard procedure is

unwind(from context, to context, signal),
and it destroys all the contexts encountered in propagating the signal between
the two contexts, not including the end points. It is nhormally used in a
handler, thus:

unwind(myself, myparent mysignal). :
The parent Is passed to the handler when it is entered, along with the signal
and signal argument. . ; :

Destroying a conteXt Is a two-step process. First it must be glven a chance to
put its house In order, l.e. to restore to a consistent state any non-local data
structures which it may have been modifying. This Is done by passing the -
signal cleanup to its handler. If the context wants to get control before
being destroyed, it should enable this signal. When the handler returns, the
context Is destroyed, using the same facilities which would be used to destroy
- any other record. - With the destroy operatlon In hand, we can write a skeletal-
program for unwind:
¢ := fromcontext; .
-for c := NextSlgnalHandler(c, signal) while ¢ # tocontext do
destroy(c) ' oo

Finally, we conslder how to contlnue the computatlon, for the speclal case In
which the context doing the unwind iIs an in-line handler of the one which Is
to receive control. Since the handler knows about the program text of the
destination in this case, It can simply set the destination's program counter to.
the proper value, and then exit by destroying itself, exactly like a buffer .
context (section 6.5). The exit statement In the previous "OutOfStorage"
example is syntactic sugar for:

unwind(myself, myparent, mysignal);

myparent.programcounter := ExitfromComputation;

transfer(DC, myself, (myparent, NIL)).

The Mu!tics system [Organick] supports an unwind operation somewhat simllar
to what has just been descrlbed

9. Contro!l faults

The discusslon of control faults in section 6.5 left two'questlons open:
. who gets notifled when a control fault occurs?
. how is the notice served? :
The first question is handled like the simllar problem for signals. Each context
has an owner outport which defines who should be notified. By default
this is set to the creator of the context, but the user can establish any

a7

On the Transfer pf Control between Contexts

relationships he likes by resetting it.

When a control fault occurs, it is simply converted into a signal called
controlfault which Is started off at the context specified by the owner
outport of the faulter, and then propagates in the usual way. This makes it
reasonably convenlent for the owner to differentiate a fault from a normal exIit.
~ During startup, when control faults are expected, each handler will probably.
specify an exit to the next statement.

10. Concluston

' We have created an environment for describing global‘contro! dlsclpllnes,'
conslisting of conlexts within which execution takes place, and a
transfer primitive for passlng control from one context to another.

. Records and classes were used to create contexts and to handle arguments.
We showed how to define the binding function for names In a fairly general
way, and described a strategy which allocates storage for contexts. We
established conventions for passing arguments and return links which can
accomodate a wide varlety of control disciplines in a compatible way.

Ports were Introduced as a non-hlerarchical control discipline, and we

saw how to initialize a collection of contexts connected by ports, how to
handle linkage faults, and how to switch port connections so that several
contexts can use a single port. We showed how to handie Algol-like
procedures wuthout any new prlmltlves. and compatibly with ports

Finally, we introduced signals as a control dlsclpline for dealing wlth

_unusual events, described how to give the programmer complete control over
signal propagation and how tocimplement signal handlers efficlently, and used
the slgnal mechanlsm to provida for orderly retreat from untenable sltuations.

»

References

Balzer, R. M., “"PORTS - A Method for Dynamic Interprogram Corﬁmunication
and Job Control," Proc AFIPS Conf. 39 (1971 SJCC) .

Bensoussan. A. et. al;, "The Muitics Virtual Memary: Concepts and Deslgn "
Comm ACM 16, & (May 1972) .

B_obrow, D. G. and Wegbrelt, B.,"'A Model and Stack lmplementatlon of
Multiple Envlronments." Comm. ACM 16, 10 (Oct 1973) ..

Brinch Hansen, P., "The Nucleus of a Multlprogrammlng System," Comm
ACM 13, 4 (April IQ?O) .

