
Fast Procedure Calls

Buffer W. Lampson

Xerox Research Center
3333 Coyote Hill Rd
Palo Alto, CA 94304

Abstract

A mechanism for control transfers should handle a variety
of applications (e.g., procedure calls and returns, coroutine
transfers, exceptions, process switches) in a uniform way.
It should also allow an implementation in which the
common cases of procedure call and return are extremely
fast, preferably as fast as unconditional jumps in the
normal case. This paper describes such a mechanism and
methods for its efficient implementation.

Key words and phrases: architecture, call, frame,
procedure, registers, stack, transfer.

CR categories: 6.33, 6.21

1. Introduction

Well-structured programs "typically make a large number
of procedure calls; one call or return for every 10
instructions executed is not uncommon [4]. The cost (in
space and time) of a procedure call is therefore a critical
element in deciding how well a machine supports a
programming language. This cost depends on three things:

the calling sequence generated by the compiler;

the operations or machine ins,a-uctions from which
the compiler must compose its calling sequence;

the speed provided by the implementation of the
operations, which determines the speed of a call
and return.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This paper considers only compilers which generate a
reasonably general-purpose transfer of control for each
procedure call in the source program. It neglects inter-
procedural analysis which might rearrange the generated
code so drastically that the connection between source
procedure calls and object transfers of control is no longer
recognizable. Although this kind of analysis may someday
play an important role, there has been negligible
experiencewith it to date. Also, we consider only Algol-
like langu~es; these include Pascal, Mesa and Ada, and
the same methods will work with only slight modification
for Lisp. Many of the ideas can probably be used with
Fortran or Cobol also, but we have done no detailed
analysis or empirical studies for these cases.

The importance of control transfers has been recognized
for a number of years, and recent machine architectures
such as the DEC VAX [6] and the Intel iAPX 432 [1] have
fairly elaborate operations which are intended to support
such transfers. In the current implementations, however,
transfers are quite slow [4]. In addition, most such
architectures can support only a strictly last-in first-out pat-
tern of transfers, which is unsuitable for coroutines,
retained frames, and multiple processes. Under this restric-
tion, each coroutine or process needs a contiguous piece of
storage large enough to hold the largest set of frames it
will ever have; this makes efficient storage allocation dif-
ficult.

We briefly present an abstract scheme for supporting very
general control transfers (§ 3), and then describe several
possible implementations:

I1) a very straightforward one which models the
abstraction in an obvious way (§ 4);

I2) a refinement of I1 which rakes much less space, at
the expense of some rather ~cky encodings and
some extra levels of indirection (§ 5);

I3) an optimization which allows instruction fetching to
proceed as fast as it does for an unconditional
branch (§ 6);

© 1982 ACM 0-89791-066-4 82/03/0066 $00.75

66

blampson
Text Box
Proc. 1st International Symposium on Architectural Support for Programming Languages and Operating Systems, ACM Sigplan Notices 17, 4 (Apr. 1982), pp 66-75

I4) another optimization which reduces the cost of
passing parameters and allocating storage for a pro-
cedure instance (§ 7).

Yhe main point of the paper is that an extremely general
and flexible control transfer mechanism can be supported,
and yet simple Pascal-style calls and returns can be exe-
cuted as fast as in the most specialized mechankm. In-
deed, they can be as fast as unconditional jumps at least
95% of the time.

I1 and I2 are realized in the Mesa processor architecture
[2], which has been implemented on four machines,
including the Alto [8] and the Dorado [9].

2. Levels of abstraction

In describing the design for control transfers and its vari-
ous possible implementations, we need to distinguish
clearly among the several levels of abstraction that are
invoh, ed. Most abstractly, we have a model for control
transfers. The source language programmer deals with
transfers in terms of this model, and should not be affect-
ed by changes at any lower level of abstraction. From his
point of view, there is some procedure RUN S which runs
his program.

This procedure is D'piczlly implemented by a compiler
which translates the source program into an object pro-
gram expressed in some encoding (machine instructions
plus auxiliary data structures). The encoded program is
then executed by an interpreter, implemented in hardware,
microcode, machine instructions or some combination.
ThuS RL~s(sOurce)=RUNE(TRANSLATEs(SOUrCe)), where
the compiler implements TRANSLATE S and the interpreter
implements RUN E . Changing the interpreter does not af-
fect the encoding or the compiler: it is done whenever a
program is moved from one model of a compatible com-
puter family to another. Changing the encoding affects the
compiler and the encoded programs, and hence requires
recompflation. If done correctly, it does not affect the
source programs, and hence is an optimization method
which can be used whenever it produces worthwhile cost
savings or performance gains.

We have avoided the term architecture in this description;
a l thou~ it is often used for what we have called the

encoding, its meaning has become sufficiently vague that a
narrower word seemed desirable.

