AEkan

© by Springer-Verlag 1978

Acta Informatica 10, 1 — 26 (1978)

Proof Rules for the Programming Language Euclid

R.L.London!¥*, J.V. Guttag* **,].J, Horning * *** B.W. Lampson®*,

J.G. Mitchell*, and G.J. Popek * ***x

! USC Information Sciences Institute. 4676 Admiralty Way, Marina del Rey, CA 90291, USA

* Computer Science Dept.,, University of Southern California, Los Angeles, CA 90007, USA

* Computer Systems Research Group, University of Toronto, Toronto, M5S 1A4, Canada

* Xerox Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, USA

$ 3532 Boelter Hall, Computer Science Dept., University of California, Los Angeles, CA 90024, USA

Summary. In the spirit of the previous axiomatization of the programming
language Pascal. this paper describes Hoare-style proof rules for Euclid,
a programming language intended for the expression of system programs
which are to be verified. All constructs of Euclid are covered except for
storage allocation and machine dependencies.

“The symbolic form of the work has been forced upon
us by necessity: without its help we should have been
unable to perform the requisite reasoning.”

A.N. Whitehead and B.Russell,

Principia Mathematica,

p. vii

“Rules are rules™ Anonymous

Introduction

The programming language Euclid has been designed to facilitate the construction
of verifiable system programs. Its defining report [11] closely follows the defining
report [15] of the Pascal language (see also [10]). The present document, giving
Hoare-style proof rules applicable only to legal Euclid programs, owes a great
deal to (and is in part identical to) the axiomatic definition of Pascal [9]. Major
differences from [9] include the treatment of procedures and functions, declara-
tions, modules, collections, escape statements, binding, parameterized types, and
the examples and detailed explanations in Appendices 1-3. Other semantic defini-

* To whom offprint requests should be sent. Supported by the Defense Advanced Research Projects
Agency under contract DAHC-15-72-C-0308

*= Supported in part by the National Science Foundation under grant MCS-76-86089 and the
Joint Services Electronics Program monitored by the Air Force Office of Scientific Research under
contract F 44620-76-C-0061

*** Supported in part by a Research Leave Grant [rom the University of Toronto and a grant from
the National Research Council of Canada. Current address: Xerox Research Center

***% Supported in part by the Defense Advanced Research Projects Agency under contract DAHC-
73-C-0368. The views expressed are those of the authors

2 R. 1. London et al.

tion methods are certainly applicable to Euclid. We have used proof rules for
two reasons: familiarity and the existence of the Pascal definition. Readers
unfamiliar with proof rules may to read [6, 7].

One may regard the proof rules as a definition of Euclid in the same sense
as the Pascal axiomatization defines Pascal. By stating what can be proved about
Euclid programs, the rules define the meaning of most syntactically and scman-
tically legal Fuclid programs, but they do not give the information required (o
determine whether or not a program is legal. This information may be found
in the language report. Neither do the proof rules define the mceaning of illegal
Euclid programs containing, for example, division by zcro or an invalid array
index. Finally, explicit proof rules arc not provided for those portions of Fuclid
defined in the report by translation into other legal Euclid constructs. This
includes pervasive, implicit imports through thus, and some uscs of return
and exit. All such transformations must be applied before the proof rules are
applicable.

As is the case with Pascal, the Euclid axiomatization should be read in
conjunction with the language report, and is an almost total axiomatization
of a realistic and useful system programming language. While the primary goal
of the Euclid effort was to design a practical programming language (not to
provide a vehicle for demonstrating proof rules). proof rule considerations did
have significant influence on Euclid [13]. All constructs of the language are
covered except for storage allocation (zones and collections that are not referenced-
counted) and machine dependencies. In a few instances rules arc applicable only
1o a subsct of Euclid; the restrictions are noted with those rules.

Conventions and Notation

In describing these Euclid proof rules we have used as much as possible of the
Pascal axiomatization. We have also deliberately followed the same order and
style of presentation and tried to use the same terminology.

The notation P(y/x) to denote substitution is used for the formula which
is obtained by systematically substituting y for all free occurrences of x in the
predicate P. Il this introduces conflict between free variables of y and bound

ariables of P, the conflict is resolved by systematic change of the latter variables.

The notation P(y/x) may be read P with y for x.”

Pivi/x,. ...

denotes simultaneous substitution for all occurrences of any x; by the correspond-
ing v;. Thus occurrences of x; within any y; are not replaced. The expressions
X+ ..., X, must be distinct; otherwise the simultancous substitution is not defined.
The meaning of substitution for subscripted and qualified expressions is defined
in Scctions 4 and 5.

Euclid expressions in asscrtions must be legal Euclid expressions. Assertions
may contain, outside of expressions, non-Euclid notations such as quantificrs or

e D L T E PAY PR LA

A .“"/'\.Il)

Proof Rules for the Programming Language Euclid 3

'In the proof rules, S and §; denote a sequence of zero or more stalements.
As is done in the Pascal axiomatization, we refer to values of a type as clements
of that type. Also, the rule of conscquence

P>0.0(S}U,U>R

may be used in proofs.

Data Types

The axioms prescnted in this and the following sections display the relationship
between a type declaration and the axioms which specily the properties of valucs
ol the type and operations defined over them. The treatment is not wholly formal,
and the reader must be aware that:

I. Free variables in uxioms arc assumed to be universally quantified over
the appropriate type.

2. The expression of the “induction™ axiom is always left informal.

3. The types of variables used in the axioms have to be deduced either from
the section heading or from the more immediate context.

4. The name of a type is used as a lransfer function constructing a value
of the type (such a use of the type identifier is not available in Euclid).

5. The verificr can assume that everything will be type-checked by the compiler
or that the compiler will generate the necessary legality assertions.

6. In defining Euclid's types we will not be presenting proofl rules that may
be dircetly applied to Euclid programs. Rather, we will provide a set of asscrtions,
ficnotcd by H, about the values of the type being defined. These assertions are
1{1cox'p01‘atcd into proof rules in Section 9 on constant, variable, and type declara-
tions. Rule 9.1, for example, (clls us that in the case of an identifier declaration,
x:T, we may usc the fuact that xe T, i.c., x has the attributes associated with values
of type T.
~ Parameterized types are covered in Scetion 9.5. The rules for type compatibility
in Euclid arc defined in the language report.

Scalar Types

type T=(c,,c;,-...¢c,)

LI ¢y, ¢y, ..., ¢, are distinct clements of T.

1.2, These arc the only elements of T.

L3 ¢, =T.suce(e) fori=1,....n—1

14, ¢;=T. pred(c;) fori=1,....n—1

LS, —1(x<x)

L6, (x<pa(r<z)o(x<i)

L7 (x#c,)2(x<T. suce(x)) -
I8, x>v=r<xy

Ro.ondon et al

Y. vSv=(x>y)

0. xZy=ET(v<y)

. x#y="1(x=y)

2. T first =,

3 T lust=v,

3 Toordley=i—1 for i=1,....n

The standard scalar type Boolean is defined as

type Boolean=(False, Truc).

