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Abstract

Assembling a large system from its component elements is
not a simple task. An adequate notation for specifying this
task must reflect the system structure, accommodate many
configurations of the system and many versions as it
develops, and be a suitable input to the many tools that
support software development. The language described
here applies the ideas of A-abstraction, hierarchical nam-
ing and type-checking to this problem. Some preliminary
experience with its use is also given.

1. Introduction

Assembling a large system from its component elements is
not a simple task. The subject of this paper is a language
for describing how to do this assembly. We begin with a
necessarily terse summary of the issues, in order to es-
tablish a context for the work described later.

A large system usually exhibits a complex structure.
1t has many configurations, different but related.
Each configuration is composed of many elements.
The elements have complex interconnections [5).
They form a hierarchy: each may itself be a system.

The system develops during a long period of design and im-
plementation, and an even longer period of maintenance.

Each element is changed many times,
Hence there are many versions of each element.

Certain sets of compatible versions form releases.
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Many tools can be useful in this development,
Translators build an executable program.
Accelerators speed up rebuilding after a change.
Debuggers display the state of the program.
Databases collect and present useful information [7].

The System Modelling language (SML for short) is a nota-
tion for describing how to compose a set of related system
configurations from their elements. A description in SML
is called a model of the system. The development of a
system can be described by a collection of models, one for
each stage in the development; certain models define
releases. A model contains all the information needed by a
development tool; indeed, a tool can be regarded as a
useful operator on models, e.g., build system, display state
or structure, print source files, cross-reference, etc.

In this paper we present the ideas which underlie SML,
define its syntax and semantics, discuss a number of prag-
matic issues, and give several examples of its use. We
neglect development (changes, versions, releases) and
tools; these are the subjects of a companion paper [11].
More information about system modelling can be found in
the second author’s PhD thesis [15], along with a discus-
sion of related work [1, 2, 3, 8, 16]. _

1.1 Background

SML is the heart of the program development system being
built as part of the Cedar project [6] at Xerox PARC. The
SML language, and indeed most of the implementation,
does not depend on the languages in which the system ele-
ments are written. Most of our experience, however, is
with elements written in the Cedar language, which is an
outgrowth of Mesa [13]; these elements are called modules.
Mesa (and hence Cedar) has a very general mechanism for
interconnecting modules, and hence is a good test of the
SML facilities for interconnection.

The Cedar programmer writes SML programs, called
system models, to specify the modules in his system and
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the interconnections among them. These system models
are analyzed by a program called the system modeller that
automates the program development cycle by tracking
changes to modules and controlling the compiling and
loading of systems.

A system model is a stable, unambiguous representation
for a system. 1t is easily transferred among programmers
and file systems. It has a readable text representation that
can be edited by a user at any time. Finally, it is usable by
other program utilities such as cross-reference programs,
debuggers, and optimizers that analyze inter-module rela-
tionships.

1.2 Organization of the paper

The remainder of this introduction contains a summary of
the basic ideas behind the design and implementation of
the SML language; each idea is explained in detail in its
proper place later in the paper. Then comes an example of
a model for a small but rather intricate Cedar system (§ 2).
The next two sections give the syntax and semantics of
SML (§3) and explain the many uses of functions and
function application (§4). Then a number of pragmatic

issues are discussed: the treatment of files containing

system elements, the implementation of the SML evaluator,
and experience with the language (§ 5). A conclusion (§ 6)
is followed by an appendix with the model for a
significant component of the Cedar system.

1.3 Basic ideas

System modelling is based on a few simple ideas which are
applied uniformly. Because the semantics are very simple,
it is easy to determine the meaning of a model. Concise-
ness and expressive power come from lambda abstraction
and hierarchical naming,

Models are functional. A system is described by a model,
which is a functional program, i.e., a program that is ex-
ecuted only for its result and has no side-effects. The
result of executing the model is the desired system.