3. A control transfer model

Our abstract model for control transfers is described in
detail in [3]; this section outlines it briefly. It has two
elements:

contexts, the entities among which control is trans-
ferred;

XFE.R, the primitive operation for transferring con-
trok

A context normally corresponds to the activation record or
local frame of a procedure. It contains

the program counter for that activation;

the arguments'and local variables;

references (pointers) to any other environment in-
formation, such as static (own) data, or activations
of lexically enclosing procedures.

The XFER primitive rakes a single argument, the destina-
tion context where execution is to continue. It works in
conjunction with two global variables:

retumContext, which holds the context to which
control should return; normally, but not always,
this is the one executing the XFER;

argumentRecord, which holds the a_guments being
passed in the transfer.

The effect of XFER is to suspend execution of the current-
ly running context and begin execution of the destination,
which is expected to retrieve the retumContext and argu-
mentRecord if it is interested.

To call a Mesa (or Pascal, or Algol) procedure, more is
needed than a simple transfer of control: a new context
must be constructed for the new procedure activation.
Abstractly, this is done by providing a creation context for
thc procedure. The code of this context is an infinite loop;
on each iteration it creates a new context for the proced-
ure, and forwards control to it:

WHILE TRUE DO
he,Context: Context = CreateNewContext [arguments

to initialize the program counter and other state];
XFER[newContext]; -- note that retumContext and

argumentRecord are unchanged--
END

In practice, of course, this is such a common operation
that a special case is required, and all our implementations
have a special kind &context called a procedure descriptor,
which consists of a pair (pointer to procedure, pointer to
environment). An XFER to such a context results in the ac-
tions described by the code above.

When the new procedure gets control, it saves the
returnContext in one of its local variables called the
returnLink, and it copies the arguments from the argument
record into other local variables. Implementations usually
store the argument record in registers if it isn't too large,
so that this is efficient. When the procedure returns, its
context is normally fle.:d. Abstractly, this is done by trans-
ferring to a special context which does the fleeing. Again,
actual implementations provide a single operation called

67

RETURN which retrieves the returnLink, flees the contexL
sets returnContext to NIL, and then does XFER[returnLink].

The essential features of the model are these:

F1) Everything required to resume execution is
contained in the context. Hence a single pointer to
a context suffices for a return link, and every
procedure descriptor includes an environment
reference.

F2) Contexts are first-class objects which are allocated
and freed explicitly, and not necessarily in last-in
first-out order.

F3) Any context may be the argument of any XFER
(provided the argument and result types match), so
that a choice bem'een procedure call, coroutine
transfer or some other discipline is made by the
destination context, not the caller.

F4) Arguments and results are handled symmetrically
by XFER itself; of course the destination context
may treat them differently, e.g., storing arguments

in local variables, and using results to continue a
computation.

Some languages, including Mesa., have a notion of a
cluster, package, or inte~ace, which is a collection of
procedures grouped under a common name. An interface
called I0, for example, might contain procedures Read,
Write, and so forth. A particular procedure in the interface
is denoted by a qualified name, e.g., lO.Read. Among
other things, interfaces simplify the task of !inking up a
reference to an external procedure such as lO.Read (from a
client program) with the procedure itself. I f the client and
the implementation use the same interface definition, they
will agree on the position of the Read procedure in the
interface record, Then the client needs only a pointer to
the interface record in order to call any of its procedures.
The components o f an interface record will be contexts for
the various procedures.

4. A simple implementation

The natural implementation of this model represents a
context by a pointer to a record whose components are the
elements of a local flame:

the program counter,
a pointer to each enclosing environment (i.e., to global

variables, and to lexically enclosing procedures),
a return link (another context),
a component for each argument,
a component for each declared local variable,
a component for each temporary variable.

Thus, as required, the context provides all the information
needed to continue execution.

The flame is allocated from a heap. Normally there is a
single reference to each allocated frame. While the context
is in execution, this reference is held in the state variables
of the process in which the context is running (and hence
in some processor register if the process is actually assign-
ed to a processor). In fact, this is the only information
needed for the process to execute: it needs other state
variables only to control scheduling, timeouts, priority and
other things having nothing to do with the sequential exe-

cution of the process. When the context has called another
one, the single reference to its frame is either in the global
returnContext, or later in the returnLink component of the
called context's flame.

Having only one reference to a frame is very convenient,
because it ensures that the possessor of the reference can
free the frame without having to worry about dangling ref-
erences, and indeed this is normally what happens on a
return. "lI'his implementation can readily handle flames
which must outlive a return, however. Such frames are
called retained, and are distinguished by the possible exis-
tence of multiple references. Other methods (e.g., garbage
collection) are needed to determine when a retained frame
can be safely freed. The model and this implementation
can easily accommodate both fully general retained
frames, and a very efficient but safe method of freeing
frames which are used conventionally.

