
NOTES ON TIlE DESIGN OF EUCLID

G. J. Popek
UCLA Computer Science Department

Los Angeles, California 90024

J. J. Horning
Computer Systems Research Group

University of Toronto
Toronto, Canada

B. W. Lampson, J. G. Mitchell
Xerox Palo Alto Research

Palo Alto, California 94304

R. L. London
USC Information Sciences Institute
Marina del Rey, California 90291

Euclid is a language for writing system programs that are to be verified. We believe that verification and reliability
are closely related, because if it is hard to reason about programs using a language feature, it will be diff icult to write
programs that use it properly. This pape, discusses a number of issues in the design of Euclid, including such topics as the
scope of names, aliasing, modules, type-checking, and the confinement of machine dependencies; it gives some of the
reasons for our expectation t~at programming in Euclid will be more reliable (and will produce more reliable programs)
than programming in Pascal, on which Euclid is based.

Key Words and Phrases: Euclid, verification, systems programming language, reliability, Pascal, aliasing, data encapsulation,
parameterized types, visibility of names, machine dependencies, legality assertions, storage
allocation.

CR Categories: 4.12, 4.2, 4.34, 5.24

Introduction

Euclid is a programming language evolved from Pascal
[Wir th 1971] by a series of changes intended to make it more
suitable for verification and for system programming. We
expect many of these changes to improve the reliability of the
programming process, firstly by enlarging the class of errors
that can be detected by the compiler, and secondly by making
explicit in the program text more of the information needed
for understanding and maintenance. In addition, we expect
that effort expended in program verification will directly
improve program reliability. Although Euclid is intended for
a rather restricted class of applications, much of what we have
done could surely be extended to languages designed for more
general purposes.

Like all designs, Euclid represents a compromise among
conflicting goals, reflecting the skills, knowledge, and tastes
(i.e., prejudices) of its designers. Euclid was conceived as an
attempt to integrate into a practical language the results of
several recent developments in programming methodology and
program verification. As Hoare [1973] has pointed out, it is
considerably more diff icult to design a good language than it
is to select one's favorite set of good language features or to
propose new ones. A language is more than the sum of its
parts, and the interactions among its features are often more
important than any feature considered separately. Thus this
paper does not present many new language features. Rather,
it discusses several aspects of our design that, taken together,
should improve the reliability of programming in Euclid.

We believe that the goals of reliability,
understandability, and verifiability are mutually reinforcing.
We never consciously sacrificed one of these in Euclid to
achieve another. We had a tangible measure only for the
third (namely, our ability to write reasonable proof rules
[London et al. 1977]), so we frequently used it as the
touchstone for all three. Much of this paper is devoted to
decisions motivated by the problems of verification.

Another important goal of Euclid, the construction of
acceptably efficient system programs, did not seem attainable
without some sacrifices in the preceeding three goals. Much

of the language design effort was expended in f inding ways to
allow the precise control of machine resources that seemed to
be necessary, while narrowly confining the attendant losses of
reliability, understandability, and verifiability. These aspects
of the language are discussed in more detail by [Barnard and
Elliott 1977]. The focus here is on features that contribute tO
reliability.

Goals, History, And Relation To Pascal

The chairman originally charged the committee as
follows: "Let me outline our charter as I understand it. We
are being asked to make minimal changes and extensions to
Pascal in order to make the resulting language one that would
be suitable for systems programming while retaining those
characteristics of the language that are attractive for good
programming style and verification. Because it is highly
desirable that the language and appropriate compilers be
available in a short time, the language definition effort is to
be quite limited: only a month or two in duration.
Therefore, we should not attempt to design a significantly
different language, for that, while highly desirable, is a
research project in itself. Instead, we should aim at a 'good'
result, rather than the superb." [Popek 1976] We defer to the
Conclusions a discussion of our current feelings about these
goals and how well we have met them.

The design of Euclid took place at four two-day
meetings of the authors in 1976, supplemented by a great deal
of individual effort and uncounted Arpanet messages.
Almost all of the basic changes to Pascal were agreed upon
during the first meeting: most of the effort since then has
been devoted to smoothing out unanticipated interactions
among the changes and to developing a suitable exposition of
the language. Three versions of tile Euclid Report have been
widely circulated for comment and criticism; the most recent
appeared in the February 1977 Sigplan Notices [Lampson et
al. 1977]. Proof rules are currently being prepared for
publication [London et al. 1977].

11

The System Development Corporation is currently
implementing Euclid [Lauer 1977]. Since the
implementation is incomplete and no sizable Euclid programs
have been written, our expectations are still untested. Further
experience may dictate changes in the language.

We developed Euclid by modifying Pascal only where we
saw "sufficient reason." We see it as a (perhaps eccentric) step
along one of the main lines of current programming language
development: transferring more and more of the work of
producing a correct program, and verifying that it is
consistent with its specification, from the programmer and
the verifier (human or mechanical) to the language and its
compiler.

Our changes to Pascal generally took the form of
restrictions, which allow stronger statements about the
properties of programs to be based on the rather superficial,
but quite reliable, analysis that the compiler can perform. In
some cases, we introduced new constructions whose meaning
could be explained by expanding them in terms of existing
Pascal constructions. These were not merely "syntactic
sugaring": we had to introduce them, rather than leaving the
expansion to the programmer, because the expansion would
have been forbidden by our restrictions. Because the new
constructions were sufficiently restrictive in some other way,
breaking our own restrictions in these contolled ways did not
break the protections they offered.