Everything is a value. The primitive values are inherited
from Cedar (or any language in which the elements are
programmed). SML has three kinds of composite values;

Functions.
Bindings, or sets of [name, type, value] triples.
Declarations, or sets of [name, type] pairs.
An element may have a composite value. In addition, such
values can be constructed in SML.

Abstraction is done with functions, A function can take any
kind of arguments and return any kind of results. Any
SML expression can be turned into a function by A-

abstraction; some of the many uses of this mechanism are
given in § 4.

Structure is expressed by bindings. Any collection of [name,
value] pairs can be aggregated into a single value called a
binding. Because the values can themselves be bindings,
any amount of detail can be subordinated hierarchically. A
binding can provide a context for interpreting a hierarchi-
cal name such as Cedar.Compiler. Parser. NextState.

Checking is done with types. The type of a function is an ar-
row type (7= U), which specifies the types its arguments
must have and the types of its results. In each application
the arguments are checked to ensure they meet the func-
tion’s requirements. In addition to providing type-check-
ing for SML programs, this also allows any type-checking
in the elements to be extended to their interconnections.

The type of a binding is a declaration. In a A-expression,
the required types of the arguments are given by a declara-
tion. This allows the body to be type-checked only once,
before the A-expression is applied.

A model is complete. Abstractly, it contains the entire text
of all the elements of the program. In an implementation,
the text may be stored in separate files and referenced by
name, but the text associated with such a name must never
change, so this separation is strictly an implementation
technique and does not affect the semantics. Of course a
model with parameters is not complete until it is applied.

Only source text is real. The object files output by trans-
lators etc. are an implementation technique for accelera-
ting the rebuilding of a system after minor changes.

2. An example

This section gives a small but rather intricate example of a
model for a Cedar program. For the sake of concreteness,
it explained entirely in Cedar-specific terms, rather than in
the more general terms of SML. The interfaces, implemen-
tations and instances described here are identical to those
in Mesa; these structuring methods have been used for
several sizable systems, in the range of 100k to 500k lines
of source code [9, 10, 12].

A Cedar system consists of a set of modules. There are two
kinds of module: implementation (PROGRAM) modules, or
interface (DEFINITIONS) modules. An interface module
contains constants (numbers, types, inline procedures, etc.)
and declarations for values to be supplied by an imple-
mentation (usually procedures, but also types and other
values). A module M, that calls a procedure in another
module M, must IMPORT an instance Inst of an interface /
that declares this procedure. /nst must be EXPORTed by
the PROGRAM module M,. For example, a procedure Sort-
List declared in a module SortImpl would also be declared



in an interface Sort, and SortImpl would EXPORT an in-
stance of Sort. A PROGRAM calls SortList by IMPORTing
this instance of Sort and referring to the SortList
component of the instance. We call the importer of Sort
the client module, and say that SortImpl (the exporter)
implements Sort. Of course SortImpl may itself IMPORT and
use interfaces that are defined elsewhere.

These interconnections are shown in Figure 1, with
filenames for each module shown in bold above the mod-
ule text. The interface Sort defines an Object composed of
a pair [x, y] of coordinates. The exporter, SortImpl, declares
a procedure SortList that takes a list of these objects and
sorts them. ClientImpl defines a procedure Tes: that calls
SortList 10 sort a list of such objects.

Sort.cedar

Sort. DEFINITIONS~{
Object. TYPE~RECORD|
X ¥, INT];
CompareProc. TYPE~PROC
[a, b: Object) RETURNS [BOOL);
SortList. PROC
{LIST OF Object, CompareProc]

RETURNS[LIST OF Object];
}
ClientImpl.cedar SortImpl.cedar
DIRECTORY DIRECTORY
Sort; Sort;

ClientImpl: PROGRAM
IMPORTS Sort~{
Test: PROC[I: LIST OF Object]~{
--Calt SortList with this list.
1« Sort.SortLis{l, Compare];