The Boolean operators not, and, or, and — (implication) are thosc of the con-
ventional logical caleulus except that some operands may possibly not be cvaluated.
Specifically, in terms of conditional cxpressions,

x and v means if x then y else false, i.c., x cand y.
v or v means if x then true else y, i.e, x cor y.
x — y means if ¥ then y else truc.

(Note, however, that conditional expressions arc not included in Euclid)

The standard type integer stands for the sct of the whole numbers. The
arithmetic operators 4+, —, %, and div are those of whole number arithmetic.
The modulus operator mod is defined by the equation

mmod i=m—(mdiv n)xn

whereas div denotes division with truncated fraction, ie., move toward zcro.
Implementations are permitted to refuse the exccution of programs which refer
to integers outside the appropriate range, signedInt or unsignedint,

Type Char

3.1, The clements of type char are the 26 (capital) letters, the 10 (decimal) digits,
and possibly other characters defined by particular implementations. In
programs, a constant of type char is denoted by preceding the character
with a §.

The sets of letters and digits are ordered, and the digits arc coherent, ic.,

22. $4<8$B Su<$h $ L =char. succ($0)
§B<SC S$h<ic $2=char.succ(3 1)
$Y<§7Z $r<¥:z $9=char. szgcc($ 8).

Axioms 1.5-1.13 apply to the char type. The functions char-ord and Chr

arc defined by the following additional axioms:
23 If u is an clement of char, then char. ord(u) is a non-negative integer (called

the ordinal number of u), and

Chr(char. ord(1))=u

Prool Rules for the Programming Language Euclid 5

24. u<r=char. ord(w)<char., ord(v).

I hcsc. axioms have been designed to make possible interchange of programs
between fmplcmcnlutmns using different character scts. It should bc noted that
'lhe [unction char. ord does not necessarily map the characters onto consecutive
integers.

Subrange Types

type T=m..n

Let m, n be clements of scalar type T,,.

3.1, T, first=m

32, Tolast=n

3.3. Forall i in Ty, such that m<ign, i is an element of T.

3.4. These are the only clements of T

35 T firstSi< T last o T suce(i)= T, . succ(i)

3.6. T. first<iET. lustoT. pred(i)y=Ty. pred(i).

Note that since all clements of T are elements of T, all operators of T, apply
to them.

Array Tipes

type T'=array / of T,
Here Iis a scalar or subrange type. Let m=1. first and n=1. lust.

4.1. 1l x; is an clement of T;, for all i such that m<i<n, then T(x,,, ..., x,) is an

clement of T.
4.2. These are the only elements of T.
4.3, T(x v, ()=x; for mZign

my e -

Letting x stand for T(x,,,....x,) wc introduce the following abbreviation:
(xvivy) stands for T(X,, ooy X2 0 Xy g ooy X))

The formula
P(y/x (i),

denoting a substitution for an array reference, is then defined to be
P((x. iz y)/x).

To extend this dcfinition to substitution for a multiply-subscripted array reference
we define ’

(x,{iys vy iy p), where n22

IR London et al.

to be equal to

RETRPD S 4 V7% OUR (Y Ny V)

(X, (iyyeee
and the formula
P(yix(iy) ... (i), where n22
is equivalent to
PUX, iy een Byt ¥)X).
4.4, x. IndexType=1. x . ComponentType=T,.

Record Types

type T=record 5,: Ty,5,: T, end T
where cach s; must be preceded by const or var.

Let x; be an element of T; T for i=1, m.

5.0, T(x,.X;,.... X,) is an element of T.
3.2, These are the only elements of T.
5.3, T(xy, ... X,).s5=x; for i=1,...,m.

(x, 8,0) stands for T(Xpy ooy Xi_ps ¥ Xig gy -oo0 X

The formula P(y/x.s;) is defined analogously to arrays (see definitions fol-
lowing 4.3).

Variant Records

type T,(c)=record s5,: T},5,: T}

case ¢ of
k, =s:T; end k,
kz;os'Z:Tz' end k,

n

end case
end T

k,=s,: T, end k,

where the type of ¢ is a scalar or subrange type with clements ky, ..., k,. Note

that k,. kp. ... k,,= S stands for k,=S: ky=S;....k,=S.
Consider lype T=T,(k;, and lel x; be an elemenl of T for j=1,.
k;, x) is an element of T

TNy, e Xy K X
5 7& These are the only elements of T.
5300 T(xy . N, b X)) si=x for i=1,...,mn

Proof Rules for the Programming Language Euclid 7

Sda. T(xy, .0 x,, kX)) 8i=x] for j=1,.
5.5a. Letting z stand for T(x,,....x,,.k;,

itsTug is defined by z . itsTug =k;.

x) the standard Euclid component

A variant record may also contain an otherwise clause
otherwise=y, : T/ ,

in which case the type of ¢ may contain elements in addition to k,,...,k,. If
there is such a clause, we have the following additional axioms for the otherwise
(n-+ 1) situation:

Let k; be an clcmmt of the type of ¢ such that k;#k; for 1 £i<n, and let x|,

be an (.It.muu of T, |.
5.0b. T(x,,...,x,, k;, x;,,,j s also an element of T.
54b. T(x,, ...,x,,,,k,,x,,+1) Sha1 =X,

5.5b. Identical to 5.5a.

n+1

The case with a field list containing several fields

ki=s;0: T, s T end k;

is to be interpreted as

k; = s5;: T, end k;

J

where s; is a [resh identifier, and T} is a type defined as

type T/ =record 5;,: T}, ..., 5; T,,, end record.

jl

In this case x.
Now <.0mxdcr lype T'=

. is interpreted as x.
ﬂv(any)-

Sjt+

Sle Tlxy, ..., x,,y X)isan clement of Tfor (p, x)=(ky, X)), ..., (K, X3), (kgs X34 1)
where k,+k; for i=1,....n
5.2¢. These are the only elements of T.

53c T(xy, ..o, x,, 0, X).5;=x; for i=1,...,m.
There is no S.4c¢ since aceess to the variant part of the record may only be done
using the discriminating case stalcment (see Section 12.5).

Machine-dependent records do not change verification properties, The ad-
ditional information supplied can be ignored (unless the machine interprets certain
locations specially).

Set Types

type T=set of T,
Let x, be an element of T;.

6.1. T()is an element of T.
6.2. If x is an element of T, then x+ T'(x,) is an element of T (the operator + is
defined below).

R, London et al,
N

These are the only elements of T. N
((:1 El(]:IL\ s Xy) l)ncans TITC)+ T(x)]+ T(x)]+ + T,
6.5 T. BaseTvpe=T,.
o) denotes the singleton set cqnmlaining .\'(,:
The operators +, x, —, Xor, and in, upplicgi to clcn'lenls \‘vhosc lypé is SCl'lsl'L-ngil[f:
the conventional operations of set union, intersection, difference, sy1‘11n.1c ‘lll(.']
ference, and membership. The operators <= and‘ > = denote set inclusion.
The specific axioms defining these operators arc omlllcq. ‘ e puil
Note that Euclid allows implementations to restrict set types to be

only on base types Ty with a specified maximum number of clements.