Actually, a context is not simply a local flame pointer,
since the common case of a procedure descriptor demands
special treatment.. Instead, it is a variant record of the
form:

Context: TYPE=RECORD [
CASE tag: {frame, proc} OF

frame = > [FramePointer];
proc => [code: ProcPointer, env: EnvPointer]
ENDCASE]

The frame case is for a return link or any other reference
to an already existing context.. The proc case is for a
procedure descriptor: recall that this is an abstract context
which constructs the context for a procedure. As we saw in
the last section, this abstract context does a highly stylized
job, parameterized only by the address of the first
instruction for the procedure (Ne code component), and a
pointer to the environment for the procedure (the env
component). It may be implemented by a runtime routine
(this is common in Algol and PL/1 implementations), by
some combination of instructions in the calling sequence
and in the prologue of the procedure, or by microcode.

A procedure return involves a similar abstract context.,
which likewise may be implemented by a runtime routine,

68

by inline instructions, or by microcode, it frees the current
local frame (unless it is retained) after picking up the
return context from its returnLink component. Then it sets
returnContext to NIL (an attempt to return from this return
would be an error), and does an XFER to the context it
obtained from the returnLink. This is a pointer to the
caller's local frame, so execution resumes in the caller's
context, at the instruction pointed to by its PC component.

In this implementation, the processor has registers which
hold

LF, a FramePointer to the frame for the currently
executing context;

PC, a ProcPointer to the next instruction to be
executed (in principle this is a component of the
frame, but any reasonable implementation will
keep it in a register, and store it into the flame only
when control leaves the context);

returnContext, which is normally set implicitly by a
call (to the current context) or by a return (to NIL);

a stack or some working registers for evaluating
expressions, or for passing arguments and results.

Each context must leave the arguments or results on the
stack or in the working registers before doing an XFER
operation. When control enters a context after an XFER, it
expects to find its arguments or results on the stack, and
must retrieve them before doing another XFER operation.
Since the number of processor registers is finite, an arg-
ument or return record can be so large that it will not fit.
When this happens, space is allocated from the heap to
hold the record, and a pointer is passed in one of the reg-
isters. Such long argument records are treated like local
frames for the purposes of allocation: there is just one
reference to each one, and the receiver can therefore free
it as soon as he is done with it,

A call to a fixed procedure (whose value is supplied by the
compiler or linker) is represented by including the proced-
ure descriptor as a literal in the program. Thus f I] in the
source results in LOADLITERAL J~ XFER in the encoding. A
call to a procedare in an interface, such as / . f D, results in
LOADLITERAL i; READFIELD ./q XFER.

5. The Mesa implementation

This section describes the implementation of the control
transfer model of § 3 which is used in the current Mesa
processors. In describing this and subsequent variations, it
is convenient to divide them into three more or less inde-
pendent parts:

obtaining the destination program counter;

passing arguments or results;

allocating or freeing a frame.

The Mesa implementation is part of a complete encoding
for Mesa object programs which is described in [2]. The
main design criterion in this encoding is economy of
space. It uses instructions which are one, two or three
bytes long; about two-thirds of the instructions compiled
for a large sample of source programs occupy a single
byte. The encoding uses a stack, rather than registers, for
working storage to save address bits, and is heavily optim-
ized for references to local variables stored in the frame of
the current context.. A somewhat similar design is describ-
ed by Tanenbaum [7], though its handling of transfers is
quite different.

The implementation of transfers is very similar in structure
to the one described in the last section. The main differ-
ences are a number of optimizations which save space in
the encoding. Most of them depend on a single idea:
changing a full memory address to an index into a table,
and storing the original address in the table entry. When-
ever the address is needed, it is retrieved by indirection
through the table entry. This scheme has several advan-
tages:

T1) If the full address takes fbi ts , the table index takes
i bits, and the address is used n times, then the
space changes from nf to ni+f. The saving varies
greatly, depending on the maximum number of ob-
jects (which determines/) and how often each one
is used. For example, if n=3, i=10 (1024 table
entries) and f = 32, then 9 6 - 6 2 = 34 bits are saved,
or about one-third.

T2) The memory location of the object can easily be
changed, since only the table entry needs to be
updated. Of course the location of the table entry
cannot be changed, but since it is usually fixed size
and small, while most interesting objects are
variable size, this is a clear gain.

T3) If there are several objects with a common part and
different variable parts (e.g., instances of the same
procedure with different environments), several
table entries can point to the same common part,
and the variable parts can be stored in the table
entries themselves.

Of course the scheme also has a cost: the time taken for
the level of indirection.

Mesa organizes procedures into groups called modules;
typically a module implements a single abstraction. The
procedures in a module share global variables; the
collection of these variables is called a global frame. It is
possible to have several instances of a module, each with
its own global variables. The entire module is compiled
together; hence compile-time binding of intra-module ad-
dresses is possible. The code for all the procedures is
collected in a code segment; the base address of this seg-
ment is called the code base.

69

The: four machines which have realized this design to date
have used rather unspecialized micmprogrammed process-
ors to implement it. These processors use a modest num-
ber (20-40) of registers, and keep nearly all the state in
main storage.