The main differences between Euclid and Pascal are

Visibility o f names: Euclid provides explicit control
over the visibility of names by requiring the program
to list all the names imported into a routine (i.e.,
procedure or funct ion) or module body, or exported
from a module. The imported names must be
accessible in every scope in which the routine or
module name is used.

Variables: Euclid guarantees that two names in the
same scope can never refer to the same or overlapping
variables. There is a single, uniform mechanism for
binding a name to a variable in a procedure call, on
block entry (replacing the Pascal with statement), or in
a variant record discrimination.

Pointers. The avoidance of overlapping is extended to
pointers by allowing dynamic variables to be
partitioned into collections, and guaranteeing that two
pointers into different collections can never point to
overlapping variables.

Storage allocation: The program can control the
allocation of storage for dynamic variables explicitly,
in a way that narrowly confines knowledge about the
allocation scheme used and opportunities for making
type errors. It is also possible to declare that the
dynamic variables in a collection should be
reference-counted and automatically deallocated when
no pointers to them remain.

Types: Type declarations are generalized to allow
formal parameters, so that arrays can have bounds
that are fixed only when they are allocated, and
variant records can be handled in a type-safe manner.
Records are generalized to include constant
components.

Modules: A new type-constructor, module, provides a
mechanism for packaging a collection of logically
related declarations (including variables, constants,
routines, and types) together with initialization and
finalization components that are executed whenever
instances of the type are created or destroyed. This
provides some of the advantages of abstract data types.

Constants: Euclid defines a constant to be a literal or
a name whose value is fixed throughout the scope in
which it is declared, but not necessarily at compile

time. A constant whose value is fixed at compile t ime
(as in Pascal) is called a manifest constant.

For statement~ The parameter of the for statement is
a controlled constant in Euclid. A module can be
used as a generator to enumerate a sequence of values
for the controlled constant.

Loopholes: Features of the underlying machine can be
accessed, and the type-checking can be overridden, in
a controlled way. Except for these explicit loopholes,
Euclid is designed to be type-safe.

Assertions: The syntax allows assertions to be
supplied at convenient points to assist in verification
and to provide useful documentation. Some assertions
can be compiled into run- t ime checks to assist in the
debugging of programs whose verification is
incomplete.

Deletions. Several Pascal features have been omitted
from Euclid: input-output, real numbers,
mult i -dimensional arrays, labels and go to's, and
functions and procedures as parameters.

The only new features which can make it hard to convert
a Euclid program into a valid Pascal program by
straightforward rewriting are parameterized type declarations,
storage allocation, finalization, and some of the loopholes.

The balance of this paper presents the motivations and
consequences of several of the changes.

Verification And Legality

One of our fundamental assumptions is that (in
principle) all Euclid programs are to be verified before use.
That is, we expect formal proofs of the consistency between
programs and their specifications. These proofs may be
either manual or automatic; we expect similar considerations
to apply in either case. We used the axiomatic method of
[Hoare and Wirth 1973] for guidance.

Perhaps the most obvious consequence of this
assumption is the provision within the language of syntactic
means for including specifications and intermediate
assertions. Routines are specified by pre- and post-assertions;
modules, by a pre-assertion, an invariant, an abstraction
function, and specifications for exported routines and types,
In addition, assertions may be placed at any point in the flow
of control. (Most verifiers require at least one such assertion
to "cut" each loop.) Effort invested in writing such assertions
should pay off in more understandable, better-structured
programs, even before the verification process is begun.

The basic assertion language consists of the Boolean
expressions of Euclid. Most verifiers will require somewhat
richer languages, containing, for example, quantifiers, ghost
variables, and specification routines. Rather than picking a
particular form for this extended language, we decided that
extended assertions would be brackett~d as comments; each
verifier may choose a private syntax, without affecting Euclid
compilers. (Indeed, a program might be augmented with two
distinct sets of assertions, intended for different verifiers.)

Most programs presented to verifiers are actually wrong;
considerable t ime can be wasted looking for proofs of
incorrect programs before discovering that debugging is still
needed. This problem can be reduced (although not
eliminated) by judicious testing, which is generally the most
efficient way to demonstrate the presence of bugs. To assist
in the testing process, any scope in Euclid can be prefixed by
checked, which will cause the compilation of run- t ime checks
for all basic assertions (Boolean expressions not enclosed in
comment brackets) within the scope; this includes all legality
assertions, which will be discussed later. If any assertion

12

evaluates to False when it is reached in the program,
execution will be aborted with a suitable message.

Because we expect all Euclid programs to be verified, we
have not made special provisions for exception handling
[Melliar-Smith and Randell 1977][McClaren 1977].
Run-time software errors should not occur in verified
programs (correctness is a compile-time property), and we
know of no efficient general mechanisms by which software
can recover from unanticipated failures of current hardware.
Anticipated conditions can be dealt with using the normal
constructs of the language; most proposals for providing
special mechanisms for exception handling would add
considerable complexity to the language [Goodenough 1975].

We have also been led to a somewhat unorthodox
position on uninitialized variables and dangling pointers. We
do not forbid these syntactically (cf. [Dijkstra 1976] for a
rather elaborate proposal), nor, for reasons of efficiency, do
we supply a default initialization (e.g., to "undefined"). Our
reasoning is as follows: verification generally places stronger
constraints on variables (pointers) than that they merely have
valid values when they are used--they must have suitable
values. However, if a program can be verified without
reference to the initial value of a variable (current variable to
which a pointer points), then any value (variable) is
acceptable.