T() denotes the empty set, and T(x

Module Types

¢ most complex part of Euclid, this section contains
as well as the technical details of the module r}xlc.
The explanatory material can be read now. However, we r'ccon:mem_: ~u'mldb::1;
tion 10 on procedures and functions be read before reading 11? rule ‘md.- .
technical details. An example of the usc of the module rule appers as /;\ppen [;\l
Additional comments on the module construct appear in the Epllogui:. ' 13
material on modules appears herc because modules, like subrange types an

array types, are (ype constructors.

Because modules are by far th
a large amount of explanation

type T(const C)=pre P1; post QI: module t invariant Q0

imports (var Y const D readonly R)
exports (const (K1, p,) var V1 readonly RI)
t K, var V
;?;;edure p(var X2 nonvar C2)=imports (var Y2 nonvar D2)
pre P2; post 02; begin S, end.
function f(nonvar C3) returns G =imports (nonvar D3)
pre P3; post 03] begin S, end ‘ 4
initially imports (var Y4 nonvar D4) post Q4; begin §, en
abstraction function A returns ¢, =imports (nonvar D5)

begin S end

invariant Q ‘
finally imports (var Y6 nonvar D6) pre P6; begin S end

end T

a module definition are cxpl

The parts of d in
' We assume that equality 1s no

types in the Euchd report. e
.notes the list of const and readonly 1dc ‘
e d2,¢3,d3, y4, d4, ds, yo6, and d6 denotes the list of

Loeox2 e, \ onetes
asc declaration (p and f den

the corresponding upper ¢ |
As the Euclid report requires, the hsts.
not r), respectively. The declarations

‘S‘ I)’ . . e
o list d5 is a sublist of ¢, d, k, and v—ul. The

from y or r. The

ained in the section on module
t exported. Nonvar
ntifiers. Each of ¢, y.d, r, ki, vl, rl,
identificrs in
ote declared routines).
k1. vl, and rl are sublists of k, v, and v

K and V may not include identifiers
arguments of Pl

Prool Rules for the Programning Fanguage Fuclid 9

and Q/ may include as free variables only identifiers from ¢, y, d, and r. Similarly,
the arguments of P2, 02, P3, 03, 04, and P6 may only include t and their respective
formal parameter and import lists; Q3 may also include g. Q, the “concrete
invariant,” may only include ¢, d, k. and v—vl, that is to say, the same identifiers
as d5. Q0. the “abstract invariant,” may include ¢, d, and .

The exported identifiers of kI, vl, and rl arc treated as if they were fields
of a record type named T. The abstraction function A maps the identifiers in d5
into a value of type T(c); its body may contain constructs outside Euclid. The
function A4 is for verification purposes and is not callable from a Euclid program.

The module is a mechanism for providing encapsulation and the support of
data abstractions. There are two points from which it may be viewed: The users
of the module sce only the abstract pre- and postconditions associated with
module routines and the pre- and postcondition of the module itself. The im-
plementor of the module also sces the bodies of the routines and the (concrete)
identifiers declared within the module. The connection between the concrete and
abstract identifiers is the abstraction function, A, which transforms a set of
concrele identifiers to an abstract identifier. See [8] for a more complete dis-
cussion of the role of A.

The module rule given below contains a conclusion and eight premises. We
shall explain the structure of the rule, describe the purpose and workings of each
premise, and finally give the rule itself.

The conclusion of the rule involves the instantiation of a module identifier
and the use of that identiflier in a scope. Premises -6 are properties required
of the module definition: these verifications need be done only once per module
definition. Premise 7 discharges the instantiation precondition; this must be
proved cach timec a module is instantiated. Premisc 8, itself in five parts, uses
the verified definitions (formulas 8.1-8.4 which depend on premises 1-6) to verify
the uscs, in premisc 8.5, of the module identificr in the scope. Thus the module
rule has the structurc

2,3.4,5.06,

l? b4
7,
[8.1,8.2.8.3,84]+-8.5

P{var x: T(a); S} RA QI

We now describe each premise in more detail. In premises 1-6 the substitution
ol a call of the abstraction function, A, for the name of the module, t, converts
a predicalec on the abstract identifier t to one involving concrete identifiers.
Premise 1: concrete invariant implics abstract invariant. Premise 2: module
precondition across declaration of module’s local variables and body of initially
cstablishes the postcondition of initially and the concrete invariant. Premise 3:
verification of each cxported procedure body, ie., precondition and concrete
invariant across body cstablishes postcondition and preserves concrele invariant.
Premises 4-5: these two premises are for cach exported function body. Premise 4
is analogous to premise 3 except (a) the concrete invariant is automatically pre-
scrved since functions have no side effects, and (b) the single-valued requirement
described following Rule 10.2 is included. Premise 5 also concerns functions

1o R London et al,

and is the consistency clause described after Rule 10.2. Premise 6: finally cstab-
lishes the posteondition of the module.

Premise 7: instantiation environment implies module precondition with actuals
substituted for formals,

Premisc 8: shows how the instantiated module variable x is used in the
scope S. It must be shown in premise 8.5 that the instantiation environment
across initially, S, and finally cstablishes R. In showing premise 8.5 one ma
use the four formulas 8.1-8.4, which give the properties of the procedures, func-
tions, initially, and finally, respectively. Formulas 8.1 and 8.2 correspond (o
the conclusions of the procedure and function call rules; the only difference is
that the abstract invariant may be used in proving the preconditions and is
assumed following the calls. (This is the source of much of the utility of the
module construct. It allows us to prove theorems using data type (gencrator)
induction.) Formula 8.3 treats x. Initially as a paramecterless procedure call that
establishes the abstract invariant. Formula 8.4 treats x. Finally as a parameter-
less procedure call for which the abstract invariant may be used in establishing
its precondition. (I x is declared to be an array of modules or a record containing
modules, then x. Initially and x. Finally must cach be replaced in 8.3, 8.4, and
8.5 by a scquence of calls to initialization and finalization routines, respectively.
These sequences are defined in the report.)

