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Abstract 

A mechanism for control transfers should handle a variety 
of applications (e.g., procedure calls and returns, coroutine 
transfers, exceptions, process switches) in a uniform way. 
It should also allow an implementation in which the 
common cases of procedure call and return are extremely 
fast, preferably as fast as unconditional jumps in the 
normal case. This paper describes such a mechanism and 
methods for its efficient implementation. 
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1. Introduction 

Well-structured programs "typically make a large number 
of procedure calls; one call or return for every 10 
instructions executed is not uncommon [4]. The cost (in 
space and time) of a procedure call is therefore a critical 
element in deciding how well a machine supports a 
programming language. This cost depends on three things: 

the calling sequence generated by the compiler; 

the operations or machine ins,a-uctions from which 
the compiler must compose its calling sequence; 

the speed provided by the implementation of the 
operations, which determines the speed of a call 
and return. 
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commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
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This paper considers only compilers which generate a 
reasonably general-purpose transfer of control for each 
procedure call in the source program. It neglects inter- 
procedural analysis which might rearrange the generated 
code so drastically that the connection between source 
procedure calls and object transfers of control is no longer 
recognizable. Although this kind of analysis may someday 
play an important role, there  has been negligible 
experiencewith it to date. Also, we consider only Algol- 
like langu~es; these include Pascal, Mesa and Ada, and 
the same methods will work with only slight modification 
for Lisp. Many of the ideas can probably be used with 
Fortran or Cobol also, but we have done no detailed 
analysis or empirical studies for these cases. 

The importance of control transfers has been recognized 
for a number of years, and recent machine architectures 
such as the DEC VAX [6] and the Intel iAPX 432 [1] have 
fairly elaborate operations which are intended to support 
such transfers. In the current implementations, however, 
transfers are quite slow [4]. In addition, most such 
architectures can support only a strictly last-in first-out pat- 
tern of transfers, which is unsuitable for coroutines, 
retained frames, and multiple processes. Under this restric- 
tion, each coroutine or process needs a contiguous piece of 
storage large enough to hold the largest set of frames it 
will ever have; this makes efficient storage allocation dif- 
ficult. 

We briefly present an abstract scheme for supporting very 
general control transfers (§ 3), and then describe several 
possible implementations: 

I1) a very straightforward one which models the 
abstraction in an obvious way (§ 4); 

I2) a refinement of I1 which rakes much less space, at 
the expense of some rather ~cky encodings and 
some extra levels of indirection (§ 5); 

I3) an optimization which allows instruction fetching to 
proceed as fast as it does for an unconditional 
branch (§ 6); 
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I4) another optimization which reduces the cost of  
passing parameters and allocating storage for a pro- 
cedure instance (§ 7). 

Yhe main point of  the paper is that an extremely general 
and flexible control transfer mechanism can be supported, 
and yet simple Pascal-style calls and returns can be exe- 
cuted as fast as in the most specialized mechankm. In- 
deed, they can be as fast as unconditional jumps at least 
95% of the time. 

I1 and I2 are realized in the Mesa processor architecture 
[2], which has been implemented on four machines, 
including the Alto [8] and the Dorado [9]. 

2. Levels of abstraction 

In describing the design for control transfers and its vari- 
ous possible implementations, we need to distinguish 
clearly among the several levels of  abstraction that are 
invoh, ed. Most abstractly, we have a model for control 
transfers. The source language programmer deals with 
transfers in terms of  this model, and should not be affect- 
ed by changes at any lower level of  abstraction. From his 
point of  view, there is some procedure RUN S which runs 
his program. 

This procedure is D'piczlly implemented by a compiler 
which translates the source program into an object pro- 
gram expressed in some encoding (machine instructions 
plus auxiliary data structures). The encoded program is 
then executed by an interpreter, implemented in hardware, 
microcode, machine instructions or some combination. 
ThuS RL~s(sOurce)=RUNE(TRANSLATEs(SOUrCe)), where 
the compiler implements TRANSLATE S and the interpreter 
implements RUN E . Changing the interpreter does not af- 
fect the encoding or the compiler: it is done whenever a 
program is moved from one model of a compatible com- 
puter family to another. Changing the encoding affects the 
compiler and the encoded programs, and hence requires 
recompflation. If  done correctly, it does not affect the 
source programs, and hence is an optimization method 
which can be used whenever it produces worthwhile cost 
savings or performance gains. 

We have avoided the term architecture in this description; 
a l thou~ it is often used for what we have called the 

encoding, its meaning has become sufficiently vague that a 
narrower word seemed desirable. 

3. A control transfer model 

Our abstract model for control transfers is described in 
detail in [3]; this section outlines it briefly. It has two 
elements: 

contexts, the entities among which control is trans- 
ferred; 

XFE.R, the primitive operation for transferring con- 
trok 

A context normally corresponds to the activation record or 
local frame of  a procedure. It contains 

the program counter for that activation; 

the arguments'and local variables; 

references (pointers) to any other environment in- 
formation, such as static (own) data, or activations 
of  lexically enclosing procedures. 