SortImpl: PROGRAM
EXPORTS Sort~{
SortList; PUBLIC PROC|
I: LIST OF Object,
Compare: CompareProc)
e RETURNS[n/: LIST OF Objeci}~{
I --Code to sort the list /,
Compare: CompareProc~{ climinating duplicates
--Compares the two objects, .
--returns less, equal or greater. };

¥
Figure 1. An interface, an implementor and a client

2.1 Several interfaces

Usually there is only one version of a particular interface
in a Cedar program. Sometimes, however, it is useful to
have several versions of the same interface, especiaily
when the interface defines some constants,

On the left in Figure 2 is the Sorsr module from Figure 1,
and on the right a similar module that defines an Object to
be a string instead of a pair of coordinates. A module that
uses Sort must be compiled with one of the two versions,
since the compiler must know the type of each name in an
interface. This is interface parameterization, since the types

of items from the interface used by a client (ClientImpl) are
determined by the specific version of the interface (Sort-
Points or SortNames). The actual argument supplied for the
Sort parameter is determined by the model for the pro-
gram; see below.

SortPoints.cedar SortNames.cedar

Sort: DEFINITIONS ~{
Object. TYPE~RECORD[
x: STRING |;
CompareProc: TYPE~PROC
[a, b: OFjecs} RETURNS [BOOL];
SortList: PROC
[LIST OF Object, ComparePrac]
RETURNS[LIST OF Object];

Sort: DEFINITIONS~{
Object: TYPE~RECORD|
x y. INT];
CompareProc, TYPE~PROC
[a. b: Object] RETURNS [BOOL):
SortList: PROC
[LIST OF Object, CompareProc]
RETURNS[LIST OF Object];

} i3

Figure 2: Two versions of the same interface

The parameterization can be arranged differently, to re-
flect the fact that most of the SortPoints and SortNames
interfaces are identical. On top in Figure 3 is a single Sort
interface which takes an ObjectType interface as a param-
eter. Below are two versions of ObjectType. SorfPoints] is
the same as SortPoints in Figure 2; Sorf{Names] is the same
as SortNames. A model using these modules'is given in
Figure 7.

Sort.cedar

DIRECTORY
ObjectType USING [Object];

Sort: DEFINITIONS~{
CompareProc: TYPE~PROC
[a, b: Object] RETURNS [BOOL];
SortList. PROC
[LIST OF Object, CompareProc}
RETURNS[LIST OF Object];
}

Points.cedar Names.cedar

ObjectType: DEFINITIONS~{
Object: TYPE~RECORD[
X y.INT];

ObjectType: DEFINITIONS~{
Object: TYPE~RECORD[
x: STRING };

Figure 3: A parameterized interface

It might be argued that this example should be done with
instance parameters, like the ones in § 2.2 below, and that
interface parameters are needed only because part of the
implementation (namely the actual value of the type Ob-
Jject) was improperly put in the interface. If the interface
were a pure declaration, with all values supplied by an im-
plementation, there would be only one Sort interface as in
Figure 4. Cedar does allow type declarations (rather than
actual values such as RECORDY, . .]) to appear in interfaces,
and the Sorr of Figure 4 would actually be fine, because
the client does not depend on the type value. In general,



however, constant values in interfaces cannot be avoided
in Cedar, because the only way to supply an argument
value (such as a type) at compile-time is to put it in an in-
terface (Ada goes half-way by allowing it to be in the
private part of the package specification). This is probably
a deficiency in the Cedar implementation. From the point
of view of this paper, however, it illustrates the ability of
system modelling to handle an imperfect programming lan-
guage.