Here, then, is the full module rule,

7.1. (modulc rule)

(1) Q200(4/1),

(2) PliconstK.varV;S,} Q4(A/)AQ,

(3) P2AMAQLS:) Q2(A/NAQ,

@ IgPHAI A QLS,) Q3 (Af) Ag=gl(A.c.d)),

(5) 3P/ AQ203(A/N),

(6) P6(A/1)A Q{Se} Q1

(7Y PoPlu/c),

(8.1) [QO(afc, xft, X'[1Y(P2(x/t, X'[t', a2[x2, ¢2/c2, afc) A
(Q2(x28/t, X't a2/x2, e2/c2. afe, y28/y2, a2/x2', y2[v2)>
RIN28/ 5 a2/a2, v28/y2)) {x. p(a2, e2)} RE A QO(ufc, X/t X1),

(8.2) (QU(afc, xft)> P3(x/t.u3/c3, ufc)) >
Q3(x/t, u3fe3, afe, f(al, d3)/g) A QO(a/c, x/1),

(8.3) Pl(afc) A(Q4(x48/1, X'/t afc, y4/y4, y4/y4') D R4(x44/x, ydit/v4))
{x. Initially} R4 A QO(a/fc, x/t, X'[t),

(8.4) (QO(uje, x/t, x'[t') > Pé(x/t, x'/t', afc)) A(QI(afc, y63}/y6, v6/y6') >
R(y68/v6)) {x. Finally} R]

|._
(8.5) P(xf/x) {x. Initially; S; x. Finally} R(x$#/x)

Plvarx:T(a): S} RAQI

where the “4” denotes fresh identifiers and the scope of x is exactly S. As noted
above, calls in S to module routines use formulas 8.1-8.4. Although not written,
calls in S,, S,, S;, and S, to module routines are similarly handled, but using
the A/t substitution (“x.” is missing) and without assuming Q0(a/c. x/t) or

i::ng thg §tandard function C. Index. The only dcfined property of C. Index
S that 1t is one-to-one. For every collection there are two standard procedures

Prool Rules for the Programming Language Fuclid
1
Q()(u/(,: X/t X /‘1). Since a module may not import its own name, premise 2 is
;.u,vcr" recursively applied™ in T0 In the interest of simplicity, the formulas for
recursion, return, and H arc omitted in premises 3-5. Non-exported routines
follow the rules for routines in Section 10.
d]xf1. the simple casc wherc the module Timports no var variables, i.e.. initially
an inally can have no side effects outside T, premise 6 and QI arec missing
(finally can have no visible effect) and premisc 8 can be just

[8.1,8.210= P(xH/x) A Q4(x/1) A QO(x/1) (S} R (xHt/x)

where 8.1 and 8.2 contain no #f’s on identificrs from ».

’ThlS formulation of the module rule follows [8]. Other approaches [14, 5
which use different specification methods, might have been substitL;tcd jmc%
of course, may be used to verify programs containing modules. With these a;ler:

native approaches there would be chan i ion i
anges only to the verifica i
e approa y cation information

Pointer and Collection Types

type T, =collection of 7"
var C: T,
type T=1C

8.1. C.nilis an clement of T
8.2. There are an unbounded number of elements of T: my, my, ... (sce 8.7)

8..;.]f /“l’ ceey /)," are LILIT‘enl Iy eren ity . #: . N
S ()l] d“d b4 T, arc dlSllllCt lllellleIS C ”“
OI ‘, lhb“

T(n: By, ...om,: B,)) is an clement of T5-

3 '.ﬂ' (IIL(IIL\ l « i p ;
{ i i 0o
]J()l(— lh 1t T m St 1at T dLIlOlLb thb component mn IhC C()“(,(.«“O .
8 ﬁl n

8.5, If C=T,({n:f,, ..., m,: ,}) then C(n)=p;.
8.6. For any element n4 C. nil of lype T, n1=C(n).

We introduce the following abbreviation:

MC=Ty({n:p,, ..., n,: f3,3) then (C, r;: y) stands for
7:)({7(1 :ﬁl’ Ty nn:ﬂn}_{ni:ﬁi}-'_ {7'[,- :y})'

No operations are defined on the elements of T except test of equality, 1

b3

C. New(r) and C. Free(r), involving the elements of T. Assume the declaration

var(: T and that C= To({my: By oo my B3).
8.7. C. New(r) means (:=n

where 7 is an element of Lnfn fori=1,.. n,

1.1 1 ondon et al
and Co= Ty ooy Tyt B3+ (e ff}) where B is undefined (and may not
be referenced).

8.8, C. Free(r) means
Co=TyUmy iy s il = {12 CQO}) (recall C(r) means ()
1:== C.onil.

Declarations
The purpose ol a declaration is to introduce a named object (constant, type,

variable, function, or procedure) and to prescribe its propertics. These propertics
may then be assumed in any prool relating to the scope of the declaration.

Constant, Variable, and Type Declarations
If D is a sequence of variable and type declarations, then
D:S

is called a scope. and the following are its rules of inference (some expressed
in the usual notation for subsidiary deductions):

9.1. xtt . its7:\'pc= T.xtte TH P{S(x$#/x)} Q
P{varx:T; S} Q

where itsType is the standard Euclid component. The substitution of the fresh
identifier x4 for x expresses the fact that x is a “local™ variable. 7T is any typc
except a module (see Section 7) or a structured type (record or array) involving
modules whosc initially or finally clauscs modify imported var identifiers. The
scparate rules required to cover these structured types are omitted.

9.2. P(¢/x){const x:=¢} P.

This axiom also applies to structured constants according to the order of
the components.

9.3u. x=) A P(xt/x) {S} Q(x#/x, x/y)

P{bind va:BindingComlition xtoy: S} Q
iig A x=y(0) A POt/ (S) QUetx, (v d: X))
;’—{bind varBindingCondition x to y(i); S} @

9.3b.

where, in all cases, ig and x4 arc fresh variables: and where varBindingCondition

is readonly, var or empty.

94. I+ P{S} Q
Pitype T=--:S} Q

Proof Rules tor the Progrommung Languape Euchid 13
where 11 is the sct of assertions derived from the type declaration of T in the
manner described in Sections 1-6 and 8.

Parameterized Types

type T(c)=pre PI; Dcfn
9.5. [i: Pl{ufc), P{const c:=u;type T'=De¢fn;varx: T'; S} Q

Plvar x: T(u); S} Q
type T7(....x, ...}="--
type T,=collection of T'(..., unknown, ...)
var C: T,

type T=1C

var(:T

If Tis rcferenced as the object type of a collection, then one or more of the
aclual'purameters may be specificd as unknown. In such cases thc component
of I1 (in Rule 9.4) associated with ¢ is the disjunction

Uuin.\-+(anyl[’eTconeCﬁQn Of T!(..., da, ,,,)]_

9.6. C. New(t, y) means all of Section 8.7 except that the type of fis T'(..., y, ...).

Procedure Declarations and Calls

procedure p(var X, nonvar C)=imports (var Y, nonvar D)
pre P; post Q; begin S end

Non.var denotes the list of const and readonly identilicrs. Let x, ¢, y, and d
be tl'lc identifiers declared in X, C, Y, and D, respectively. P and ’Q’axje each
predicates involving as free variables only x, ¢, y, and d. Q may also involve x'
and y', fresh variables which denote the initial values of x and y on entry to the
procedure body.

10.1. (procedure-call rule)

[P(al/x, el[c) A(Q(ultt/x. el[c, yly, al /X, y/y)>
_ Ri(alftfal, yt/y) {p(al, el)} RI, Q {return asserting Q} false,]

X=x'Ay=y A P{S}Q
P((I/X. ('/(.') AQ ((’#/x’ L’/(', yﬁ/}v' a/,,\", y/y') >R (a#/a‘ yj}‘/y)) {p(ﬂ, C’)} R

This .rule, which is similar to the adaptation rules in [7, 3], assumes the above
declaration .of procedure p. If the procedurc p is nonrecursive, the premisc of
10.1 can be just

[Q {return asserting Q} false, H]-x=x"Any=y A P{S} Q.