The XFER primitive rakes a single argument, the destina- 
tion context where execution is to continue. It works in 
conjunction with two global variables: 

retumContext, which holds the context to which 
control should return; normally, but not always, 
this is the one executing the XFER; 

argumentRecord, which holds the a_guments being 
passed in the transfer. 

The effect of  XFER is to suspend execution of  the current- 
ly running context and begin execution of  the destination, 
which is expected to retrieve the retumContext and argu- 
mentRecord if it is interested. 

To call a Mesa (or Pascal, or Algol) procedure, more is 
needed than a simple transfer of control: a new context 
must be constructed for the new procedure activation. 
Abstractly, this is done by providing a creation context for 
thc procedure. The code of  this context is an infinite loop; 
on each iteration it creates a new context for the proced- 
ure, and forwards control to it: 

WHILE TRUE DO 
he,Context: Context = CreateNewContext [arguments 

to initialize the program counter and other state]; 
XFER[newContext]; -- note that retumContext and 

argumentRecord are unchanged-- 
END 

In practice, of  course, this is such a common operation 
that a special case is required, and all our implementations 
have a special kind &context  called a procedure descriptor, 
which consists of  a pair (pointer to procedure, pointer to 
environment). An XFER to such a context results in the ac- 
tions described by the code above. 

When the new procedure gets control, it saves the 
returnContext in one of  its local variables called the 
returnLink, and it copies the arguments from the argument 
record into other local variables. Implementations usually 
store the argument record in registers if it isn't too large, 
so that this is efficient. When the procedure returns, its 
context is normally fle.:d. Abstractly, this is done by trans- 
ferring to a special context which does the fleeing. Again, 
actual implementations provide a single operation called 
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RETURN which retrieves the returnLink, flees the contexL 
sets returnContext to NIL, and then does XFER[returnLink]. 

The essential features of the model are these: 

F1) Everything required to resume execution is 
contained in the context. Hence a single pointer to 
a context suffices for a return link, and every 
procedure descriptor includes an environment 
reference. 

F2) Contexts are first-class objects which are allocated 
and freed explicitly, and not necessarily in last-in 
first-out order. 

F3) Any context may be the argument of  any XFER 
(provided the argument and result types match), so 
that a choice bem'een procedure call, coroutine 
transfer or some other discipline is made by the 
destination context, not the caller. 

F4) Arguments and results are handled symmetrically 
by XFER itself; of  course the destination context 
may treat them differently, e.g., storing arguments 

in local variables, and using results to continue a 
computation. 

Some languages, including Mesa., have a notion of  a 
cluster, package, or inte~ace, which is a collection of  
procedures grouped under a common name. An interface 
called I0,  for example, might contain procedures Read, 
Write, and so forth. A particular procedure in the interface 
is denoted by a qualified name, e.g., lO.Read. Among 
other things, interfaces simplify the task of  !inking up a 
reference to an external procedure such as lO.Read (from a 
client program) with the procedure itself. I f  the client and 
the implementation use the same interface definition, they 
will agree on the position of  the Read procedure in the 
interface record, Then the client needs only a pointer to 
the interface record in order to call any of  its procedures. 
The components o f  an interface record will be contexts for 
the various procedures. 

4. A simple implementation 

The natural implementation of  this model represents a 
context by a pointer to a record whose components are the 
elements of  a local flame: 

the program counter, 
a pointer to each enclosing environment (i.e., to global 

variables, and to lexically enclosing procedures), 
a return link (another context), 
a component for each argument, 
a component for each declared local variable, 
a component for each temporary variable. 

Thus, as required, the context provides all the information 
needed to continue execution. 

The flame is allocated from a heap. Normally there is a 
single reference to each allocated frame. While the context 
is in execution, this reference is held in the state variables 
of  the process in which the context is running (and hence 
in some processor register if the process is actually assign- 
ed to a processor). In fact, this is the only information 
needed for the process to execute: it needs other state 
variables only to control scheduling, timeouts, priority and 
other things having nothing to do with the sequential exe- 

cution of  the process. When the context has called another 
one, the single reference to its frame is either in the global 
returnContext, or later in the returnLink component of  the 
called context's flame. 

Having only one reference to a frame is very convenient, 
because it ensures that the possessor of  the reference can 
free the frame without having to worry about dangling ref- 
erences, and indeed this is normally what happens on a 
return. "lI'his implementation can readily handle flames 
which must outlive a return, however. Such frames are 
called retained, and are distinguished by the possible exis- 
tence of  multiple references. Other methods (e.g., garbage 
collection) are needed to determine when a retained frame 
can be safely freed. The model and this implementation 
can easily accommodate both fully general retained 
frames, and a very efficient but safe method of  freeing 
frames which are used conventionally. 