5.1 Obtaining the program counter

The Mesa encoding uses four levels of indirection for a
'typical external procedure call. They are diagrammed in
figure 1. The four tables (in the order they are encoun-
tered during a call) are:

A link vector kv associated with a module, with a
16 bit e n d for each procedure called statically
from the module; the entry holds the procedure
descriptor. One of these procedures can be addres-
sed within.the module by a link vector index.

A global frame table GFT with a 16 bit entry for
each module instance; the entry holds the address
of the global frame for the instance.

A collection of global frames: These are not of the
same size, but the) are limited to a 64k segment of
the address space and are quad-aligned; hence 14
bits is enough to address a global frame. In addi-
tion to the global variables of the instance, a global
frame holds the code base; this is an application of
point (3) above.

An entry vector E\ associated with a module, with a
16 bit entry for each procedure in the module
which holds the address of the procedure's first
byte (relative to the code base). This first byte gives
the size of the procedure's frame (see § 5.3), and
the procedure's code starts at the following byte. EV
starts at the code base.

Code bytes

t
EXTERNAL
CALL

I

Link vector

II '-I
I

Procedure descriptor

GFT

i i

r

I , I
t

bias
* 32

Global Frame

code

base

[PC

+

Code Segment

Vector

PC =

Code bytes

T '
Figure 1: Levels of indirection in a procedure call

70

A typical procedure call proceeds as follows. First the
arguments are pushed onto the stack. Then there is a one
or m,o byte EXTERNALCALL instruction which contains a
kv index. There are a number of one-byte opcodes, so that
the (statically) most frequently called procedures in a
module can be called in a single byte. A single opcode
with a one byte address field allows 256 procedures to be
called in two bytes. The context is retrieved from IN. Nor-
really it is a procedure descriptor, which is a variant record
of the form given in § 4. It is packed into a 16 bit word,
with a one bit tag, a ten bit env field, and a five bit code
field. The env field is a Gt:F index, from which the address
of the global frame is retrieved. Then the code base is re-
trieved from the global frame. Finally, the code field,
which is an Ev index, is used to obtain an EV entry which
when added to the code base yields the instruction ad-
dress. The EXTERNALCALL instructions put the current
context into returnContext, and store it automatically in the
returnLink component of the newly allocated franae.

Since the code field is only five bits, a module can have
only 32 entry points with dais scheme. The two spare bits
in a GFI entry are used to specih a bias for the entry
point, in multiples of 32. Thus a single module instance
may have up to four GFT entries, all pointing to the same

global frame, but with different biases, for a total of 128
entries. This rather wasteful scheme is seldom needed, but
it provides an important escape hatch for excessively large
modules.

Each level of indirection allows a compact encoding of the
reference to it:

LV permits a compact call instruction;

GFr permits a compact env field in a procedure de-
scriptor;

the global frame permits multiple instances of a
module with a single copy of the code;

Ev (together with the encoding of the code base
through the env field) permits a compact code field
in a procedure descriptor.

Furthermore, each level provides a (sometimes marginally)
useful freedom in relocating the object it points to:

IN permits external procedure references to be
bound without any change to the code, and without
any auxiliary data structure which locates all the
call instructions.

GFT permits global frames to be moved (unfor-
tunately this is not useful in the current Mesa lang-
uage, which allows other references to the compon-
ents of global frames).

The global frame permits the code segment to be
moved. This is very important in versions of Mesa
without paging, since it allows a simple and effic-

ient implementation of code swapping and reloca-
tion.

Ev permits a procedure to be moved in the code
segment. This allows a procedure to be dynamically
replaced by another of a different size, without any
loss of efficient packing.

The disadvantage of all this indirection is that it takes a
considerable amount of unpacking, and a number of
memory references, to get from the EXTERNALCALL in-
struction to an address which can be used for fetching the
next instruction.

A call to a procedure in the same module is handled by a
LOCALCALL n instxuction, where n is the EV index rather
than the LV index. i N s kind of call keeps the same
environment and code base, and has only one level of
indirection; it is just as compact as an EXTERNALCALL
instruction.

Procedure returns are encoded by a one-byte RETURN in-
struction which does returnContext: =NIL; XFER[LF.retum-
Link] after freeing the current frame. When a context gets
control back after it has done an EXTERNALCALL, it ig-
nores returnContext. There are several other instructions
which combine an XFER with other operations, to support
traps, coroutine linkages, and multiple processes effi-
ciently.

5.2 Passing arguments and results

This is done exactly as in § 4; arguments or results are
pushed onto the stack before the XFER with ordinary
LOAD instructions. When a procedure is entered after a
call, it stores the arguments into local variables with ordin-
ary STORE instructions. After a return, the results are on
the stack ready for further computation.

There are two drawbacks of this scheme. One is that
although the work to load arguments onto the stack seems
to be encoded as compactly as possible and can be execut-
ed as fast as possible, the work done to store them is
wasteful; it would be much better to have a way of using
the arguments in place. The other is that code & t h e form
f [g D, h D] requires the results o f g to be saved before h is
called, and then retrieved.