14 o bondon et ol

{n 10.1 « and ¢ are the list of actual parameters which correspond respectively
1o the formal parameters specificd as variable and nonvariable parameters, Note
that the clements of « and y will, in any legal Euclid program, all be distinct
in the sense that none can overlap any other. H is the conjunction of the assertions
for cach xe X and ce C, that they are clements of their declared type. (The mem-
bers of Y and D need not be included in this H, but arc covered by 9.1 and 9.4.)
The " 4" indicates that fresh variables arc to be used. Recall that the prime symbol (')
denotes initial value of the corresponding formal paramcter at procedure body
entry. By convention, P and R do not contain primes. An example of the applica-
tGon of Rule 10.1 is contained in Appendix 1. A full discussion of this rule appears
in [4] which compares this rule to several other rules, including those contained
in[7.9]. A

It should be noted that if two or more of the actuals, a, are components of
the same array, a slight complication arises in substituting for the actuals.
R{a% v, y/y) may evaluate to a formula of the form

Ral#/BG,) ...) a28/BG) - ()

Since the non-overlapping rule guarantees that there exists a k where [ISkEmsn

such that i #j,. the substitution is well-defined. Applying the rule for array
clement substitution will reduce this to

I.m :Ulﬂ)/B‘ (B’ (jl’ "'an>: (IZﬁ)/B)-

At this point simultancous substitution is no longer well-defined. We thercfore
define extended simultancous substitution with the rule

RUB. Ciye ooy adBYBB, (i - jur a24)/B)
= RUB. iy oo iy @l iy ooen s a28)/B).

Note that in verifying Euclid programs this situation can only arisc in con-
nection with substitutions generated by application of the procedure-call rule.
In this cnvironment, we know, because of the non-overlapping restriction, that
replacing the simultancous substitution with sequential substitutions produces
identical results regardless of the order in which they are performed.

Note that we do not have an independent rule covering the return statement.
Rather, we have embedded it in the above rule for procedure calls, which allows

us to use the axiom

R((B. iy ...,

Q |return asserting Q} falsc

in proving P{$}Q lor p. Informally the rule states that any return causes us to
exit the statically enclosing procedure. Although the syntax of Euclid is just
“return,” we have added the “asserting Q™ clause in order to state succinctly
the axiom for return, We assume a preprocessor, if necessary, that delermincs
the statically enclosing procedure associated with each return and adds to cach
return the corresponding Q. This addition is nccessary Lo ensure against making
an unsound inference about a return from an internally nested procedure with a

different postcondition. The statement return when B may be replaced (as

Prool Rules [ov the Programming Language Luclid 15
specified in the Luclid report) by the statement
if Bthen return end if.

Bewa{e, the a.xiom involving return may not be used immediately if the procedure p
conlains an instantiation of a module whose finally clause falsifies Q. In such
cascs, the expansion described in the Euclid report for moving the final'ly clause
must be first applicd.
. Ru.lc 10.1 may be used in proving asscrtions about calls of the procedure p
including thosc occurring within § itself or in other declarations in the ﬁam!c;
scope. The rule is applicable to all recursive calls because of the clause i1.1 the
premisc to the left of the turnstile, . In this “recursion” clausc nole‘ that the
symbols are deliberately different from those in the rule’s conclusion: RI re-
places R, and al and e/ replace « and ¢ to allow different formulas and actual
parameters to be used for recursive calls. The entire premise of Rule 10.1 need
be proved only once for each procedure declaration, not once for cach cz;ll

For a procedure declaration itsell we have ‘

10.1a. R{procedure p...begin Send} R.

Function Declarations and Calls

function f(nonvar C) returns G =imports (nonvar D)
pre P; post (; begin S end

The saime notation is used as in procedures. Nonvar denotes the list of const
and readonly identificrs; P is a predicate involving ¢ and d: Q involves c, d
. . . T . . ‘ ! ’
and g. A rule similar to 10.1a applics to function declarations:

10.2a. R {function f ... begin S end} R.

_ Function calls, unlike procedure calls, appear in expressions which are part
of statements, There is no function-call statement corresponding to a procedure-
csnll slatement. The proof rule for functions depends crucially on the fact that
|.'.llClI.d functions have no side effects, a consequence of the absence of var in‘a
funclmx_] declaration. Therefore, the order of evaluation of functions within an
expression does not matter.

. Supposc in an expression, possibly within S itself or in other declarations
%x}htehreuslamc scope, there is a call f(a) of the function f with actual parameters a.
e

10.2. (function-call rule)
[P(al/c)o Q(alfe, f(al, d)/g). Q {return asserting Q} false, H]

[P{S}Q,3gl(P{S} g=gl(c.)],
H:E] g(P>0Q)

Plafe) > Qafc. f(a. dY/g)

R ondony cbai

may be used in verifying the properties of the expression involving f(a). Since
the term [l d). rather than f(a), oceurs in the conclusion of the rule, applying
(his rule to an assertion R will first require the verificr to apply the substitution
fta.d) () to R This rule is due to David Musser: a full discussion is in [12].

The second premise, called the consistency clause, cnsures that the lemma
in the conclusion of the rule will not be inconsistent. In the first premise, the
PiSEQ part gives the relation which the function's declared body, S, and it
single precondition, P, and single postcondition, Q, must satisly. The part in-
volving 3¢l is a requirement that the function be single-valued; it is discussed
below. These. like the sccond premise, need be proved only once per function
declaration. The other three parts of the premise (before the) are the recursion
clause, the definition of the return statement, and the type information for cich
ce C and g, respectively. The return statement is the same as in procedures,
including the “asserting Q™ clause. The statements

return ¢expr when B
return expr

arc equivalent to

if Bthen g:=cxpr; return end if
gr=cxpr;return,

respectively.

In3gl(P{S}g=gl(c.d). gl isa mathematical function of ¢ and d. The premise
is thus cquivalent to requiring that S defines a mathematical function, i.c., that
it be single-valued. Note that the implicit universal quantifiers associated with
formulas in the Hoare logic go inside the existential quantifier in this formula.
If the function contains no module variables in its parameter or import lists,
the 3¢/ part is automatically truc because Euclid is a deterministic language.

The standard equality of Euclid modules (if equality is exported) is, informaily,
component-by-component (bitwise) cquality of the modules’ concrete representa-
tions. With respect to this equality, Euclid functions of modules are also single-
valued and thus the 3g! part is again true. However, other equality relations
may be needed in the verification of programs which use Cuclid modules. In
particular, the abstraction function of a module, A, may be used to induce an
cquality relation on the concrete objects, a relation that is dilfcrent from the

standard cquality. For example, suppose a stack module uses for its concrete

representation an array and a top-of-stack pointer. The stack opcerations push,
a sccond push, and then a pop ought to yield the same stack as docs just the
first push. Using an abstraction function that ignores the “unused” part of the
array (where the second pushed clement remains), the single push will give a
stack equal to that of push-push-pop; using the standard cquality, this will not
be true. Thus always using the standard equality will not suffice to verify certain
programs. As another example, consider sets represented by arrays. Equal sets,
by a useful abstraction function, contain identical elements although not nccessari-

ly in the same order within the array. The abstract operation of choosing an

arbitrary clement from the sct can be implemented by returning the first element

Proo Rules fos the Prograomoung Cangoage Buclid
17

frqm the array. Accorc.iing to set equality defined by the abstraction function
ll.m opcr :lg()n is not single-valued. In such a situation, the standard algcbraié
f"?p_hﬁ“f‘.“on rules may lail since f(s)= f(s) is not necessarily true. Accordingly,
helore u.smlg the function-call rule on Euclid functions of modules, it is nccessary
to prove that the function is single-valued wi uali i
(-Vi ith respect to the equali ati
induced by A. P qually relation
A pspydo-funclion type-converter is trcated as a function with appropriate
prccfmdmon.zmd postcondition as defined in the Euclid report. Examples in-
volving function calls are in Appendix 2.