Relying so heavily on verification has an obvious
pitfall: suppose that the formal language definition and the
implementation don't agree. (Indeed, for Pascal, they do not.)
We could then be in the embarrassing situation of having
failures in programs that have formally been proved "correct"
[Gerhart and Yelowitz 1976]. Aside from some omissions
and known technical difficulties (e.g., [Ashcroft 1976]), the
major discrepancies between the Pascal definition and
implementation take the form of restrictions imposed by the
definition, but not enforced by the implementation. For
example, "The axioms and rules of inference...explicitly
forbid the presence of certain 'side-effects' in this evaluation
of functions and execution of statements. Thus programs
which invoke such side-effects are, from a formal point of
view, undefined. The absence of such side-effects can in
principle be checked by a textual (compile-time) scan of the
program. However, it is not obligatory for a Pascal
implementation to make such checks." [Hoare and Wirth
1973, p.337]

In the design of Euclid, we have made a major effort to
ensure that there are no gaps between what is required by the
definition and what must be enforced by any implementation
(and that such enforcement is a reasonable task). Gaps have
been eliminated by a variety of means: removing features
from the language, extending the formal definition, placing
more definite requirements on the implementation, and
finally, introducing legality assertions as messages from the
compiler to the verifier about necessary checking.

There are many language-imposed restrictions that must
be satisfied by every legal Euclid program. In addition to
syntactic constraints, many of them (e.g., declaration of
identifiers before use) are easily checked by the compiler, and
it would be silly to ask the verifier to duplicate this effort.
Others (e.g., type constraints) can usually be checked rather
easily by the compiler, but may occasionally depend on
dynamically generated values. Still others (e.g., array indices
within bounds, arithmetic overflow) will usually depend on
dynamic information, although the compiler can often use
declared ranges or flow analysis to do partial checking. (For
example, i := i + 1 will obviously never assign a value that is
too small if i was previously in range.) Our philosophy is that
the verifier should rely as much as possible on the checking
done by the compiler. In fact, unless the compiler indicates
differently, the verifier is entitled to assume that the program
is completely legal. The compiler is to augment the program
with a legality assertion (which the verifier is to prove)

whenever it has not fully checked that some constraint is
satisfied. Any program whose legality assertions can all be
verified is a legal program, with well-defined semantics.

The compiler may produce legality assertions only for
certain conditions specifically indicated in the Euclid Report.
They always take the form of Boolean expressions, and are
usually quite simple (e.g., i < 10, i = j, p not= C.nil). Note
that legality is a more fundamental property than correctness,
since (a) it is defined as consistency with the language
specification, rather than consistency with a particular
program specification (a program could be consistent with
one specification, and inconsistent with another), and (b) a
program that is illegal has no defined meaning, and hence
cannot be said to be consistent with any specification. Also
note that a particular program is not sometimes legal and
sometimes illegal (e.g., depending on whether i = j on some
run): the verifier must show that the legality assertions are
valid (always true).

Later sections of this paper discuss some of the
non-obvious legality conditions of Euclid.

Names And Scopes

In "Algol-like" languages the rules connecting names
(identifiers) to what they denote (e.g., variables) give rise to
some subtle, but troublesome, problems for both programmers
and verifiers. Some variables, for example those passed as
variable parameters, may be accessible by more than one
name. Thus, assignment to x may change .~: we will call this
aliasing. Access to a global variable can accidentally be lost
in a scope by the interposition of a new declaration involving
the same name (the "hole in scope" problem). Conversely,
failure to declare a variable locally may result in a more
global access than was intended. (Such problems are generally
not detected by compilers.) The intimate connection between
a variable's lifetime and its scope frequently forces variables

to be declared outside the local scopes in which they are
intended to be used. Finally, the automatic importation of all
names in outer scopes into contained scopes, unless
redeclared, tends to create large name spaces with
correspondingly large opportunities for error. For more
complete discussions of these problems, and some suggested
solutions, see [Wulf and Shaw 1973] and [Gannon and
Homing 1975].

Several Euclid features are intended to remove these
problems; they are discussed here and in the following two
sections. Unlike the designers of Gypsy [Ambler et al. 1977],
we did not discard the Algol notion of nested scopes, which
seems to us to be a natural representation of hierarchy, and a
good first approximation to the necessary name control.
Rather, we have chosen to strengthen it by a number of
restrictions.

The first restriction requires the programmer to control
the "flow" of names between levels of abstraction by means
of an import list. Every closed scope (routine or module
body) must be accompanied by such a list specifying those
names accessible in the containing scope that are to be
accessible within the closed scope, and, in the case of
variables, whether the access is to be read-only or read-write.
Other names are simply inaccessible. An open scope (e.g., an
Algol-like block) may access any name accessible within the
scope that contains it..

The control supplied by import lists allows us to place a
further restriction: no name accessible in a scope may be
redeclared in that scope. Such a restriction would probably be
intolerable in Pascal, where a scope has no "protection"
against unwanted names from the outside, but it seems
sensible in Euclid. In fact, it is generally a programming
error to redeclare an imported name. Undiagnosed holes in
scopes would certainly cause problems for the reader and
maintainer, and for the human verifier.

]3

In practice, we found it desirable to relax slightly the
requirement of explicit importation. We do no t wish every
routine that uses built-in types, such as integer, or routines,
such as abs(x), to import them explicitly. Many programs
will have user-defined types and routines that are almost as
widely used. Therefore, we have provided an overriding
mechanism: constant, routine, and type names may be
declared pervasive in a scope, which means that they will be
implicitly imported into all contained scopes (and hence may
not be redeclared). The standard Euclid types are all
pervasive: therefore, a program cannot override them.