5.3 Allocating the frame

This too is done much as in § 4. However, a specialized
heap is used to make the allocation nearly as fast as stack
allocation; he same allocator is used for long argument
records. A procedure specifies its frame size in its first
byte by a frame size index into a array of free lists called
the allocation vector AV. Frame sizes increase from a min-
imum of about 16 bytes m steps of about 20%; less than 20
steps are needed to cover any size up to several thousand
bytes.

71

An element of AV is the head of a list of free frames of
that size; see figure 2. Each frame has an extra word which
holds its frame size index, so that the size need not be
specified when it is freed. Only three memory references
are required to allocate a frame (fetch list head from AV,
fetch next pointer from first node, store it into list head),
and ibur to free it. I f the free list is empty there is a trap
to a software allocator which creates more frames of the
desired size. Note that the choice of frame sizes is private
to the compiler (which asssigns the frame size index
value:;) and the software allocator (which replenishes the
free lists), and is not known to the fast heap allocator..

This scheme wastes only 10% of the space in fragmen-
ration, plus space allocated to frames of sizes not currently
in demand. These two effects can be balanced: fewer
frame sizes means more fragmentation, but more chance
to use an existing free frame. The scheme is quite cheap to
implement. It requires no special cases to handle the
frames of multiple processes or coroutines, retained
frames, or argument records, since it does not depend on a
last-in first-out discipline.

In doing an XFER to a procedure descriptor, after the
frame is allocated the returnContext is saved in its return-
Link component, and the global frame address is saved in
its globalFrame component. When transferring out of a con-
text, its program counter relative to the code base is saved
in the PC component. When transferring into a context,
the code base is recovered from the global frame and ad-
ded to the PC component to get the next instruction
address.

6. Fast instruction fetching

The Mesa implementation just described was designed to
minimize the space required to encode control transfers,
without compromising the generalit3' of the model, and
keeping almost all the state in main storage. We now turn
to techniques for executing transfers quickly, in the

common case of procedure call and return. These techni-
ques are based on the principle of recognizing common
special cases and optimizing them. The fully general mech-
anism of § 4-5 is preserved, however, so that there is al-
ways an orderly fallback position if the preconditions for
an optimization become too hard to esrablish.

The goal is to make a call or return as fast as an uncon-
ditional jump. Since a machine of even moderate perfor-
mance is likely to have some kind of instruction fetch unit
(IFU), this goal is unlikely to be achieved unless the IFU
can follow calls and returns as well as it follows jumps.
This observation suggests that a good model for a highly
optimized call is the kind of hand-tuned linkage that an
assembly language programmer can devise between two
routines which are both under his control. In such a
linkage, the actual transfer is done by a branch-and-link
instruction, which takes the procedure address as a literal
operand and leaves the return address in a register. The
parameters are passed in registers, and the procedure uses
registers for its local storage if possible; ideally things are
arranged so that these are disjoint from the registers used
by the caller, so that nothing needs to be saved or restor-
ed. Of course, this kind of linkage is impractical in serious
programming, because it is too hard to maintain all the
assumptions on both sides as the program changes. We
shall see, however, that it is quite practical for the com-
piler and the interpreter to provide the same effect for
nearly all cads, even without any inter-procedural static
analysis.

Code bytes

Allocation vector

Frame Heap

Figure 2: The frame allocation heap

72

There are two quite different strategies for optimizing tran-
sfers (or any other aspect of implementing a programming
language). One maintains the same encoding, but during
execution dynamically recognizes special cases and handles
them more efficiently. A cache is a standard example of
this technique: it maintains the abstraction of a uniform
store, but the implementation uses two or more levels of
storage, and a perhaps complex scheme for transferring
data among the levels and executing read and write oper-
ations so that the properties of the simple abstraction are
preserved. Dynamic optimizations usually exploit some lo-
cality property of the running program.

The other strategy maintains the same source language,
but changes the encoding to reflect special cases which are
recognized statically (usually by the compiler). This static
method cannot deal with rapid changes m the program,
since it requires recompilation or relinking to handle
them. It usually exploits some fixed relationships among
parts of the program, and it does not depend on any
locality properties to do this. A common name for this
process is early binding.

In dealing with procedure calls, it is natural to use static
optimization to improve the process of obtaining the new
instruction address, giving up both code compactness and
the freedom to rebind dynamically in various places in fa-
vor of a direct link from the caller to the called procedure
at address p. Thus the idea is to have a DIRECTCALL p
instruction; at p is stored the global frame address GF and
the frame size fsi, immediately followed by the first
instruction. Thus the L~U can treat a DIRECTCAI.J_, just like
an unconditional j u m p except that it converts GF and fsi
into instructions of the form SETGLOBALFRAME GF and
ALLOCATEFRAMEfsi; there is no reason to waste space in
storing the opcodes for these instructions.