Sort.cedar

Sort: DEFINITIONS~{
Object: TYPE;
CompareProc. TYPE~PROC
[a. b: Object] RETURNS [BOOLY;
SoriList. PROC
[LIST OF Qbject, CompareProc)
RETURNS[LIST OF Qbject];

IR

Figure 4: A single Sort interface with a type declaration

Quicksort.cedar Heapsort.cedar
DIRECTORY DIRECTORY
Sort; Sort,

Quicksort: PROGRAM
EXPORTS Sort~{
SortList: PUBLIC PROC]
I LIST OF Object,
Compare: CompareProc]
RETURNS|[al: LIST OF Object]~{

Heapsort: PROGRAM
EXPORTS Sort~{
SortList: PUBLIC PROC]
I LIST OF Object,
Compare: CompareProc)
RETURNS[n/: LIST OF Object]~{

--Code to sort the list /, --Codc to sort the list /,
eliminating duplicates. eliminating duplicates
--Uses Quicksort --Uses Heapsort
h b
I3 }
ClientImpl.cedar
DIRECTORY
Sort;

ClientImpl: PROGRAM
IMPORTS Quicksort: Sort, Heapsort: Sort~{
Test: PROC[L: LIST OF Objeci]~{
--Quicksort the list.
quickL: LIST OF Object ~Quicksort.SortLis{], Compare];
--Now try Heapsort.
heapL: LIST OF Object ~ Heapsort.SortLisdl, Compare];
IF NOT ListEqual{quickL, heapL] THEN ...

IS
Compare: CompareProc~{
--Compares the two objects; returns less, equal or greater.

i3

Figure 5: Two implementations of an interface

2.2 Several instances

When there is only one interface, it may have several im-
plementations, For example, a system that uses the left ver-
sion of the Sort interface in Figure 2 might use two differ-
ent versions of the module that EXPORTS Sort, one using
the Quicksort algorithm and the other using the Heapsort
algorithm to do the sort. Such a system includes both
implementors of Sort, and must specify which SortList rou-
tine the clients get when they call Sort.SoreLisf]. In Cedar
a client module can IMPORT both versions, as shown in
Figure 5.

In Figure 5, Quicksort and Heapsort each EXPORT a SortList
procedure to the Sort interface: Quicksort.SortList uses
Quicksort to sort the list; Heapsort.SortList uses Heapsort.
ClientImpl imports each version under a different name, in
this case the same names (Quicksort and Heapsort) used for
the implementation modules. The client procedure Tes
calls each SortList in turn by specifying the name of the
interface and the name of the procedure (e.g. Quick-
sort.SortList|. . .]). This client has three parameters: an in-
terface Sort and two instances of Sort (Quicksort and
HeapSorf). A reasonable application in a model which uses
this client might be something like
ClientImpl[Sort, Quicksort, Heapsor)

ClientImpl.cedar

DIRECTORY
SortPoints: INTERFACE Sort,
SortNames. INTERFACE Sort,

ClientImpl: PROGRAM IMPORTS
QuicksortP: SortPoints, HeapsortP: SortPoints
QuicksortN: SortNames, HeapsortN: SortNames~{

LP: TYPE~LIST OF SortPoints.Object,
LN: TYPE~LIST OF SortNames.Object;

Test: PROC[Ip: LP, In: LN}~{
--Quicksort tlie list of points.
quickLP: LP~QuicksortP.SortList{lp, ComparP},
--Now try Heapsort.
heapLP: LP~ HeapsortP.SortLisiIp. CompareP];
IE NOT ListEqualP{guickLP, heapLP] THEN . . .

--Now do it for names.
quickLN: LN~ QuicksortP.SortLisf{In, CompareN];
heapLN: LN~ HeapsortP.SoriLis{in, CompareN];
IF NOT ListEqualN|quickLN, heapLN] THEN . ..
- h
CompareP. SortPoints.CompareProc~{
--Compares the two oljects; returns /ess, equal 01 greater.

¥
CompareN: SortNames.CompareProc~{

oo b
}

Figure 6: A client with two interfaces and four instances



This would not be legal in SML because of the rules for
binding function parameters (see § 3.4), but the model for
a slightly more complicated system than this one is given
at the end of this section.

We can put the examples of Figures 3 and 5 together to
get the somewhat contrived client program in Figure 6,
which has two interface parameters and four instance pa-
rameters. It sorts both lists of Points and lists of Coords,
using both Quicksort and Heapsort. Thus there are two in-
terfaces, for the two types of lists being sorted, and four in-
stances, one for each combination of type and sorting
method.