Euclid prohibits "sneak access" to variables by means of
procedure calls. The name of a closed scope may not be
imported (or used) if the names that are imported into its
body are not also imported (accessible) at the point of use. It
is this restriction that simplifies the enforcement of a
complete ban on side-effects in functions (and hence in
expressions). Functions cannot have variable parameters or
import variables. Although they may import and call
procedures, they cannot change any nonlocal variables by
doing so: thus, they behave like mathematical functions. The
possibility of side-effects in functions and expressions
complicates the verifier's task, and we believe that their use is
rather error-prone. We are willing to sacrifice a few
well-known programming tricks that rely on "benign"
side-effects in order to simplify life for the readers,
maintainers, and verifiers of programs, and to open up new
optimization possibilities for the implementors of the
language. Programs involving functions with side-effects can
be rewritten to use procedures instead.

Import lists are intended to make the interface to each
closed scope explicit. However, the list supplied by the
programmer is incomplete (for the reader) in two respects: 11
only names are given, not complete declarations, and 2)
pervasive names do not appear. The compiler is expected to
complete the interface description from its symbol table. It

must augment the listing with information from the
declarations of the imported names, and the user-defined
pervasive declarations for that scope. Requiring the
programmer to supply this information (which is mere
duplication) would invite error, for no identifiable gain.

Aliasing And Collections

The disadvantages of aliasing (for programmers, readers,
verifiers and implementors) have been well-documented
[Hoare 1973, 1975] [Fischer and LeBlanc 1977]. If
assignment to x has the "side-effect" of changing the value of
y, it is likely to cause surprise and difficulty all around.
However, programmers and language designers have been
reluctant to eliminate all features that can give rise to
aliasing, e.g., passing parameters by reference, and pointer
variables. In designing Euclid, we took a slightly different
approach: we kept the language features, but banned aliasing.
Essentially, we examined each feature that could give rise to
aliases, and imposed the minimum restrictions necessary to
prevent them. Every variable starts with a single name: if no
aliases can be created, then, by induction, aliasing will not
o c c u r .

The case of variable parameters to procedures is typical,
and easily generalized to import lists and binding lists. All of
the actual var parameters in a call must be nonoverlapping. If
the actual parameters are simple names ("entire variables"),
this requirement merely means that they must all be distinct.
However, we must also prohibit passing a structured variable
and one of its components (e.g., .4 and `4(1)). What about two
components of the same variable? This is allowed if they are
distinct (e.g., .4(1) and A(2)), and disallowed if they are the
same (e.g., `4(1) and A(1)). Since subscripts may be
expressions, it may be necessary to generate a legality
assertion (e.g., 1 not= J in the case of ,4(1) and A(J)) to
guarantee their distinctness.

It may appear that arrays already violate our rule that
assignment to one entire variable can never change another.
After all, assignment to ,4(1) may change A(J). However,
these are not entire variables. We adopt the view of [Hoare
and Wirth 1973, p.345] that an "assignment to an array
component" is actually an assignment to the containing array.
Thus ,4(1) := 1 is an assignment to .4, and can be expected to
change A(J) if J = 1.

Pointers appeared to pose a more difficult problem.
Assignment to pt (i.e., to the variable to which p refers) may
change the value of qt (if p and q happen to point to the
same variable, i.e., if p = q), or may even change the value of
x (if pointer variables are allowed to point at program
variables). We avoided the latter problem by retaining
Pascal's restriction that pointers may only point to
dynamically generated (anonymous) variables. (This is
enforced by not providing an "address of" operator or
coercion.) The usual treatment of the former problem is to
consider pointers as indices into "implicit arrays" (one for
each type of dynamic variable), and dereferencing as
subscripting [Luckham and Suzuki 1976, Wegbreit and
Spitzen 1976]. Thus p , is merely a shorthand for C(p), where
C denotes p's implicit array, and the proof rules for arrays
can be carried over directly. In particular, assignment via a
dereferenced pointer is considered to be an assignment to its
implicit array. From the verifier's standpoint, the situation is
slightly better than that for arrays, since the decision of
whether two subscripts are equal may involve arbitrary
arithmetic expressions, while the decision of whether two
pointers are equal reduces to the question of whether they
resulted from the same dynamic variable generation ("New"
invocation).

We have not yet discussed dereferenced pointers as
variable parameters. If p* and qt (really C(p) and C(q)) are
both passed, the nonoverlapping requirement demands p not=
q. Passing both p and p* (really p and C(p!) is not a problem
unless the formal parameter corresponding to p is
dereferenced, which can only happen if C is accessible (i.e.,
imported). But then there would be an overlap between C(p)
and C, which makes the call clearly illegal. Passing pointers
themselves as parameters (like passing array indices) does not
create aliasing problems, since dereferenced pointers (like
subscripted arrays) are not entire variables; assignment to one
of them is considered as assignment to its implicit array.

Although. the solution in the previous paragraph is
formally complete, it is unsatisfactory in practice. The minor
difficulty is that Euclid provides no way of naming implicit
arrays for purposes of importation. The major problem is
that it is too restrictive. It prohibits passing a dereferenced
pointer as a variable parameter to any procedure that is
allowed to dereference pointers to variables of the same type
(i.e., that imports the implicit array for that type). We have
solved both these problems by introducing the notion of
collections, which are explicit program variables that act like
the "implicit arrays" indexed by pointers. Each pointer is
limited to a single collection, and pt is still an acceptable
shorthand for C(p), where C is now the collection name. p t
is only allowed where C is accessible. Note that this makes it
possible to pass pointers as parameters to procedures that are
not allowed to dereference them, although they can copy them.