Actually, a context is not simply a local flame pointer, 
since the common case of  a procedure descriptor demands 
special treatment.. Instead, it is a variant record of  the 
form: 

Context: TYPE=RECORD [ 
CASE tag: {frame, proc} OF 

frame = > [ FramePointer ]; 
proc => [ code: ProcPointer, env: EnvPointer ] 
ENDCASE] 

The frame case is for a return link or any other reference 
to an already existing context.. The proc case is for a 
procedure descriptor: recall that this is an abstract context 
which constructs the context for a procedure. As we saw in 
the last section, this abstract context does a highly stylized 
job, parameterized only by the address of  the first 
instruction for the procedure (Ne code component), and a 
pointer to the environment for the procedure (the env 
component). It may be implemented by a runtime routine 
(this is common in Algol and PL/1 implementations), by 
some combination of  instructions in the calling sequence 
and in the prologue of  the procedure, or by microcode. 

A procedure return involves a similar abstract context., 
which likewise may be implemented by a runtime routine, 
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by inline instructions, or by microcode, it frees the current 
local frame (unless it is retained) after picking up the 
return context from its returnLink component. Then it sets 
returnContext to NIL (an attempt to return from this return 
would be an error), and does an XFER to the context it 
obtained from the returnLink. This is a pointer to the 
caller's local frame, so execution resumes in the caller's 
context, at the instruction pointed to by its PC component. 

In this implementation, the processor has registers which 
hold 

LF, a FramePointer to the frame for the currently 
executing context; 

PC, a ProcPointer to the next instruction to be 
executed (in principle this is a component of  the 
frame, but any reasonable implementation will 
keep it in a register, and store it into the flame only 
when control leaves the context); 

returnContext, which is normally set implicitly by a 
call (to the current context) or by a return (to NIL); 

a stack or some working registers for evaluating 
expressions, or for passing arguments and results. 

Each context must leave the arguments or results on the 
stack or in the working registers before doing an XFER 
operation. When control enters a context after an XFER, it 
expects to find its arguments or results on the stack, and 
must retrieve them before doing another XFER operation. 
Since the number of processor registers is finite, an arg- 
ument or return record can be so large that it will not fit. 
When this happens, space is allocated from the heap to 
hold the record, and a pointer is passed in one of the reg- 
isters. Such long argument records are treated like local 
frames for the purposes of  allocation: there is just one 
reference to each one, and the receiver can therefore free 
it as soon as he is done with it, 

A call to a fixed procedure (whose value is supplied by the 
compiler or linker) is represented by including the proced- 
ure descriptor as a literal in the program. Thus f I] in the 
source results in LOADLITERAL J~ XFER in the encoding. A 
call to a procedare in an interface, such as / . f  D, results in 
LOADLITERAL i; READFIELD ./q XFER. 

5. The Mesa implementation 

This section describes the implementation of  the control 
transfer model of  § 3 which is used in the current Mesa 
processors. In describing this and subsequent variations, it 
is convenient to divide them into three more or less inde- 
pendent parts: 

obtaining the destination program counter; 

passing arguments or results; 

allocating or freeing a frame. 

The Mesa implementation is part of  a complete encoding 
for Mesa object programs which is described in [2]. The 
main design criterion in this encoding is economy of 
space. It uses instructions which are one, two or three 
bytes long; about two-thirds of  the instructions compiled 
for a large sample of source programs occupy a single 
byte. The encoding uses a stack, rather than registers, for 
working storage to save address bits, and is heavily optim- 
ized for references to local variables stored in the frame of 
the current context.. A somewhat similar design is describ- 
ed by Tanenbaum [7], though its handling of  transfers is 
quite different. 

The implementation of transfers is very similar in structure 
to the one described in the last section. The main differ- 
ences are a number of optimizations which save space in 
the encoding. Most of them depend on a single idea: 
changing a full memory address to an index into a table, 
and storing the original address in the table entry. When- 
ever the address is needed, it is retrieved by indirection 
through the table entry. This scheme has several advan- 
tages: 

T1) If  the full address takes fbi ts ,  the table index takes 
i bits, and the address is used n times, then the 
space changes from nf to ni+f. The saving varies 
greatly, depending on the maximum number of  ob- 
jects (which determines/) and how often each one 
is used. For example, if n=3,  i=10 (1024 table 
entries) and f =  32, then 9 6 - 6 2  = 34 bits are saved, 
or about one-third. 

T2) The memory location of  the object can easily be 
changed, since only the table entry needs to be 
updated. Of  course the location of the table entry 
cannot be changed, but since it is usually fixed size 
and small, while most interesting objects are 
variable size, this is a clear gain. 

T3) If  there are several objects with a common part and 
different variable parts (e.g., instances of  the same 
procedure with different environments), several 
table entries can point to the same common part, 
and the variable parts can be stored in the table 
entries themselves. 

Of course the scheme also has a cost: the time taken for 
the level of indirection. 