2.3 Parameterization in SML

We are now in a position to understand the model within
which the interface modules of Figure 3, the Sort imple-
mentations of Figure 5, and the client of Figure 6 can be
embedded; it is given in Figure 7.

Client.model

SortTest ~ |

-- Interfaces

Points; INTERFACE ObjectType ~ @Poinis.cedar];

Names: INTERFACE ObjectType ~ @Names.cedar[];

Sort: [INTERFACE ObjectType]~>[INTERFACE Sort] ~ @Sort.cedar;

SortP; INTERFACE Sort ~Son[Points];

SortN: INTERFACE Sort ~Sort{Names];

-- Implementations

Quicksort: [I: INTERFACE Sort]=[Inst: 1] ~ @ Quicksort.cedar,

Heapsort: [I: INTERFACE Sort}~>[Inst: I} ~ @Heapsort.cedar,

-- Now the instances and the client.

Client: CONTROL ~ @ClientImpl.cedar
SortPoinis~SortP, SortNames~ SortN,
QuicksortP~QuicksorSortP). QuicksortN~ QuicksorfSortN],
HeapsortP~ Heapsor{ SortP), HeapsortN~ Heapsort{SortN] ]

|

Figure 7: A system model with several of everything

This model is a binding, which gives values to eight
names. Points, Names, Sort, SortP, SortN, Quicksort, Heap-
sort, and Client. The first three are bound to the corres-
ponding Cedar modules (the module stored on file F is
referred to by the expression @F, as in @Points.cedar).
Note that Sort is a function, since it takes a parameter (the
type of the objects to be sorted) and returns a Sorz inter-
face. The type INTERFACE N is the type of the value re-
turned by a Cedar module which begins N: DEFINITIONS;
it acts as the bridge between the SML type system and the
Cedar type system, which SML does not understand, Then
SortP and SoriN are bound to the Sor: interfaces for points
and names, obtained by applying the function Sort to the
interfaces Points and Names. They have the same type
(INTERFACE Sors).

Next the two Sorr implementations are bound to Quicksort

and Heapsort. Both of these are functions, since they
depend on the Sort interface; note that they return
(EXPORT) an interface whose type is given by their
argument. Finally, the client can be applied to its six argu-
ments. This model does not give names to the four in-
stances of Quicksort and Heapsort, although it could have
done so and then used those names for the arguments to
Client. Alternatively, we could have refrained from naming
Points and Names, writing instead

SortP: INTERFACE Sort ~Sorf{@Points.cedar]};
SortN: INTERFACE Sort ~Sor{@Names.cedar[]}).

We used a binding for the arguments of Cliens to make the
correspondence of arguments and parameters clear. If all
the arguments have unique types, the parameter names
can be omitted in an application; this is the usual case, but
this example is different. In addition, any argument can be
defaulted to the name of the corresponding parameter;
defaulting is specified by writing a * between the function
and the arguments. This model would normally be written
[...

SortPoinis: INTERFACE Sort ~Sort[ Points];
SortNames: INTERFACE Sort ~Sorf Names];

Client: CONTROL ~ @ClientImpl.cedar*{
QuicksortP~Quicksorf{SortPoints}, QuicksortN~Quicksorf{SortNames),
HeapsortP~ Heapsor|SortPoints), HeapsortN~ HeapsorSortNames] ]

1
with the interface parameters to Client defaulted. If we

named the instances of Sort with the names used in the
domain declaration of ClientImpi, we could default those

parameters also, getting simply
Client: CONTROL ~ @ClientImpl.cedar*(]

for the client.

The kinds of values in SML follow naturally from the ob-
jects being represented.

The value of @Points.cedar] is the file for the inter-
face module Points.cedar. When SortTest is built, this
module will be compiled, and it is actually the result-
ing object file that is passed as the Points argument
when Sorr is compiled; it is possible to think of this
object file as the value of @Points.cedar].