We allow any number of collections to have elements of
the same type, with no more difficulty than arises from
multiple arrays of the same type. Thus, the programmer can
partition his dynamic variables and pointers into separate
collections to indicate some of his knowledge about how they
will be used; the verifier is assured that pointers in different
collections can never point to overlapping variables. The
astute reader will have noted that we have returned to the
"class variables" that were in the original Pascal, but dropped
in the revised version.

Collections also provide convenient units for storage
management. We have chosen to associate with each

14

collection both the decision of whether to reference-count,
and the selection of the (system- or user-supplied) storage
management module (called a zone) to provide thespace.

One consequence of our complete elimination of aliasing
is that "value-result" and "reference" are completely
equivalent implementation mechanisms for variable
parameters, and a compiler is free to choose between them
strictly on the basis of efficiency.

Modules

Since the introduction of "classes" by Simula 67 [Dahl et
al. 1968], several programming languages have introduced
mechanisms for "data encapsulation" or "information hiding"
[Parnas 1971]. A survey of desirable properties of such
mechanisms is given in [Homing 1976]. For Euclid, we
chose something less powerful than "classes," "forms" [Shaw
et al. 1977], or "clusters" [Liskov et al. 1977]. Our modules
are closely akin to. but somewhat more complex than, the
"modules" of Modula [Wirth 1977]. Adjusting the details of
modules satisfactorily has been more difficult than expected.
Perhaps this is because we still have an imperfect
understanding, but it may also be because we violated our
usual practice, and started from implementation
considerations, rather than from verification issues.

The basic idea is that a module should "package up" a
data structure and a related set of routines for its
manipulation, and should hide its internal details from the
outside world. We originally viewed it as a sort of glorified
record, with some extra components (routines, types,
initialization, finalization) and some control over the external
visibility of its names (an export list). Like record, module is
a type constructor, and a module type can be used to create
many instances; this is the major source of differences
between Euclid and Modula "modules."

Modules provide natural units for program construction.
In fact, Euclid programs take the form of modules, rather
than procedures; this is particularly appropriate when the
program is to provide a number of entry points sharing a
common data base that is to survive the various invocations
(e.g., an operating system kernel). The "protection" provided
by control over exported names serves as a useful first step
towards abstract data types [Sigplan 1976]. In addition, they
are used within the language in two places where it seemed
important to effect a separation of concerns. The first is in
iteration, where the knowledge of how to enumerate the
elements of some data type should generally be associated
with the type (module), rather than with each loop that needs
such an enumeration. The problem, and its solution using
generators is discussed in more detail in [Shaw et al. 1977].
We have chosen to use a simplification of the Alphard
solution that seems powerful enough for the most common
cases.

Similarly, the issues of how to allocate storage are quite
separable from the uses to which that storage is put. We have
chosen to isolate that knowledge in zones, which are (system-
or user-defined) modules solely concerned with allocating and
deallocating storage and ensuring that storage allocations
never overlap. A zone deals with blocks of "raw storage"; it is
the compiler's responsibility to ensure that its procedures are
invoked at proper times, with correct parameters, and that the
storage it allocates is properly initialized for its intended use,
and that there is no type confusion or variable overlap
outside the zone.

Types

One of the principal contributions of Pascal was its
development of the notion of data types. Despite certain
deficiencies [Habermann 1973], we find it more satisfactory
than competitive approaches (e.g., the modes of Algol 68 [van

Wijngaarden et al. 1976]). Pascal's types provide a flexible
and convenient set of efficient data structuring mechanisms,
and are useful conceptual tools for partitioning and
organizing data within programs. In a type-rich language,
such as Pascal, type-checking serves as a very effective
compile-time error screen [Gannon and Horning 1975]
[Gannon 1977].

It is a major undertaking to develop a new approach to
data types that is both consistent and useful, and we did not
attempt to do so within Euclid. Nevertheless, we felt
compelled to try some small changes in the directions of
safety and flexibility. Even these were difficult to get right.

Almost all type-checking in Pascal can be done at
compile-time; the major exceptions are due to variant records
and to the incomplete specification of formal parameters that
are functions and procedures [Fischer and LeBlanc 1977].
The former are no! a problem in Euclid, since such
parameters are disallowed, but Euclid retains variant records.
The problems in Pascal arise from aliasing (which we have
already dealt with), from the treatment of the tag (which
selects the current variant) as an ordinary, assignable field of
a variant record, and from the accessibility of variant field
selectors even when they do not apply to the current variant.

In Pascal, uncontrolled assignment to the tag field can
change the current variant without ensuring that the
corresponding fields contain values of appropriate types. We
have eliminated this possibility in Euclid by making the tag a
constant component of a variant record, and hence not
assignable. If a variable is of variant record type, its current
variant can only be changed by assignment of a record of one
of the other variant record types; this assignment supplies a
complete set of fields appropriate to that variant.