Mesa organizes procedures into groups called modules; 
typically a module implements a single abstraction. The 
procedures in a module share global variables; the 
collection of  these variables is called a global frame. It is 
possible to have several instances of a module, each with 
its own global variables. The entire module is compiled 
together; hence compile-time binding of intra-module ad- 
dresses is possible. The code for all the procedures is 
collected in a code segment; the base address of  this seg- 
ment is called the code base. 
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The: four machines which have realized this design to date 
have used rather unspecialized micmprogrammed process- 
ors to implement it. These processors use a modest num- 
ber (20-40) of registers, and keep nearly all the state in 
main storage. 

5.1 Obtaining the program counter 

The Mesa encoding uses four levels of indirection for a 
'typical external procedure call. They are diagrammed in 
figure 1. The four tables (in the order they are encoun- 
tered during a call) are: 

A link vector kv associated with a module, with a 
16 bit e n d  for each procedure called statically 
from the module; the entry holds the procedure 
descriptor. One of these procedures can be addres- 
sed within.the module by a link vector index. 

A global frame table GFT with a 16 bit entry for 
each module instance; the entry holds the address 
of the global frame for the instance. 

A collection of global frames: These are not of  the 
same size, but the) are limited to a 64k segment of 
the address space and are quad-aligned; hence 14 
bits is enough to address a global frame. In addi- 
tion to the global variables of the instance, a global 
frame holds the code base; this is an application of 
point (3) above. 

An entry vector E\ associated with a module, with a 
16 bit entry for each procedure in the module 
which holds the address of the procedure's first 
byte (relative to the code base). This first byte gives 
the size of the procedure's frame (see § 5.3), and 
the procedure's code starts at the following byte. EV 
starts at the code base. 

Code bytes 

t 
EXTERNAL 
CALL 

I 

Link vector 

II '-I 
I 

Procedure descriptor 

GFT 

i i 

r 

I , I  
t 

bias 
* 32 

Global Frame 

code 

base 

[PC 

+ 

Code Segment 

Vector 

PC = 

Code bytes 

T ' 
Figure 1: Levels of indirection in a procedure call 
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A typical procedure call proceeds as follows. First the 
arguments are pushed onto the stack. Then there is a one 
or m,o byte EXTERNALCALL instruction which contains a 
kv index. There are a number of one-byte opcodes, so that 
the (statically) most frequently called procedures in a 
module can be called in a single byte. A single opcode 
with a one byte address field allows 256 procedures to be 
called in two bytes. The context is retrieved from IN. Nor- 
really it is a procedure descriptor, which is a variant record 
of the form given in § 4. It is packed into a 16 bit word, 
with a one bit tag, a ten bit env field, and a five bit code 
field. The env field is a Gt:F index, from which the address 
of the global frame is retrieved. Then the code base is re- 
trieved from the global frame. Finally, the code field, 
which is an Ev index, is used to obtain an EV entry which 
when added to the code base yields the instruction ad- 
dress. The EXTERNALCALL instructions put the current 
context into returnContext, and store it automatically in the 
returnLink component of the newly allocated franae. 

Since the code field is only five bits, a module can have 
only 32 entry points with dais scheme. The two spare bits 
in a GFI entry are used to specih a bias for the entry 
point, in multiples of 32. Thus a single module instance 
may have up to four GFT entries, all pointing to the same 

global frame, but with different biases, for a total of  128 
entries. This rather wasteful scheme is seldom needed, but 
it provides an important escape hatch for excessively large 
modules. 

Each level of  indirection allows a compact encoding of  the 
reference to it: 

LV permits a compact call instruction; 

GFr permits a compact env field in a procedure de- 
scriptor; 

the global frame permits multiple instances of  a 
module with a single copy of  the code; 

Ev (together with the encoding of  the code base 
through the env field) permits a compact code field 
in a procedure descriptor. 

Furthermore, each level provides a (sometimes marginally) 
useful freedom in relocating the object it points to: 

IN permits external procedure references to be 
bound without any change to the code, and without 
any auxiliary data structure which locates all the 
call instructions. 

GFT permits global frames to be moved (unfor- 
tunately this is not useful in the current Mesa lang- 
uage, which allows other references to the compon- 
ents of  global frames). 

The global frame permits the code segment to be 
moved. This is very important in versions of  Mesa 
without paging, since it allows a simple and effic- 

ient implementation of  code swapping and reloca- 
tion. 

Ev permits a procedure to be moved in the code 
segment. This allows a procedure to be dynamically 
replaced by another of a different size, without any 
loss of  efficient packing. 

The disadvantage of  all this indirection is that it takes a 
considerable amount of unpacking, and a number of 
memory references, to get from the EXTERNALCALL in- 
struction to an address which can be used for fetching the 
next instruction. 

A call to a procedure in the same module is handled by a 
LOCALCALL n instxuction, where n is the EV index rather 
than the LV index. i N s  kind of  call keeps the same 
environment and code base, and has only one level of  
indirection; it is just as compact as an EXTERNALCALL 
instruction. 