The value of @Quicksort.cedar can only be the source
file, since the Cedar implementation requires all the
interface arguments to be supplied at compile time.

The value of Quicksor{SortP] is the instance of SortP
returned by Quicksort. To run the program, we need a
representation of this instance which is a record of
procedure descriptors produced when the object file
gotten by compiling QuicksorSortP] is loaded. Note
there are two object files for Quicksort in this exam-
ple; one corresponds to Quicksor{SortP] and exports
SortP, and the other corresponds to Quicksor{SortN]
and exports SortN.

It is instructive to distinguish the two kinds of arguments



by the difference in implementation. An interface argu-
ment is supplied to the compiler, which checks the types
of the various objects and procedures. An instance argu-
ment is supplied when a module is loaded and the imports
of other modules are resolved.

The reader who is frustrated by this rather unrealistic ex-
ample may wish to examine the more realistic one in §4.3,
and the real system model in the Appendix.

3.The SML language

In this section we describe the polymorphic applicative lan-
guage SML which was illustrated in the previous section.
SML was devised to serve two purposes:

It is a notation for describing the composition of a sys-
tem from its elements,

It is roughly the applicative subset of the Cedar
Kernel language.

The Kernel is a small, precisely defined and intuitively
simple language, with the property that any Cedar
program can be straightforwardly rewritten as a Kernel
program. The Kernel program may invoke some proce-
dures from a fixed library; e.g., i+; is rewritten as IN-
TEGER.PLUS|;, . Eventually, the Kernel will be a subset of
Cedar. When this happens, Cedar programmers will write
programs and describe systems in the same underlying lan-
guage.

Thus SML is both independent of Cedar, in the sense that
it can be used to compose elements written in any
language, and very closely related to it, in the sense that it
is a subset of an evolved Cedar language. This paper views
SML. primarily as a subset of Cedar, but its general utility
is discussed in § 3.2 and § 5.

3.1 Concepts

The SML language is built on four concepts:

Application of functions: Any expression can be made
into a function by A-abstraction. Application is the
basic method of computing. There are no side-effects;
hence an expression can be replaced by its value with-
out changing the meaning of a program.

Values: Everything is a value, including types and
functions.

Bindings: [Name, value] pairs can be grouped into
sets called bindings; the values are identified by their
names. Every name is interpreted by looking it up in
some binding,

Types: Every name has a type, and strong type-check-
ing ensures that the value of the name has that type.
Function bodies are checked independently of applica-
tions.

3.1.1 Application

The basic method of computation in SML (as in Lisp) is by
applying a function to argument values. A function is a
mapping from argument values to result values.

A function is implemented either by a primitive supplied
by the language (whose inner workings are not open to
inspection) or by a closure. A closure is the value of a A-ex-
pression whose body in turn consists of applications of
functions to arguments, ¢.g. A[x: INT] IN x+y+3 where x:
INT is a (typed) parameter, y is a free name, and x+y+3
is the body. A closure is a triple:

parameters. a declaration;

environment. a binding equal to the current environ-
ment of the A-expression;

body: an expression, the body of the A-expression.

It is helpful to think of a closure as an expression together
with values for all its free names except the parameters;
hence the term closure. Evaluation always terminates in
SML because there are no conditionals; thus an equivalent
way to evaluate a A-expression is to replace all the free
names in the body with their current values, and make a
closure with an empty environment.

A A-expression that doesn’t return values is useless, since
there are no side effects. Application is denoted in pro-

-

grams by expressions of the form flarg, arg, ... ].

3.1.2 Values

An SML program manipulates values. Anything that can
be denoted by a name or expression in the program is a
value. Thus strings, functions, interfaces, and types are all
values, In the SML language, all values are treated uniform-
ly, in the sense that any can be

passed as an argument,
bound to a name, or
returned as a result.