Variant field selectors are only accessible within the
alternatives of a discriminating case statement, where the
alternative is selected by the current tag. In the case
statement, a local name is provided for the variant record
(either as a constant or a variable); within any alternative,
that name has the (nonvariant) type selected by the
corresponding tag value, and all field selectors of that type are
accessible. If the local name is bound to a variant record
variable, the nonaliasing rule makes its more global name
unusable in the scope; hence, there is no danger that its type
may be changed within the scope (e.g., by calling a procedure
that does so surreptitiously). If the local name is a constant,
the variable may still be changed, but this will not affect the
(discriminated) constant in any way, so access to its fields
remains safe. Thus, variant records cannot be used to
circumvent Euclid's type-checking. As a minor benefit, we
avoid the need for the Pascal restriction that the same field
names may not be used in separate variants.

Pascal treats (sub)ranges as types, and requires that all
bounds be known at compile-time (i.e., be manifest
constants). This is somewhat irksome for array bounds, and
almost intolerable for routines that take array parameters.
However, it allows a number of simplifications throughout
the language, compiler, and verification system. We have
allowed only a minor relaxation: bounds must still be
constants, but they need not be manifest, in particular, a
constant formal parameter of a routine may be used to
specify a bound of another formal parameter. This will
require verification that the bounds for the latter parameter
are correct in all calls to the procedure since they are not
fixed at compile time. We expect this usage to be common,
and have supplied a shorthand; if a bound is specified as
parameter, an additional (implicit) actual parameter
containing the actual bound will be supplied automatically for
each call.

A type declaration in Pascal provides a shorthand for a
single type. In Euclid, a type declaration may have formal
parameters. A parameterized declaration represents a set of

'15

types, one of which is specified (by supplying actual
parameters for all the formals) each time the type is
referenced (e.g., to declare a variable). This allows the
relationships among similar types to be made explicit in the
program, and makes it easier for the program to exploit such
relationships. Variant record definitions will usually appear
within parameterized type declarations, with the tag being one
of the formal parameters. Each particular value supplied as
the corresponding actual parameter in a reference to such a
type will select a particular alternative, i.e., will yield a
nonvariant record. This is a useful feature (not available in
Pascal), but it is often desirable to defer the choice of a
variant. This can be done by using the special actual
parameter any, which specifies that the type contains all
values of the types corresponding to any choice for the tag,
i.e., that the variant may be changed dynamically, by
assignment.

Collections of variant records allow another degree of
freedom. It is possible to select a variant at the time a
dynamic variable is allocated, and to disallow any changes of
variant by assignment. This is done by using the special
actual parameter unknown in defining the object type of a
collection. For each such unknown parameter, every call of
New must supply an additional actual parameter that specifies
the variant of the new dynamic variable. Both any and
unknown specifications will lead to the use of discriminating
case statements for access to the variant parts of records.

The Pascal Report is not very explicit about when two
types are "the same," and it is not always clear what
type-checking is allowed (required). E.g., !..10 and 2..11
define subrange types that (in some sense) are clearly
different. But what is the type of 2, which could be assigned
to a variable of either type? Are we to assume that there are
some subtle "coercions" going on (as is hinted in [Hoare and
Wirth 1973])? Another problem: If type Miles = 1..10, and
type Hours = 1..10, are Miles and Hours "the same" type or
not? If the answer is "yes," the programmer has not gotten
any protection by using different type names for conceptually
different types; if it is "no," how do we justify using the same
addition operator for both, and how can we write a routine
that would accept either as a parameter? Should we go to the
Algol 68 extreme of treating as "the same" all types that have
the same representation, completely ignoring programmer-
supplied type names? (See [Habermann 1973] for further
examples of the difficulty of reasoning strictly from the hints
given in [Wirth 1971] and [Hoare and Wirth 1973].)

We decided that the rules for type-checking must be
quite explicit in Euclid (i.e., we would rather be wrong than
vague in our answers to these questions). We have devoted
considerable effort to spelling them out clearly. Firstly, we
separately specified two kinds of checking: in a binding (e.g.,
formal/actual correspondence for a variable parameter) the
two types must be the same (defined below); in other contexts
(e.g., assignment, constant definition, constant parameter,
operands of operators) a value of one type must be
compatible with another type (e.g., within the proper
subrange). Secondly, we never associate a subrange type with
a value, rather the value gets the containing type (e.g.,
integer). Thirdly (after toying with having synonym and
nonsynonym type declarations), we decided not to treat type
declarations as creating new types: a type name is the same as
its definition. Fourthly, every module definition creates an
opaque type (i.e., one whose internal structure is not visible);
types exported from modules are also opaque. Opaque types
are only the same if they are defined by the same piece of
text (i.e., even identical definitions define distinct types);
exported types are the same only if exported (with the same
name) from the same instance of the module type. Finally,
two references to a parameterized type are the same only if
their actual parameters are equal (this may cause the
generation of legality assertions).

Containment Of Machine Dependencies

Euclid contains most of the "escape hatches" (providing
direct access to machine features) typical of system
implementation languages [Mohll 1975]. There is provis ion
for machine-code routine bodies, for placing variables at
fixed addresses, for specifying the internal representation of a
record, and for explicitly overriding type-checking. Many of
these features are difficult to define formally, and all of them
pose problems for verification. We have not solved most o f
these problems; we have merely provided a mechanism for
containing their effects.

Some modules may be explicitly declared to be
machine-dependent; these are the only modules that are
allowed to contain the various machine-dependencies
mentioned above, or to contain machine-dependent modules.
Machine-dependent modules serve to textually isolate these
features, and to encapsulate their use; they may be imported
into modules that are not machine-dependent (and rely only
on the specifications, not the implementations of the
imported modules). This does not simplify the process of
verifying that machine-dependent modules actually do meet
their specifications; it merely means that the verification of
all other modules can proceed in a machine-independent
manner.