Statements

Slulcmenls are classiflicd into simple statements and structured statements. The
meaning of all simple statements (except procedure calls) is defined by '1x;'oms
and the mcaning of structured statements (and procedure calls) is dciimcd il‘;
terms of rules of inference permitting the propertics of the structured statement
to be deduced from properties of its constituents. However, the rules ofi;fel‘ence
are formulated so as to facilitate the reverse process of deriving necessary prop-
erties of the constituents from postulated properties of the compositcg Astazlexrl)mﬁ
jl‘h‘e reason for this oricntation is that in deducing proofs of properties of pro vrams'
it is most convenient to proceed in a “top-down" direction. :

Simple Statements

Assignment Statements
L1 P(y/x) {x:i=y} P
The substitution dcfinitions given in Sections 4, 5, and 8 apply here.

Procedure Statements

I ll(l)cedure statements are explained in Section 10 on procedure declarations and
calls.

Escape Statements

Return statements are explai in Sccti i
. . B plained in Scction 10. Exit statements inc
in Section 12.6. are explained

Empty Statements

2. P{} P

Assertion Statements

I1.3. PaQlassert P} PAQ

1N R.L. 1 ondon et al

11.4. If the checked option is specified, we may usc
Qlassert Bl QA B

where B is a Boolean expression.

S“'ll('(lll‘('(! Statements

Compound Statements

S 1’ for i=1,.

)
121 B,

1:,{3,.8,. LiSAP

If Statements

12.2. l’/\B,b,, Q PAB{S,} Q
P'lf B then S, else S, end if} Q

123. Pa B{S‘ Q. PAB2Q

Pt Bthen Sendif} Q

Case Statements

1240, PA(x=k) S} Q, for i=1,.

Picase xof k,=S,:...;k,= S, end case}

1240, P A =h)SHQ for i=1.on Paxnotin (k.. k) (8,1 ¢

Plcase x of k,=5,;....k, =>S,,, otherwise=§, ,, end case} Q

Note that k,. k. ..., k, =S stands for k,=5: k,=S:...;k,=S. The type of

m

\ is constrained as in the section on variant records.

12.5. l{varun\\ T(A) S; begin var x: T(k) —-un\\,S end}Q for i=1,
k,=S, end casel Q

Plvaranyx: F(any),.S case X:=dnyx of k,= .S,...

arameters in T besides the single any (sce the

re may be other formal p
. o The case

expansion in the procedure declarations section of the Euclid report).
var anyx: T(any); S; anyx:=y

is already covered by the assignment axiom (Rule 11.1).

Loop Statements

12.6. Q |exit asserting @} false - P{S} P

I’W{T;c;p S end loop} O

Prool Rules for the Programovng Language uclid 19

Note that exit plays the same role with respect to loops that return plays
with respect to procedures and functions (among other things, it is associated
with the nearest enclosing loop and a corresponding exit assertion; and the
axiom involving exit may not be used directly with certain module instantiations).
Likc return when B, the statement exit when B may be replaced by the statement

if B then exit end if.

For Statcments

For statements may always be expanded as explained in the Euclid report. How-
ever, for simplified cases the following rules are available, where the loop body S
may not contain an escape statement:

Let T be a subrange type.

127. (T. first £x T lust) A P [T Sirst . x) {S} P([T. /ust]

P([1) {for xin Tloop S end loop} P ([T. first. 7 lusI]
128. (T. first SXET. lustya P((x. . T, last]) {S} P([x. . T. last])
P([1) {for x decreasing in T'loop S end loop} P([T. first . . T. last])

[u..c] denotes the closed interval u, ..., v, i.e., the set {ilu<iZv}, and [u. .v)
denotes the half-open interval u, ..., v, ie., the set {ijuZi<v). Similarly, (u. .v]
denotes the set {iju<i=v}. Note that [u. . u)=(u. .u] is the empty set. Since x,
T. first, and T. last arc constants, S cannot change x, T first, or T. last.

Let T be a sct type.

129. T, ST Axin T=T; A P(T) (S} P(T; +(x)

P{()) {for xin T'loop S end Ioop} P(T)

Recall that () arc used for st brackets. Since x and T are constants, S cannot
change x or 10

Epilogue

We would like to note a few points about our experiences in constructing thesc
proofl rules.

We began to axiomatize Euclid in carly 1976, and esscntially ended over a ycar
later. At the start we expected an interesting but not terribly challenging project.
We were half-right — it was for us interesting and challenging. We learned a great
deal about both proof rules and Euclid —two topics we were not nearly so well
versed in as we thought.

Our increased understanding of Euclid paid a clear and immediate dividend.
A number of improvements to the language were made as a dircct result of facts
discovered during the axiomatization. (This in turn meant the need for new proofl
rules.) The long-tcrm payofl of our increased understanding of proof rules is
less certain. We would likc to believe that were we to begin a similar project

- B ondonn ol

today. we would find it considerably less painful. 1t is. however, far from clear
lo us that it would be the routine task it must eventually become il rigorous
definitions of new programming languages arc to be the norm. We would surely
try to write the proof rules in parallel with the design rather than afterward,
as we did in some instances with Euclid. We spent an inordinate amount of
time and effort on problems related to modules. Had we felt frec to make sub-
stantial changes to this part of Euclid, much of this time and eflort could have,
been avoided, and the proof rules themselves simplified substantially. g

A somewhat disturbing aspect of these proof rules is our lack of complete
confidence in them. There are some rules with which we are still unhappy, although
we know of no errors in them. Nevertheless, it would be naive for us to belicve
that there are no remaining errors; many bugs were found in carlier versions,
and we have too much programming experience to interpret this as a good sign.
Our approuach to “verilying™ these proof rules has been to study each rule in
(as much as possible) isolation. We have informally presented (to oursclves and
others) the reasons we believe each rule to be appropriate, and have tested each
rule on as many distinct cases as we had the energy to look at. The inadequacics
of this approach have been cogently argued in the litcrature on programming.
What is necded is a more formal approach to validating proof rules. The work
by Donahue [2] on “verifying” soundness via a complementary definition and
by Clarke [1] on completeness scems a step in this direction. We would very
much encourage and be happy to talk with anyone who wishes to examine
rigorously the soundness and completeness of these proof rules.