The disadvantages of this scheme are the advantages o f the
current Mesa scheme:

D1) The call instruction is larger: four bytes instead of
one, for a 24-bit program address space; by having
four DIRECTCALL instructions, we can extend this
to 26 bits, and so forth. Of course, two bytes of LV
entry are saved, so the space is only 30% more if
the procedure is called only once from the module.

D2) Multiple instances of p's module are not possible,
since the global environment information is bound
into the code. But multiple instances, though use-
frill, are not the norm, and it is reasonable to opti-
mize for the single instance case.

D3) Linking to p requires fixing up addresses through-
out the code, as is traditional in conventional link-
ers. This is especially inconvenient if the linkage
has to be changed, but this happens relatively sel-
dom.

D1 is a simple time-space tradeoff. Further early binding
may be able to put the called procedure close to the caller,
so that a shorter, PC-relative address can be used. With 16
such SHORTDIRECTCALL opcodes, a three byte instruction
can address one megabyte around the instruction. I f this
succeeds, the space is the same as in the current scheme
for a single call of p from a module, and 50% more (6
bytes instead of 4) for two calls.

D2 is dealt with by falling back to the scheme of § 5 when
multiple instances are required. Depending on the details
of the encoding, this may require relinking or even recom-
piling callers. Once the fallback has been accomplished,
however, all the flexibility of the model is again available.
Thus the DIRECTCALL linkage should be regarded as an
early binding, which is appropriate when the nature of the
procedure is well known; in a large programming system,
most procedures are "in the system" rather than the object
of current development, and hence are well known for this
purpose. If there is uncertainty about the procedure, it is
best to stay with the more costly but flexible scheme. Note
that with either linkage the program behaves identically
(except for space and speed), so changing between them
only changes the balance among space, speed of execution,
and speed of changing the linkage. Thus D3 too is a
performance tradeoff.

Returns cannot be handled statically, since in general static
analysis does not reveal enough information about the
caller(s). However, the IFU can keep a small stack of re-
turn information: frame pointer, global frame pointer GF
and PC. As long as calls and returns follow a LLrO
discipline this allows returns to be hmndied as fast as calls.
When something unusual happens (e.g., any XFER other
than a simple call or return, or running out of space in the
return stack), fall back to the general scheme by flushing
the return stack: the frame pointer LF goes into the
returnLink component of the next higher frame, and the
PC goes into the PC component of LF. The global frame
pointer can be discarded, since it can be recovered from
the local frame. Then the rule for a return is simple: if the
return stack is empty, proceed as in § 5. Otherwise start
fetching instructions from the PC value on the return

stack, and restore the frame and global frame registers
from those values.

7. Fast local variables and parameters

This idea of maintaining a limited stack in registers can
also be applied to local frames and argument passing.

7.1 Frames in registers

Following [4], we suppose that the processor has a small
number of register banks (say 4-8) of some modest fixed
size (say 16 words). Each of these banks can hold the first

73

16 words of some local frame. When a new frame is need-
ed, it is allocated in the usual way, but a register bank (as-
suming one is free) is also allocated to shadow its first few
words. References to the shadowed words are made direct-
ly to the register bank; to simplify this, the encoding is de-
signed so that such references are made with distinct in-
structions (the consequences of addressing these words
with ordinary memory-reference instructions are discussed
later). When the frame is freed, the shadowing register
bank is also marked free, and can then be used to shadow
a newly created frame; its contents are unimportant, and
never need to be saved in storage. The return stack dis-
cussed in § 6 keeps track of the bank associated with each
local frame, and the IFU passes this information along to
the processor as the operand of a XFER.

If an overflow occurs (i.e., a new frame is created, and
there are no register banks available), then the contents of
the oldest bank is written out into the frame. If an XFER is
done to a frame which doesn't have a shadowing bank, a
free bank: is assigned and loaded from the franae. As with
a cache (of which this is a high_ly specialized form), the
effectiveness of the scheme depends on the rarity of under-
flow and overflow. Fragmentary Mesa statistics indicate
that with 4 banks it happens on less that 5% of XFERS; and
[4] reports that with 4-8 banks the rate is less than 1%.
Intuitively, this means that long runs of calls nearly
uninterrupted by returns, or vice versa, are quite rare.
Measurements are needed on a Ia~er set of programs to
confirm the effectiveness o f this scheme, and of the
elaborations described below.

As usual, when life gets complicated because o f a process
switch, trap or whatever, we fall back to the general
scheme: all the banks are flushed into storage. It may be
worthwhile to keep track of which registers have been
written, to avoid the cost of dumping registers which have
never been written.

To gain maximum advantage from this scheme, the reg-
ister banks should be large enough that nearly all refer-
ences to local variables will fit. Mesa statistics suggest that
95% of all frames allocated are smaller that 80 bytes, and
this sets a conservative upper bound on the size of a regis-
ter bank. With 8 banks of 80 bytes, there would be about
5000 bits of registers, which does not seem unreasonable.