Procedure returns are encoded by a one-byte RETURN in- 
struction which does returnContext: =NIL; XFER[LF.retum- 
Link] after freeing the current frame. When a context gets 
control back after it has done an EXTERNALCALL, it ig- 
nores returnContext. There are several other instructions 
which combine an XFER with other operations, to support 
traps, coroutine linkages, and multiple processes effi- 
ciently. 

5.2 Passing arguments and results 

This is done exactly as in § 4; arguments or results are 
pushed onto the stack before the XFER with ordinary 
LOAD instructions. When a procedure is entered after a 
call, it stores the arguments into local variables with ordin- 
ary STORE instructions. After a return, the results are on 
the stack ready for further computation. 

There are two drawbacks of  this scheme. One is that 
although the work to load arguments onto the stack seems 
to be encoded as compactly as possible and can be execut- 
ed as fast as possible, the work done to store them is 
wasteful; it would be much better to have a way of using 
the arguments in place. The other is that code & t h e  form 
f [g  D, h D] requires the results o f g  to be saved before h is 
called, and then retrieved. 

5.3 Allocating the frame 

This too is done much as in § 4. However, a specialized 
heap is used to make the allocation nearly as fast as stack 
allocation; he same allocator is used for long argument 
records. A procedure specifies its frame size in its first 
byte by a frame size index into a array of  free lists called 
the allocation vector AV. Frame sizes increase from a min- 
imum of about 16 bytes m steps of  about 20%; less than 20 
steps are needed to cover any size up to several thousand 
bytes. 
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An element of  AV is the head of  a list of  free frames of  
that size; see figure 2. Each frame has an extra word which 
holds its frame size index, so that the size need not be 
specified when it is freed. Only three memory references 
are required to allocate a frame (fetch list head from AV, 
fetch next pointer from first node, store it into list head), 
and ibur to free it. I f  the free list is empty there is a trap 
to a software allocator which creates more frames of  the 
desired size. Note that the choice of  frame sizes is private 
to the compiler (which asssigns the frame size index 
value:;) and the software allocator (which replenishes the 
free lists), and is not known to the fast heap allocator.. 

This scheme wastes only 10% of  the space in fragmen- 
ration, plus space allocated to frames of  sizes not currently 
in demand. These two effects can be balanced: fewer 
frame sizes means more fragmentation, but more chance 
to use an existing free frame. The scheme is quite cheap to 
implement. It requires no special cases to handle the 
frames of  multiple processes or coroutines, retained 
frames, or argument records, since it does not depend on a 
last-in first-out discipline. 

In doing an XFER to a procedure descriptor, after the 
frame is allocated the returnContext is saved in its return- 
Link component, and the global frame address is saved in 
its globalFrame component. When transferring out of  a con- 
text, its program counter relative to the code base is saved 
in the PC component. When transferring into a context, 
the code base is recovered from the global frame and ad- 
ded to the PC component to get the next instruction 
address. 

6. Fast instruction fetching 

The Mesa implementation just described was designed to 
minimize the space required to encode control transfers, 
without compromising the generalit3' of  the model, and 
keeping almost all the state in main storage. We now turn 
to techniques for executing transfers quickly, in the 

common case of  procedure call and return. These techni- 
ques are based on the principle of  recognizing common 
special cases and optimizing them. The fully general mech- 
anism of  § 4-5 is preserved, however, so that there is al- 
ways an orderly fallback position if the preconditions for 
an optimization become too hard to esrablish. 

The goal is to make a call or return as fast as an uncon- 
ditional jump. Since a machine of  even moderate perfor- 
mance is likely to have some kind of  instruction fetch unit 
(IFU), this goal is unlikely to be achieved unless the IFU 
can follow calls and returns as well as it follows jumps. 
This observation suggests that a good model for a highly 
optimized call is the kind of  hand-tuned linkage that an 
assembly language programmer can devise between two 
routines which are both under his control. In such a 
linkage, the actual transfer is done by a branch-and-link 
instruction, which takes the procedure address as a literal 
operand and leaves the return address in a register. The 
parameters are passed in registers, and the procedure uses 
registers for its local storage if possible; ideally things are 
arranged so that these are disjoint from the registers used 
by the caller, so that nothing needs to be saved or restor- 
ed. Of course, this kind of  linkage is impractical in serious 
programming, because it is too hard to maintain all the 
assumptions on both sides as the program changes. We 
shall see, however, that it is quite practical for the com- 
piler and the interpreter to provide the same effect for 
nearly all cads, even without any inter-procedural static 
analysis. 

Code bytes 

Allocation vector 

Frame Heap 

Figure 2: The frame allocation heap 
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There are two quite different strategies for optimizing tran- 
sfers (or any other aspect of  implementing a programming 
language). One maintains the same encoding, but during 
execution dynamically recognizes special cases and handles 
them more efficiently. A cache is a standard example of  
this technique: it maintains the abstraction of a uniform 
store, but the implementation uses two or more levels of  
storage, and a perhaps complex scheme for transferring 
data among the levels and executing read and write oper- 
ations so that the properties of  the simple abstraction are 
preserved. Dynamic optimizations usually exploit some lo- 
cality property of  the running program. 