Achnowledgments. We are greatly indebted to C.A.R. Hoare and Niklaus Wirth for their axiomalization
of Pascal. We are grateful to them, and to Springer-Verlag, for permission (o use scctions of the
Pascal axiomatization [9] in this paper. Suggestions, comments, and criticisms by numerous colleagues
and the referees have greatly aided us; David Musser has been especially helplul. As always, respon-
situlity for errors and problems remaing with us. We appreciate the clforts of Betty Randall and
Iisa Moses in typing and formatting the various versions of this work.

Appendix 1

Procedures

Consider the trivial procedure, with only one var parameter, onc const parameter,
and no imported variables

procedure p(var a: signedint, b: signedInt)=pre true: post « <2 b;
begin var ¢: signedInt; c:=2xb;if a>c¢ then u:=c end if end.

Letting S stand for the body of this procedure, it is casy to prove

truc {S} uS2+b.

The invocation of this procedure will (in gencral) change the value of « in some
manner dependent on the initial values of « and b (and, if present and referenced
from within S, on values of imported variables).

rooi Rules for the Prograonmimg Fangoage Luchd 21

. Now the cffect of any call of p(z, w) is to change z such that z£2*w, and
using the procedure-call rule (10.1) we may validly conclude for any R that

true Az <2« wo R(z{#t/2)) {p(z. w)} R.

In particular, R might be just z<2xw or R might involve variables other than
z and w il the call p(z, w) followed statements involving those other variables.
The propgrlics of a call of p are contained solely in the postcondition a £2xb.
The given postcondition is not the only property that can be proved_aboul p.
Fon example, if the postcondition «=min(a’, 2% b), where the prime denotes the
initial value of «, had been supplied with p, we could validly conclude that

true A(zff = min(z, 2 x w) > R (z/2)) {p(z, W)} R.

' Itis impo.ry'ant to scc how the rule accommodates a structured actual variable
in a var position. For a call p(d(i), i) where d is an array and R is d(i))£2*i we
may validly conclude, using the original postcondition, that

truc A (df () S2 % iodf () 2+ 1) {p(d (i), i)} d() 2 *i.
Il the formal paramcter b were also a var parameter, we may validly conclude
true A{df() S2« ifodB (I S2+i) {pd©(), D} d() 2 %i

|which uscs {'# i‘n p.lace of i in three places. In the var b case, by the rules of simul-
ancous substitution (see discussion following Rule 10.1), Q(d#())/a. i i
d()S2=ift while R(d#()/d (i), ift/i) is d#(ij:ggZ*i:ﬁ. ln) tth(g(o:{gt ll)ﬁ/}(zlsles
Q(d#t()/a, ifb) and R(d§(i)/d(i)) are both df(i) <2 xi. ,

Note that while making the sccond formal var has no cffect on the behavior
of the program, it does reduce the number of things we can prove. Though the
procedure does not change the second parameter, this cannot be deduced from
the postcondition associated with p.

Appendix 2
Functions

Suppose we have the [unction declarations

function f(c: signedint) returns m: signedint =
pre P;(c): post Qrlc.m); begin S, end

function g(c: signedInt) returns m: signedInt =
pre P (c): post Q,(c, m); begin S, end

and suppose that we have proved of the two bodies

I}{‘f} Qf and };{S:} Qz

AN R.1. London et al

and proved of the pre- and postconditions
Imi;oQ)) and Im(E>Q)).
The axiom for the assipnment statement

xe=f(g(x)+1

»»

leads to
R[S (g(x)+ 1]/x) {x:= f(g () + I} R.

The two function calls g(x) and f(g(x)) appear in the cx.p.rcssion Jlgdx) + 1: The
function-call rule applicd to g requires that the precondition B (x) be CSlflbllShcd
which in turn yiclds the postcondition @, (x, g(x)). The l‘utlcr.may be used xs‘:npply-
ing the function-call rule to f to establish £ (g(x)) which yields Qf(g(.\?),j(g(.\")?).
The two postconditions Q,(g(x), f(g(x)) and Q,(x, g(x)) may be uscd to establish
the substituted R term. Having donc all the above, we may conclude that R

holds after the assignment.
As another simpler example, to show

P{if f(x)>0 then S, else S, end if} O,
it sullices to show the three premises

P> B(x),

PAf(x)>0(S,} Q.

PAf(x)>045,} Q.

The first premise shows that it is legal to call [(x) and, by lhc. f'unclion-czlll rul’c
applied to f. to use the postcondition Q(x, f(x)) as an additional hypothesis
in establishing the sccond and third premiscs of the if rule. As a concrete example

of this schema, supposc we have the function declaration

function power(x, y: signedInt) returns 2: signedint=
pre y = 0; post z=xx*xy; begin § end

and suppose that we have proved
y20{S}z=xxy,
Jo(y20oz=x*x}).

We wish to show

b= 11if power(a, b)>0 then ¢:=true else ¢:=Tfalsc end if} c=(a *x h>0).

Since

hz212b20,

Prool Rules for the Programming Language Euclid . 23

the function-call rule applicd to power(a, b) yiclds the conclusion power(a, b)
=a*xh. Using this equation it is casy to show

b2 1 A power(a, h)>0{c:=truc} ¢=(a *+ b>0),

b2 1 A power(a, b)20{c:=lalsc} c=(a +*b>0),
that is,

bZlanaxxb>00axxb>0,

b2l AnaxxbZ0>false=(a*xh>0).

Note that if the formal parameter y were of type unsignedInt, the precon-
dition of power could be just the constant true. In this casc the compiler, rather
than the verifier, would have to be satisfied that b=0. The compiler might,
of course, produce a legality assertion for the verilier.

Appendix 3
Modules

As an example of the use of the module rule, we shall use a variant of the smallIntSet
cxample in [8]. Our module smalllntSet provides the abstraction of a sct of
integers in the range 1. . 100. The abstract operations are insertion and removal
of individual clements and a membership test. When a variable of type smalllntSet
is declared, it is initialized to the empty set. The set will be represented by a
Boolean array, §, of 100 clements,

S:array 1. . 100 of Boolean.