The next step is to speed up flame allocation. Since nearly
all local frames are fairly small, a reasonable strategy is to
make the smallest frame size the 80 bytes just cited; hope-
fully this would handle 95% of all frame allocations. Now
the processor can keep a stack of flee flames of this size,
and allocation will be extremely fast; furthermore, it can
be done in parallel with the rest of na XFER operation.
When the stack underflows, or if a larger local frame is
needed, we fall back to the general scheme as usual. I f the
general scheme is five times more costly and it is used 5%
of the time, the effective speed of frame allocation is .8

times the fast speed.

One drawback of this approach is that extremely deep re-
cursion, or the presence of a very la~e number of proces-
ses, might result in thousands of 80 byte frames in which
only 20 bytes are used. If this is a real problem, an alterna-
five strategy is to defer allocating the frame until a register
bank must be flushed out. This means that 95% of the
time there will be no allocation at all. Unfortunately, it
also means that a local variable may have no assigned
memory address; the consequences of this are discussed in
§ 7.4 below.

7.2 Argument passing

In addition to local variables, the Mesa encoding also
makes use of an evaluation stack for expression evaluation
and argument passing. It is natural to use the register
banks of § 7.1 to hold this stack also. As Patterson points
out [4], this has the nice property that after the arguments
have been loaded on the stack, the bank holding the stack
can be renamed to be the shadower for the local frame of
the called procedure. As a consequence, the arguments
will automatically appear as the first few local variables,
without any actual data movement. Thus on a call the pat-
tern is:

(top of return stack).Lbank: = current Lbank
current Lbank: = stack
aack: = newly assigned bank

On a return, the stack should remain as it is, and the cur-
rent frame should be freed:

free current Lbank
current Lbank: = (top of return stack).Lbank

Thus the banks are not used in last-in first-out order.
Figure 3 illustrates.

This scheme provides essentially free passing of arguments
and results; the only cost is the instructions to load them
on the stack, and this seems unavoidable since the desired
values must be specified somehow. Of course addresses
can be loaded instead of values, but this isn't much cheap-
er, and it makes every reference to the value of an argu-
ment more expensive. Schemes which assemble either
addresses or values in memory will certainly be more ex-
pensive.

7.3 Why not just a cache?

Why is this scheme better than simply keeping the frame
in main storage, and taking advantage of a cache to make
accesses faster? There are several reasons.

• A register bank is faster than a cache, both because
it is smaller, and because the addressing mechanism
is much simpler. Designers of high-performance
processors have typically found that it is possible to

74

Bank 4

Bank 3

Bank 2

Bank 1

Return s tack

Lbank

Sbank

. S S L = FD --

-- S B L = FB FB L = FB FB L = FB

S L = F A -- S L = F C -- $ S

L = FX FX L FX FX FX FX FX

1, PCX . . 1, PCX 3, PCB 1, PCX 3, PCB 1, PCX

. . . . 1, PCX . . 1, PCX . .

1 2 1 3 2 3 4 3

2 3 3 2 4 4 2 2

Beg in inX c a l l A re turn c a l l B c a l l C re turn c a l l D re turn • • • •

Figure 3: Assignment of register banks for stacks and framgs

read one register and write another in a single
cycle, while two cycles are needed for a cache ac-
cess. It is not too hard to build a cache which can
accept a reference ever)' cycle, but the latency is
still two cycles. Also, since there are not too many
legisters it is feasible to duplicate or triplicate them,
so that several registers can be read out simultan-
eously.

• Because they are faster: registers have more band-
width, especially if they are duplicated. But more
important, storing frequently accessed locals in reg-
isters frees up cache bandwidth for more random
references. Half or more of all data memory refer-
ences may be to local variables [4]. Removing this
burden from the cache effectively doubles its band-
width.

• The locality of references to local variables is so
much better than the locality of data references in
general that another level of memory hierarchy
which exploits uhis locality is highly worthwhile.
Since the compiler can control quite well how these
references are made, the hardware supporting this
level can be much simpler than a general-purpose
cache, which must fully support the simple read-
write properties of storage in general.

• As a corollary of the last point, the simple ways in
which local variables are addressed (nearly always
by a constant displacement in an instrmction) makes
the addressing logic for a register bank both simple
and fast. The scheme we have describe addresses
the registers from one of m'o base registers conca-
tenated with a four or five bit displacement. No
comparators, associative lookup or other compli-
cation is needed.

The free argument passing of § 7.2 won't work if
local variables are in a cache (unless the stack is
kept there too, which is clearly not a good idea, be-
cause it demands much more bandwidth).

7.4 Pointers to locals

It may be necessary to supply storage addresses which can
be dereferenced to yield local variables. This can happen
in a language like BCPL or C which explicitly allows the
programmer to construct pointers to local variables. It can
also happen in Pascal when a local variable is passed as a
var parameter, or when a nested procedure does up-level
addressing. There are two Tiresome consequences:

C1) The variable must have an address; this rules o u t

the trick of deferring allocation of a flame in stor-
age until it is needed for dumping the register
bank

C2) When the address is used, the data must come from
(or go to) the register, rather than to storage. Alter-
natively, the register bank must be flushed when
any register in it is addressed. This is an instance of
the multiple copy problem.