The other strategy maintains the same source language, 
but changes the encoding to reflect special cases which are 
recognized statically (usually by the compiler). This static 
method cannot deal with rapid changes m the program, 
since it requires recompilation or relinking to handle 
them. It usually exploits some fixed relationships among 
parts of  the program, and it does not depend on any 
locality properties to do this. A common name for this 
process is early binding. 

In dealing with procedure calls, it is natural to use static 
optimization to improve the process of  obtaining the new 
instruction address, giving up both code compactness and 
the freedom to rebind dynamically in various places in fa- 
vor of  a direct link from the caller to the called procedure 
at address p. Thus the idea is to have a DIRECTCALL p 
instruction; at p is stored the global frame address GF and 
the frame size fsi, immediately followed by the first 
instruction. Thus the L~U can treat a DIRECTCAI.J_, just like 
an unconditional j u m p  except that it converts GF and fsi 
into instructions of  the form SETGLOBALFRAME GF and 
ALLOCATEFRAMEfsi; there is no reason to waste space in 
storing the opcodes for these instructions. 

The disadvantages of  this scheme are the advantages o f  the 
current Mesa scheme: 

D1) The call instruction is larger: four bytes instead of  
one, for a 24-bit program address space; by having 
four DIRECTCALL instructions, we can extend this 
to 26 bits, and so forth. Of  course, two bytes of  LV 
entry are saved, so the space is only 30% more if 
the procedure is called only once from the module. 

D2) Multiple instances of  p's module are not possible, 
since the global environment information is bound 
into the code. But multiple instances, though use- 
frill, are not the norm, and it is reasonable to opti- 
mize for the single instance case. 

D3) Linking to p requires fixing up addresses through- 
out the code, as is traditional in conventional link- 
ers. This is especially inconvenient if the linkage 
has to be changed, but this happens relatively sel- 
dom. 

D1 is a simple time-space tradeoff. Further early binding 
may be able to put the called procedure close to the caller, 
so that a shorter, PC-relative address can be used. With 16 
such SHORTDIRECTCALL opcodes, a three byte instruction 
can address one megabyte around the instruction. I f  this 
succeeds, the space is the same as in the current scheme 
for a single call of  p from a module, and 50% more (6 
bytes instead of 4) for two calls. 

D2 is dealt with by falling back to the scheme of § 5 when 
multiple instances are required. Depending on the details 
of the encoding, this may require relinking or even recom- 
piling callers. Once the fallback has been accomplished, 
however, all the flexibility of  the model is again available. 
Thus the DIRECTCALL linkage should be regarded as an 
early binding, which is appropriate when the nature of  the 
procedure is well known; in a large programming system, 
most procedures are "in the system" rather than the object 
of current development, and hence are well known for this 
purpose. If  there is uncertainty about the procedure, it is 
best to stay with the more costly but flexible scheme. Note 
that with either linkage the program behaves identically 
(except for space and speed), so changing between them 
only changes the balance among space, speed of execution, 
and speed of  changing the linkage. Thus D3 too is a 
performance tradeoff. 

Returns cannot be handled statically, since in general static 
analysis does not reveal enough information about the 
caller(s). However, the IFU can keep a small stack of re- 
turn information: frame pointer, global frame pointer GF 
and PC. As long as calls and returns follow a LLrO 
discipline this allows returns to be hmndied as fast as calls. 
When something unusual happens (e.g., any XFER other 
than a simple call or return, or running out of space in the 
return stack), fall back to the general scheme by flushing 
the return stack: the frame pointer LF goes into the 
returnLink component of  the next higher frame, and the 
PC goes into the PC component of  LF. The global frame 
pointer can be discarded, since it can be recovered from 
the local frame. Then the rule for a return is simple: if the 
return stack is empty, proceed as in § 5. Otherwise start 
fetching instructions from the PC value on the return 

stack, and restore the frame and global frame registers 
from those values. 

7. Fast local variables and parameters 

This idea of  maintaining a limited stack in registers can 
also be applied to local frames and argument passing. 

7.1 Frames in registers 

Following [4], we suppose that the processor has a small 
number of  register banks (say 4-8) of  some modest fixed 
size (say 16 words). Each of these banks can hold the first 
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16 words of  some local frame. When a new frame is need- 
ed, it is allocated in the usual way, but a register bank (as- 
suming one is free) is also allocated to shadow its first few 
words. References to the shadowed words are made direct- 
ly to the register bank; to simplify this, the encoding is de- 
signed so that such references are made with distinct in- 
structions (the consequences of  addressing these words 
with ordinary memory-reference instructions are discussed 
later). When the frame is freed, the shadowing register 
bank is also marked free, and can then be used to shadow 
a newly created frame; its contents are unimportant, and 
never need to be saved in storage. The return stack dis- 
cussed in § 6 keeps track of the bank associated with each 
local frame, and the IFU passes this information along to 
the processor as the operand of  a XFER. 