We expect machine-dependent modules to be used for
two different purposes: to provide efficient machine-
dependent implementations for packages whose specification
is machine-independent (e.g., string manipulation, high-level
I/O), and to provide controlled access to machine features
(e.g., channels, clocks, page tables). Programs using only the
former should be quite portable, requiring changes to (and
reverification of) only the bodies of the machine-dependent
modules. However, in the latter case, machine-dependencies
in the module specifications themselves will work against
portability (which is not required for many of Euclid's
intended applications, such as operating system kernels).

Conclusions

Even though Euclid does not represent a dramatic
advance in the state of the art, we have accomplished several
things relevant to reliability. Firstly, we have designed a
useful language (Euclid minus machine-dependent modules),
all of whose features are (in principle) verifiable in their full
generality by existing techniques. Secondly. we have
demonstrated that it is possible to completely eliminate
aliasing in a practical programming language. Thirdly, we
have made variant records completely type-safe.

By and large, the changes that we made to Pascal could
be justified without reference to verification, and would be
useful even in situations where verification is not a formal
requirement. However. it is unlikely that many of them
would have been made had verification not been one of our
primary concerns. Furthermore, we seem to have been
somewhat more successful at "getting it right the first time"
when we started from a verification issue (e.g., nonaliasing,
collections) than when we "worked back" from the
implementation (e.g., modules, zones). Perhaps this is because
the construction of proof rules is a useful discipline that
makes it necessary to be very explicit about the interactions
of language features.

This paper has not been able to convey, the extent to
which various design decisions were interdependent. None of
them was made in isolation, and some of them caused ripples
throughout the language. We feel good about the decision to
make the control of visibility explicit, for example, because it
supported so many of the other changes we made. The
decisions to totally ban side effects in functions was triggered
by an observation concerning legality assertions. It was the
introduction of generators that reconciled some of us to the
elimination of functions and procedures as parameters.

16

We are all reasonably happy with the way that Euclid
has turned out. However, it is appropriate to ask how well it
meets our original goals. Among other things, we were asked
to "make minimal changes and extensions to Pascal," and our
effort was to be "quite limited: only a month or two in
duration." Even though we did not satisfy either goal, in
retrospect it seems that both were quite necessary for
whatever success we have had. It has taken us a year to
carefully work through and document the interactions of the
small set of changes to Pascal that we agreed to in the first
two days; had we been more ambitious at the start, we would
still be discovering surprising implications of "innocuous"
changes.

It is hard to feel guilty about making more than minimal
changes to the form of Pascal. As we have stressed in this
paper, the conceptual changes have been relatively small;
however, we expect them to lead to significantly different
programming styles. Euclid is a language with its own
"flavor" and style. It would be as wrong to try to cast it as
"pidgin Pascal" as it would have been to cast Pascal as "pidgin
Algol."

Finally, a few comments on language design by
committee: It is not easy, under the best of circumstances. It
is clear that any one of us could have designed a new
language by himself with less effort than he expended on
Euclid; it is equally clear that each of those languages would
have contained hidden problems or limitations that we
managed to expose and eliminate in the process of designing
Euclid. The substantial variety in our backgrounds was very
helpful in the design process, although it could have been a
major stumbling block bad we not started with a highly
compatible set of views on what needed to be done.
Surprisingly, our geographical distribution, which could have
been expected to be an obstacle to close cooperation, was
turned into an asset by the Arpanet. It made rapid
communication convenient, and encouraged both five-way
interaction on all issues and the maintenance of a complete
record of all "discussions."

We surprised ourselves by spending much more time on
"exposition" (writing the defining report and proof rules)
than we spent on "language design." The latter would have
been useless without the former, and it could be argued that
the design will not be complete until we are satisfied with the
exposition, but we somehow hadn't planned to spend so much
time explaining. Conceptual unity in a report cannot be
obtained by having everyone write a few sections; we found
no substitute for having a single person (Butler Lampson)
write and edit the entire defining document, with the advice
and consent of the rest.

Acknowledgements

Obviously, we are greatly indebted to Wirth, whose
Pascal language formed the principal basis of our work. We
have also relied heavily on Hoare's work in the areas of
programming language design, axiomatic methods, and
program verification. We have consciously borrowed ideas
from most of the languages represented at this conference,
and have probably been influenced by many other languages
and suggestions for language features. We have benefitted
from comments and criticisms on the various drafts of the
Euclid Report that have been provided by colleagues too
numerous to mention here. Lauer and the other
implementors have been particularly helpful in pointing out
inadequacies of our design and exposition. Guttag, as an
author of the proof rules, has similarly helped us. Our work
has been significantly aided by the Arpanet, which allowed us
to maintain effective and rapid communication in stating and
resolving problems (and in maintaining a permanent record
of such "discussions"), despite the wide geographical
distribution of the authors. Lastly, both the Euclid Report
and this paper owe much to Gall Pilkington's expert use of a
computer editing and formatt ing system; the visual quality of
both documents compelled us to work hard on their contents

so that the beauty would be more than ink deep.

References

[Ambler et al. 1977] A. L. Ambler et al., "Gypsy: A
Language for Specification and Implementation of Verifiable
Programs," in [LDRS 1977].