The simplest solution is avoidance: outlaw pointers to
local variables or the local frame. The (doubtless incom-
plete) list of ways in which such pointers can arise sug-
gests, however, that this may be unacceptable. We there-
fore consider how to deal with these problems.

C1 can be handled in two ways. One possibility is to give
up the deferred allocation trick entirely, since it pays off
only when there is deep recursion or a very large number
of processes, each with several flames. Alternatively, if

75

there is a special operation for generating a pointer to a
local variable, this operation can do the allocation. In the
normal case no such pointers will exist, and no allocation
will be done.

C2 can be avoided in most languages by flagging local
flames to which pointers can exist; this can be done static-
ally b y the compiler, or dynamically as suggested in the
previous paragraph. A flagged frame is flushed to storage
whenever control leaves its context: of course it must be
reloaded whenever control returns. Now the frame can be
correctly referenced by ordinary storage instructions, ex-
cept when control is in its context. This is good enough for
Pascal; it fails if the context., or some other process execut-
ing concurrently, can get hold of pointers to its own locals
as source-language values. Either of these cases is highly
undesirable for other reasons, however, and can reason-
ably be outlawed.

If C2 is not avoided, it must be detected. Patterson [4]
suggests that by confining frames to a fixed frame region
of the address space, we can be sure for most storage refer-
ences that C2 has not arisen; another possibitity is to mark
pages containing frames. An address in the frame region,
however, must be compared with the address assigned to
each of the register banks. If there is a mazch, then the
register bank can be flushed, after which the storage
reference can proceed normally. Alternatively, the refer-
ence can be diverted to read or write the proper register.
The mechanism needed for this is similar to that required
on machines like the PDP-]0 whose registers are also part
of the address space. Depending on the implementation of
the storage system, diversion may be easy or quite diffi-
cult. I f it is easy, it is certainly the best way to deal wi,£q
C2; even if the register reference is handled quite clumsi-
ly, so that it takes much longer than an ordinary storage
reference, such references are not common, and hence the
cost will be small.

It is worth remembering that the value of an optimization
depends on the statistics of the programs being executed.
Our empirical data is very preliminary, and it is always
possible that changes in the important applications, or in
programming style, will cause the conclusions to change.
Past experience suggests, however, that major changes in
the source programs seldom affect the value of previously
valid optimizations by more than a few percent.

The scheme of § 5 has been implemented in the Mesa pro-
gramming system for several years. We intend to try the
ideas of § 6-7 in the near future.

References

1. Colley, S. eL aL The object-based architecture of the Inte1432.
Proc. COMPCON, Feb. 1981.

2. Jolmsson, R. and Wick, J.D. An overview of the Mesa processor
architecture, ACM Symp. Architectural Support for Prog. Lang. and
OperatingSy~, Palo Alto, Mar. 1982.

3. Lampson, B.W. eL aL On the transfer of control between contexts.
Lecture Notes in Computer Science 19, Springer, 1974.

4. Patterson. D. A. and Sequin, C. H. ~sc I: A reduced instruction set
VLSI computer. 8th Symp. Computer Architecture Minneapolis,
May 1981.

5. Sites, R.L. How to use 1000 registers. Caltech Conference on VLSI.
Jan. 1979.

6. Strecker, W.D. VAX-- 11/780: A virtual address extension to the
DEC PDP-- 11 family. Pro~ NCC, Jun. 1978, 967-980.

7. Tanenbaum, A. Implications of structured progran~ing for
machine architecture. Com~ ACM 21, 3, Mar. 1978, 237-246.

8. Thacker, C.P. eL aL Alto: A personal computer. In Computer
Structures: Readings and Examples. 2nd ed., SiewJorek, Bell and
Newell, eds., McGraw-Hill. New York, 1981.

9. LampsorL B.W. and Pier, K.A. A processor for a high performance
personal computer. Proc. 7th lnt. Syrup. Computer Architecture, La
Baule. France, May 1980. Also in Technical Report CSL-81-1,
Xerox Research Center. Palo Alto, CA, Jan. 1981.

8. Conclusion

We have seen that a very general model for conu'ol trans-
fers can be implemented with a wide variety of tradeoffs
among three factors:

SimpliciO, of the implementation (both compiler
and interpreter); § 4 ma.xhnizes simpIicity.

Space taken up by the program (both instructions
and procedure descriptors); § 5 minimizes space.

Speed of execution; ~ 6-7 maximizes speed.

Clearly many intermediate positions are possible. I f a mod-
erate amount of implememation complexiB' can be tolera-
ted, an encoding which allows both the generality of § 5
and the early binding of § 6 is attractive: the programming
environment can automatically converz bem, een the two
representations when appropriate.

76