If an overflow occurs (i.e., a new frame is created, and 
there are no register banks available), then the contents of  
the oldest bank is written out into the frame. If  an XFER is 
done to a frame which doesn't have a shadowing bank, a 
free bank: is assigned and loaded from the franae. As with 
a cache (of which this is a high_ly specialized form), the 
effectiveness of  the scheme depends on the rarity of  under- 
flow and overflow. Fragmentary Mesa statistics indicate 
that with 4 banks it happens on less that 5% of XFERS; and 
[4] reports that with 4-8 banks the rate is less than 1%. 
Intuitively, this means that long runs of  calls nearly 
uninterrupted by returns, or vice versa, are quite rare. 
Measurements are needed on a Ia~er set of  programs to 
confirm the effectiveness o f  this scheme, and of  the 
elaborations described below. 

As usual, when life gets complicated because o f  a process 
switch, trap or whatever, we fall back to the general 
scheme: all the banks are flushed into storage. It may be 
worthwhile to keep track of  which registers have been 
written, to avoid the cost of  dumping registers which have 
never been written. 

To gain maximum advantage from this scheme, the reg- 
ister banks should be large enough that nearly all refer- 
ences to local variables will fit. Mesa statistics suggest that 
95% of  all frames allocated are smaller that 80 bytes, and 
this sets a conservative upper bound on the size of  a regis- 
ter bank. With 8 banks of  80 bytes, there would be about 
5000 bits of registers, which does not seem unreasonable. 

The next step is to speed up flame allocation. Since nearly 
all local frames are fairly small, a reasonable strategy is to 
make the smallest frame size the 80 bytes just cited; hope- 
fully this would handle 95% of  all frame allocations. Now 
the processor can keep a stack of  flee flames of  this size, 
and allocation will be extremely fast; furthermore, it can 
be done in parallel with the rest of  na XFER operation. 
When the stack underflows, or if a larger local frame is 
needed, we fall back to the general scheme as usual. I f  the 
general scheme is five times more costly and it is used 5% 
of the time, the effective speed of  frame allocation is .8 

times the fast speed. 

One drawback of this approach is that extremely deep re- 
cursion, or the presence of  a very la~e number of  proces- 
ses, might result in thousands of  80 byte frames in which 
only 20 bytes are used. If  this is a real problem, an alterna- 
five strategy is to defer allocating the frame until a register 
bank must be flushed out. This means that 95% of  the 
time there will be no allocation at all. Unfortunately, it 
also means that a local variable may have no assigned 
memory address; the consequences of  this are discussed in 
§ 7.4 below. 

7.2 Argument passing 

In addition to local variables, the Mesa encoding also 
makes use of  an evaluation stack for expression evaluation 
and argument passing. It is natural to use the register 
banks of  § 7.1 to hold this stack also. As Patterson points 
out [4], this has the nice property that after the arguments 
have been loaded on the stack, the bank holding the stack 
can be renamed to be the shadower for the local frame of  
the called procedure. As a consequence, the arguments 
will automatically appear as the first few local variables, 
without any actual data movement. Thus on a call the pat- 
tern is: 

(top of  return stack).Lbank: = current Lbank 
current Lbank: = stack 
aack: = newly assigned bank 

On a return, the stack should remain as it is, and the cur- 
rent frame should be freed: 

free current Lbank 
current Lbank: = (top of  return stack).Lbank 

Thus the banks are not used in last-in first-out order. 
Figure 3 illustrates. 

This scheme provides essentially free passing of  arguments 
and results; the only cost is the instructions to load them 
on the stack, and this seems unavoidable since the desired 
values must be specified somehow. Of course addresses 
can be loaded instead of  values, but this isn't much cheap- 
er, and it makes every reference to the value of  an argu- 
ment more expensive. Schemes which assemble either 
addresses or values in memory will certainly be more ex- 
pensive. 

7.3 Why not just a cache? 

Why is this scheme better than simply keeping the frame 
in main storage, and taking advantage of  a cache to make 
accesses faster? There are several reasons. 

• A register bank is faster than a cache, both because 
it is smaller, and because the addressing mechanism 
is much simpler. Designers of  high-performance 
processors have typically found that it is possible to 
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Figure 3: Assignment of register banks for stacks and framgs 

read one register and write another in a single 
cycle, while two cycles are needed for a cache ac- 
cess. It is not too hard to build a cache which can 
accept a reference ever)' cycle, but the latency is 
still two cycles. Also, since there are not too many 
legisters it is feasible to duplicate or triplicate them, 
so that several registers can be read out simultan- 
eously. 

• Because they are faster: registers have more band- 
width, especially if they are duplicated. But more 
important, storing frequently accessed locals in reg- 
isters frees up cache bandwidth for more random 
references. Half or more of  all data memory refer- 
ences may be to local variables [4]. Removing this 
burden from the cache effectively doubles its band-  
width. 