These operations must work on all values so that applica-
tion can be used as the basis for computation and A-expres-
sions as the basis for abstraction. In addition, each partic-
ular type of value may have its own primitive functions;
e.g., equality for most types, plus for integers, etc. None of
these operations, however, is fundamental to the language.

SML has very few types of values, since it is not intended
for general-purpose computing. The primitive types are
STRING, TYPE, and INTERFACE n for any name n. Strings
are useful for compiler options and as components of file
names, SML also has string literals. E.g., the binding

[x: STRING ~ "lit",

y: STRING ~ x]
gives x and y the string value "lit". TYPE is the type of a



type, i.e. of STRING, TYPE, INTERFACE #, or a declaration;
it is seldom needed in models.

INTERFACE n is the type of the value returned by a Cedar
interface module named n; thus INTERFACE Sort is the
type of the Sort interface returned by the Sort modules in
§ 2. Every value has to have some type, and there isn’t any-
thing more specific to say about the type of the Sors inter-

face. It would be slightly simpler to have a single type IN=
TERFACE which is the type of every interface value. In

practice, however, an interface is usually identified by its
name, and the more specific type provides a useful check.
This point is treated in more detail in § 3.

In addition to values of these primitive types, there are
two kinds of composite values:

Junctions, whose types are arrow types, e.g., T—U,;
bindings, whose types are declarations.

3.1.3 Bindings and scope

A binding is an ordered set of {name, type, value] triples,
often denoted by a constructor like this:

[x: STRING ~ "s", y: STRING ~ "t"]
or simply

[x~"s",y~"t"].
Individual values can be selected from a binding using the
"." operation, which is like Pascal record selection: if b is
the binding above, then b.x denotes "s" and has the type

STRING.

Since the values in a binding can also be bindings, it is pos-
sible to have a single binding which is a multi-level, hierar-
chically named set of values. This is exactly the same
power provided by a hierarchical file system, e.g., the one
in Unix. Any amount of information can be denoted by a
single name. For example, in the Appendix Cedar is a bind-
ing which contains a large set of Cedar system interfaces.

There are two useful operators for combining bindings. If
b, and b, are bindings with no names in common, then
b, + b, is the union; if there are names in common, this ex-
pression is an error. This also works for declarations. The
expression ) THEN b,, on the other hand, is never an er-
ror; if n appears in both bindings, it has the value by.n in
the result. Some other, more esoteric operators on bind-
ings are described in § 4.1.

A scope is a region of the program in which the value
bound to a name does not change. For each scope there is
a binding that determines these values, called the current
environment. A new scope is introduced by IN following a
LET or A, or by a [ ... ] constructor for a binding. LET
adds the names in a binding to the current environment:
LET bIN exp

changes the current environment for exp to & THEN ENV,
where ENV is the current environment for the LET expres-

sion. Thus it makes the names in b accessible in exp with-
out qualification. A A does the same thing when it is ap-

plied, using the arguments as the first binding;
+ (A dIN exp)args}

is equivalent to
LET d~args IN exp.

In a binding constructor #, the current environment is
THEN ENV; thus expressions in the constructor see all the
names being bound.

LET expressions are useful for giving names to cumber-
some expressions. For example, a set of standard Cedar in-
terfaces can be defined in the file Cedar.model:

[ Rope: INTERFACE Rope ~ @Rope.cedar*[],

I10: INTERFACE IO ~ @IO.cedar*]),

aSpace: INTERFACE Space ~ @Space.cedar*[} ]
Then a LET expression like

LET C~@Cedar.Model IN[ ... C.Rope...]
is equivalent to

[...(@Cedar.Model).Rope. . .}
which in turn is equivalent to

{...@Rope.cedar...]
It is also possible to make a prepackaged set of definitions
directly accessible. For instance, the previous expressions
are also equivalent to

LET @Cedar.Model IN[ .. . Rope .. .]
(provided Rope is not bound in the [ . . . ]). After the IN
the identifiers Rope, 10, and Scope can be used without
qualification.