' Conway, M. E., ”Deslgn of a Separable Transltlon-dlagram Compller,” Comm.
ACW 6, 7 (July l963))

18

On the Transfer of Contro! between Contexts

Dennis, J. B., "Programming Generaslity, Parallelism and Computer Architecture,”
Proc. IFIP Congress 1968, North-Holland Publishing Co., Amsterdam, 1969

Dijkstra, E. W,, "Cooperating Sequential Processes," in Progremming
Languages, Genuys, ed., Academic Press, New York, 1867

Flsher.'D. A.,'bonlrol Structures for Programming Langueges, Ph.D.
Thesis, Carnegle-Mellon University, May 1970 (AD 708611)

Hoare, C A. R. and Dahl, O-J., "Hierarchical Program Structures," in
. Structured Programming. Academic Press, Naw York, 1872

Knuth, D., Fundamen(al Algorithms, Addison Weslay, Readlng. Macs.. .
1968, p. 425 . . T

‘Krutar, R. A,, "Conversational Systems Programniing,” In Sigplen Notlces
8, 12 (Dec I971) ,

Lampson. B. W,, "On Reliable and Extendable Operating Systems," In The
Fourth Generalion, Infotech, Maldenhead Berks., 1971

Mcl!roy. m. D, "Coroutlnes: Semantlcs in Search of a Syntax,” Bell Telephone
l_a_boratorles. Murray Hill, N.J., unpublished report

Organick, E. I., The n’umcs System: An Examinstion of its Sl'ructure. MIT
Press, Cambrldge Mass., 1972

Saltzer, J H., Trafflc Control in a Multiplexed Computer System, Sc.D.
Thests, MiT, |966 (MAC TR-30)

Wang, A. and Dahl O~dJ,, "Coroutlne Saquencing In a Block Structured
Environment,” BIT 11 (I971). p 425

Wegbrelt B “The Treatment of Data Types In EL/1 " Comm. ACM
17, 4 (April 1974)

Wirth, N., "The Programming Language Pascal," Acla Informalica 1,
1 (971) o . .

19

: context

pc: sli

programn text:

start:

sl:

s2:

transfer(a)

-

transfer{a)

» .

Q: context

r—D

pc: Tl

a: inport l

start:

Toop:

p (producer)

-

send message
transfer
receive reply

goto loop

Figura 2:

il

b:

e

program text:

inport

inport

‘ trans;er(c),

trans;ef(b)-

.

3

start:

- Joop:

. Q (cbn;umer)

-

transfer
receive messags

send reply.
qgoto loop

Producer and consumer with reply

P: process

e) a: outport b: outport . .
.- ac: channal “be: channel T .
. —> P

. other outports— —~other outports

Figure 3: Symmetric communication between processes.using pessage channeis

- -

other outpﬁrts

Figuré 4: Symmetric communiéation between contexts using pbrts

- .:J' ’

(e 8
) L
oty 17
,70
J N
DL o
By e T g
=
om',,' T
N gag .
n 7" v -
. s Y
% .
- .. ~t
S e :
s‘l : ! .»\,_I ” v
N L g! N ;

- P: context . : Q: cantext
. a: port b: port L
o : outport a ¢ outport]- .
- P: 1npor§ Q: inport | .

pther'outports

P: context ‘ T p: port

* T NiL ' -

iy

~"{a) Before P has attempted to use p , :
- P: context w7 o p:oport) .
. S NibL .
B ;
B: cbntext.'A -

¥: Inpor

(b) P has transferred to p, and a buffer contaxt.a has been created .

- -

P: context ", - p: port - . qiport ;:j_:nﬁ-%:Q:vCOhtéiéi.gf

prarameach RCERIRIEY S ' (RN o IR
. — B8 <1f NIL S

.~ B: context .
L. f Pi inpor

f—

- (e} Q hd#!been created and stérted; and q has beénvconnéctéd'to b l 1:;;

P: context ,EE;: _ prport . - q:pert . L Q: context |
— q) S .
NIL > Q

" B: context’
s nporti-

x

(d) Q hés'transferred thréugh q and p to B, which is running - .

"P: context . " p: port " q: port) ' Q: context
| D ° - . .

1 q .
» N > Q —————————1{>

(e) B has destroyed itself and returned toP% J
* Inttialization is complete k‘//// ‘52

Figufa 5: Initialization using a buffgr-cpntaxt go §§nd13 control faults