S(i)=truc il i belongs to the sct. In this example { } are used for set brackets.
Comment brackets around non-Euclid pre and post are omitted.

type smalllntSet =
pre truc
module smallSet
invariant true
exports (insert, remove, has, :=)
var S: array 1. . 100 of Boolean

procedure insert (i: integer) =
pre 1 i< 100 A smallSet = smallSet’
post smallSet =smallSet' L {i}
begin S(i):=true end insert

procedure remove (it integer) =
pre 1 i< 100 A smallSet = smallSet’
post smallSet = smallSet’ ~ {i}
begin S(i):=Tfalse end remove

R ondon et al

function hus (i: integer) returns husResult: Boolean =
pre | £i<100
post hasResult =(iesmallSet)
begin lasResult:= S(i) end has

initially
post smallSet = cmptySet
begin for jin S. IndexType loop S(j):=falsc end loop end

Vi

abstraction function set Vulue returns resultSet =imports {S}
begin resultSet={j|S(j)Aa 1<j<100} end

invariant true
end smalllnSet
At the point where we encounter this module definition program, we verify
the asserted propertics of the definition. The necessary formulas to be verified
here are derived from the module definition and the first six premises of the

module rule:

(1) truc>true
(2) truc{var S:array 1. . 100 of Boolean
begin forjin S. IndexType
loop S(j):=Talsc end loop end} setValue(S)=emptySet A true
1 i £ 100 A set Value(S) = set Value (S') A true {S(i): = truc}
set Value(S) = set Value (S)u {i} A true
(3) (remove) 1 i 100 A set Value(S) = setValue(S') A true {S(i): = falsc}
set Value (S) = set Value (S)~ {i} A true
(4) 3 gl(1 LiL100 A true {hasResult: = S(i)}
hasResult = (ieset Value(S)) A hasResult = g1 (set Value(S)))
(5) FhasResult (1 Si£100 A true > hasResult =(ieset Value(S)))

(6) there is no finally, so this premise is missing.

(3) (insert)

In the above formulas the abstraction function set Value has its imported identificr
S included as an argument. We shall not go through the excrcise of proving
these. They are all trivially verifiable.

Now, to show

x=2{var x: smalllntSet; x . insert(3); x . insert(5); y:=Xx. has(3);

x.delete(3); zi=xend} = {5} Ap=lrucax=2,

where v and z have been declared prior to x, we can use the remainder of the
module rule.

First, to verify the declaration var x: smalllntSet, we need only show
(7) x=2otrue.
Having verified this, and premises 1-6. we may now derive and, by premisc 8
in the module rule, assume and use the formulas (where x/, x2, x3, and x4 are

fresh variables)

IProof Rules Tor the Programnimg Language Luchd 25

(81a) rues(1 23100 (xI=xU {3} oxI={3} Ax§f=2))
Weinsert(3)) x= {3} Axf=2

(8.1b) truea(1£52100A(x2=xU {5} >x2={3, 5} Axit=2))
{x.insert(5)} x={3,5} Axf=2

(8.1¢c) rue>(123=5100A(x3=x~ {3} ox3I={5} Axff=2 A y=trug))
{x.delete(3)} x={5} Axff=2 A y=true -

8.2) (truco1£3=2100)ox. has(3)=3ex

(8.3) truea (x4 =cmptySet>x4=emptySet A x#t=2) {x . Initially}
x=cmptySet Axf=2, ic., xf=2{x. Initially} x=emptySet n xt=2.

(8.4) This premise is missing because there is no finally.
We now instantiate premisc 8.5 by sctting S to be
X.insert(3); x.insert(5); y:=x.has(3); x.delete(3); z:=x end
and R to be
x={5}Ay=truenx=2
obtaining
(8.5) xyt=2{x. Initially; S} z={5} Ay=truc A x{=2.

We now prove premise 8.5 using the formulas 8.1a-8.3. Using (8.3) we reduce
the formula to be proved to

x=2Ax=cmptySet{S} z={5} Ay=truc A xf=2.

Next, using (8.1 a), we get

xf=2Ax={3} {x.insert(5); y:=x.has(3); x. delete(3); z:=x}
z={S}Ay=true Axff=2.

Then, by (8.1b), we get

xf=2Ax={3,5} {y:=x. has(3); x.delete(3); z:=x}
z={S}Aay=trucaxgf=2.

By (8.2) and the assignment axiom, the problem reduces to

F=2Ax={3, 5} Ay=truc{x.delete(3); zi=x}z= {5} Ay=trucaxf=2.
By (8.1¢) we get

=2ax={5}Ay=true{z:=x} z={S} Ay=true Axff=2

which, by the assignment axiom, is true.

SI.I‘ICC the module smallIntSet imports no var variables, the instantiation of
premise 8.5 could have been from the simpler form of premisc 8. If this were
done, there would be no formula 8.3 to be used.

26 R.L. London et al.
References

1. Clarke, E.M. Jr.: Programming language constructs for which it is impossible to obtain good
Hoare-like axiom systems. Conference Record of the Fourth ACM Symposium on Principles
of Programming Languages, Los Angeles, pp. 10-20. New York: ACM 1977

. Donahue, J.E.: Complementary definitions of programming language semantics. In: Lecture
Notes in Computer Science, Vol. 42. Berlin-Heidelberg-New York: Springer 1976

3. Ernst, G.W.: Rules of inference for procedure calls. Acta Informat. 8, 145-152 (1977)

4. Guttag, J.V., Horning, J.J,, London, R.L.: A proof rule for Euclid procedures. In: Formal De-
scription of Programming Concepts (E. Neuhold, ed.), pp.211-220. Amsterdam-New York-
Oxford: North-Holland 1978. Also USC Information Sciences Institute, Technical Report
ISI/RR-77-60. May 1977

5. Guttag. J.V.. Horowitz, E., Musser, D.R.: Abstract data types and sofiware validation. Comm.
ACM (1o appear). Also: USC Information Sciences Institute, Technical Report ISI/RR-76-48,
August 1976

6. Hoare, C.A.R.: An axiomatic basis for computer programming. Comm. ACM 12, 576-580, 583
(1969)

7. Hoare, C.A.R.: Procedures and parameters: An axiomatic approach. In: Symposium on Semantics
of Algorithmic Languages (E. Engeler, ed.). Lecture Notes in Mathematics, Vol. 188, pp. 102-116.
Berlin-Heidelberg-New York: Springer 1971

. Hoare, C.A.R.: Proof of correctness of data representations. Acta Informat. 1, 271-281 (1972)
9. Hoare, C.A.R., Wirth, N.: An axiomatic definition of the programming language PASCAL.

Acta Informat. 2, 335-355 (1973)

10. Jensen, K., Wirth, N.: PASCAL user manual and report. Lecture Notes in Computer Science,
Vol. 18, 2nd ed. Berlin-Heidelberg- New York: Springer 1975

11. Lampson, B.W.. Horning. J.J.. London, R.L.. Mitchell, J.G., Popek, G.J.: Revised report on the
programming language Euclid. Xerox Research Center. Technical Report CSL 78-2, 1978. An
carlier version appeared in: SIGPLAN Notices 12. No. 2 (February 1977)

12. Musser, D.R.: A proof rule for functions. USC Information Sciences Institute, Technical Report
ISI'RR-77-62. October 1977

13. Popek, G.J.. Horning, J.J., Lampson, B.W., Mitchell, J.G., London, R.L.: Notes on the design
of Euclid. Proceedings of an ACM Conference on Language Design for Reliable Software, Raleigh,
North Carolina. SIGPLAN Notices 12, No. 3, 11-18 (1977)

14. Spitzen, J.. Wegbreit, B.: The verification and synthesis of data structures. Acta Informat. 4,

127-144 {1975
15. Wirth, N.: The programming language PASCAL. Acta Informat. 1. 35-63 (1971)

[

oo

Received June 9. 1977

Note Added in Proof

There may be some inconsistence between these proof rules and the latest version of the Euclid report
[11]. The latter was recently revised.