[Ashcrof t 1976] E. A. Ashcroft, M. Clint, and C. A. R.. Hoare,
"Remarks on 'Program Proving: Jumps and Functions' by M.
Clint and C. A. R. Hoare," Acta Informatica 6, pp. 317-318.

[Barnard and Elliott 1977] D. Barnard and D. Elliott (eds.),
"Notes on Euclid," University of Toronto, Computer Systems
Research Group Technical Report.

[Dahl et al. 1968] O.-1. Dahl et al., The Simula 67 Common
Base Language, Norwegian Computer Center, Oslo.

[Dijkstra 1976] E. W. Dijkstra, A Discipline of Programming,
Prentice-Hall.

[Fischer and LeBlanc 1977] C. N. Fischer and R. J. LeBlanc,
"Efficient Implementation and Optimization of Run-Time
Checking in Pascal," in [LDRS 1977].

[Gannon and Horning 1975] J. D. Gannon and J. J. Horning,
"Language Design for Programming Reliability," IEEE
Transactions on Software Engineering SE-I, 2, pp. 179-191.

[Gannon 1977] 1. D. Gannon, "An Experimental Evaluation
of the Effect of Data Types on Programming Reliability," in
[LDRS 1977].

[Gerhar t and Yelowitz 1976] S. L. Gerhart and L. Yelowitz,
"Observations of Fallibility in Applications of Modern
Programming Methodologies," IEEE Transactions on
Software Engineering SE-2, 3, pp. 195-207.

[Goodenough 1975] J. B. Goodenough, "Exception Handling:
Issues and a Proposed Notation," Communications of the
ACM, 18, 12, pp. 683-696.

[Habermann 1973] A. N. Habermann, "Critical Comments on
the Programming Language Pascal," Acta Informatica 3, pp.
47-57.

[Hoare 1973] C. A. R. Hoare, "Hints on Programming
Language Design," ACM Symposium on the Principles of
Programming Languages, Boston, pp. 1-30. (Also published as
Stanford Computer Science Technical Report
STAN-CS-73-403.)

[Hoare and Wirth 1973] C. A. R. Hoare and N. Wirth, "An
Axiomatic Definit ion of the Programming Language
PASCAL," Acta Informatica 2, pp. 335-355.

[Hoare 1975] C. A. R. Hoare, "Data Reliability," 1975
International Conference on Reliable Software, Los Angeles,
pp. 528-533. (SIGPLAN Notices 10, 6)

[Horning 1976] J. J. Homing, "Some Desirable Properties of
Data Abstraction Facilities," SIGPLAN Notices II , 2.

[Lampson et al. 1977] B. W. Lampson et al., "Report on the
Programming Language Euclid," SIGPLAN Notices 12, 2.

[Lauer 1977] Further information may b~/ obtained from H.
C. Lauer, System Development Corporation, 2500 Colorado
Avenue, Santa Monica, California.

[LDRS 1977] "Proceedings of a Conference on Language
Design for Reliable Software," SIGPLAN Notices 12, 3.

[Liskov et al. 1977] B. Liskov, et al., "Abstraction
Mechanisms in CLU," in [LDRS 1977].

17

[London et al. 1977] R. L. London et al., "Proof Rules for
the Programming Language Euclid," in preparation.

[Luckham and Suzuki 1976] D. Luckham and N. Suzuki,
"Automatic Program Verification V: Verification-Oriented
Proof Rules for Arrays, Records and Pointers," Stanford AI
Lab Memo AIM-278, Stanford Computer Science Technical
Report STA N-CS-76-549.

[McLaren 1977] M. D. McLaren, "Exception Handling in
PL/I," in [LDRS 1977].

[Melliar-Smith and Randell 1977] P. M. Melliar-Smith and
B. Randell, "Software Reliability: The Role of Programmed
Exception Handling," in [LDRS 1977].

[Mohll 1975] W. L. van der Poel and I. Maarssen (eds.),
Machine Oriented Higher Level Languages,
North-Holland/American Elsevier.

[Parnas 1971] D. L. Parnas, "Information Distribution
Aspects of Design Methodology," Proceedings of IFIP
Cotlgress 71, North-Holland, pp. 339-344.

[Popek 1976] G. J. Popek, Arpanet message, 6 Jan. 1976.

[Shaw et al. 1977] M. Shaw et al., "Abstraction and
Verification in Alphard: Defining and Specifying Iteration
and Generators," in [LDRS 1977].

[Sigplan 1976] "Proceedings of Conference on Data:
Abstraction, Definition, and Structure," SIGPLAN Notices,
11,2.

[Wegbreit and Spitzen 1976] B. Wegbreit and J. Spitzen,
Proving Properties of Complex Data Structures, Journal of
the ACM, 23, 2 pp. 389-396.

[van Wijngaarden et al. 1976] A. van Wijngaarden (ed.) et al.,
Revised Report on the Algorithmic Language ALGOL 68,
Springer-Verlag, Berlin, New York.

[Wirth 1971] N. Wirth, "The Programming Language Pascal,"
Acta Informatica 1, pp. 35-63.

[Wirth 1977] N. Wirth, "Towards a Discipline of Real-Time
Programming," in [LDRS 1977].

[Wulf et al. 1977] W. A. Wulf, M. Shaw, and R. L. London,
"An Introduction to the Construction and Verification of
Alphard Programs," IEEE Transactions on Software
Engineering SE-2, 4, pp. 253-265.

[Wulf and Shaw 1973] W. A. Wulf and M. Shaw, "Global
Variables Considered Harmful," SIGPILAN Notices 8, 2, pp.
28-34.

"18