• The locality of  references to local variables is so 
much better than the locality of  data references in 
general that another level of  memory hierarchy 
which exploits uhis locality is highly worthwhile. 
Since the compiler can control quite well how these 
references are made, the hardware supporting this 
level can be much simpler than a general-purpose 
cache, which must fully support the simple read- 
write properties of  storage in general. 

• As a corollary of  the last point, the simple ways in 
which local variables are addressed (nearly always 
by a constant displacement in an instrmction) makes 
the addressing logic for a register bank both simple 
and fast. The scheme we have describe addresses 
the registers from one of m'o base registers conca- 
tenated with a four or five bit displacement. No 
comparators, associative lookup or other compli- 
cation is needed. 

The free argument passing of  § 7.2 won't work if 
local variables are in a cache (unless the stack is 
kept there too, which is clearly not a good idea, be- 
cause it demands much more bandwidth). 

7.4 Pointers to locals 

It may be necessary to supply storage addresses which can 
be dereferenced to yield local variables. This can happen 
in a language like BCPL or C which explicitly allows the 
programmer to construct pointers to local variables. It can 
also happen in Pascal when a local variable is passed as a 
var parameter, or when a nested procedure does up-level 
addressing. There are two Tiresome consequences: 

C1) The variable must have an address; this rules o u t  

the trick of  deferring allocation of  a flame in stor- 
age until it is needed for dumping the register 
bank  

C2) When the address is used, the data must come from 
(or go to) the register, rather than to storage. Alter- 
natively, the register bank must be flushed when 
any register in it is addressed. This is an instance of  
the multiple copy problem. 

The simplest solution is avoidance: outlaw pointers to 
local variables or the local frame. The (doubtless incom- 
plete) list of  ways in which such pointers can arise sug- 
gests, however, that this may be unacceptable. We there- 
fore consider how to deal with these problems. 

C1 can be handled in two ways. One possibility is to give 
up the deferred allocation trick entirely, since it pays off 
only when there is deep recursion or a very large number 
of processes, each with several flames. Alternatively, if 
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there is a special operation for generating a pointer to a 
local variable, this operation can do the allocation. In the 
normal case no such pointers will exist, and no allocation 
will be done. 

C2 can be avoided in most languages by flagging local 
flames to which pointers can exist; this can be done static- 
ally b y  the compiler, or dynamically as suggested in the 
previous paragraph. A flagged frame is flushed to storage 
whenever control leaves its context: of course it must be 
reloaded whenever control returns. Now the frame can be 
correctly referenced by ordinary storage instructions, ex- 
cept when control is in its context. This is good enough for 
Pascal; it fails if the context., or some other process execut- 
ing concurrently, can get hold of  pointers to its own locals 
as source-language values. Either of  these cases is highly 
undesirable for other reasons, however, and can reason- 
ably be outlawed. 

If  C2 is not avoided, it must be detected. Patterson [4] 
suggests that by confining frames to a fixed frame region 
of the address space, we can be sure for most storage refer- 
ences that C2 has not arisen; another possibitity is to mark 
pages containing frames. An address in the frame region, 
however, must be compared with the address assigned to 
each of  the register banks. If  there is a mazch, then the 
register bank can be flushed, after which the storage 
reference can proceed normally. Alternatively, the refer- 
ence can be diverted to read or write the proper register. 
The mechanism needed for this is similar to that required 
on machines like the PDP-]0 whose registers are also part 
of  the address space. Depending on the implementation of  
the storage system, diversion may be easy or quite diffi- 
cult. I f  it is easy, it is certainly the best way to deal wi,£q 
C2; even if the register reference is handled quite clumsi- 
ly, so that it takes much longer than an ordinary storage 
reference, such references are not common, and hence the 
cost will be small. 

It is worth remembering that the value of  an optimization 
depends on the statistics of  the programs being executed. 
Our empirical data is very preliminary, and it is always 
possible that changes in the important applications, or in 
programming style, will cause the conclusions to change. 
Past experience suggests, however, that major changes in 
the source programs seldom affect the value of  previously 
valid optimizations by more than a few percent. 

The scheme of  § 5 has been implemented in the Mesa pro- 
gramming system for several years. We intend to try the 
ideas of  § 6-7 in the near future. 
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8. Conclusion 

We have seen that a very general model for conu'ol trans- 
fers can be implemented with a wide variety of  tradeoffs 
among three factors: 

SimpliciO, of the implementation (both compiler 
and interpreter); § 4 ma.xhnizes simpIicity. 

Space taken up by the program (both instructions 
and procedure descriptors); § 5 minimizes space. 

Speed of execution; ~ 6-7 maximizes speed. 

Clearly many intermediate positions are possible. I f  a mod- 
erate amount of  implememation complexiB' can be tolera- 
ted, an encoding which allows both the generality of  § 5 
and the early binding of  § 6 is attractive: the programming 
environment can automatically converz bem, een the two 
representations when appropriate. 
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