A declaration is the type of a binding. It is an ordered set

of [name, type] pairs, often denoted
[x: STRING, y: STRING].

If d is a declaration, a binding & has type d if it has the
same names, and for each name » the value b.n has the
type d.n.

3.1.4 Types

A type in SML is a predicate on values: a function which
maps a value into a Boolean. If T is a type and T[x] is
true, we say that x has type T. A function f has an arrow
type D—U, where D is a declaration. When fis applied to
an argument x, we require that x have type D, thus an ar-
gument must be a binding. This is called a type check; if it
fails, there is a type error. The type of fx] is U. For a func-
tion in which the result type depends on the arguments
(e.g., an implementation module, which maps an interface
I into an instance of type I), U is itself a function, which
must be applied to the arguments to yield the result type.
Thus in this case the type of f[x] is U[x]. Rather than writ-
ing the function explicitly, we infer its presence whenever
U has a free name declared in D; thus

[x: I-U
is shorthand for

[x: T]=(A [x: T}=>TYPEIN D).

If fis primitive (e.g., if it is the value of a Cedar module,
rather than of a A-expression in SML) the type check en-



sures that the primitive is getting the kind of arguments it
expects. For example, when a module imports an instance
of the SortPoints interface (see Figure 2), the type check en-
sures that it will actually get an instance of SortPoints,
rather than an instance of SoriNames, or of BesselFunctions.
Since Cedar itself is strongly typed, it chooses the types of
its modules so that this check is sufficient to ensure that
the individual procedures and other values in the instance
have the proper types. Thus the type-checking of SML ex-
tends the type-checking of Cedar to the composition of an
entire program.

Within SML itself the main role of types is in the declara-
tions in a A-expression. In the expression

Ad,—d, INexp
the types of the parameters in 4; are a pre-condition for ap-
plying the function: the arguments must have those types.
The types of the results in 4, are a post-condition: the
results are guaranteed to have those types. Thus:

The caller must establish the pre-condition (supply ar-
guments of the right types) and may assume the post-
condition (count on the types of the results).

Symmetrically, the A-body may assume the pre-condi-
tion (count on the types of the parameters), and must
establish the post-condition (supply results of the
right types).

Like any pre-conditions and post-conditions, the purpose
of the declarations is to allow the body and the application
to be checked independently of each other. Once the body
has been checked (assuming the declared types for the
parameters) it is certain that if an application doesn’t cause
a type error, then the expression which results from sub-
stituting the arguments for the parameters will not cause a
type error.

A secondary use of types in SML is in bindings. The
binding

n T~e
is a type error unless e has type T; if it checks, » has type
T in the binding. This is a form of redundancy which is of-
ten useful, but it is entirely optional. If 7 is omitted, then
n has the type of e.

To do the type-checking, it is necessary to be able to com-
pute the type of each expression. This is done by the usual
induction on the structure of expressions. Every name has
a type, because the name is introduced either in a binding
or in a declaration, Every literal has a type derived from
its syntax; e.g., the type of "abc™ is STRING. Every Cedar
module has a type, whose derivation is discussed in the
next section.

The type of an application is computed as described
above. The type of a A-expression A d;=>d, IN e is d;—>d,.
The type of a binding is the corresponding declaration;
the type of a declaration is TYPE.

3.2 Values of Cedar modules

SML allows the text of system elements written in any lan-
guage to be included in a model, as long as there are pro-
cedures to:

Turn this text into an SML value,
If it is a function value, apply it to arguments.

These procedures are specific to the language in which the
element is written. This language must be identified some-
how. A conceptually straightforward way of doing this is
to treat the text as a string, and provide a primitive func-
tion for each language which converts the string into an
SML value. With this convention the expression

CEDAR["

Sort: DEFINITIONS~{

...}

“]
is the way to include Sort.cedar from Figure 1 in a model.
In fact, SML includes text from other languages by naming
a file containing the text, The previous example would be
written

@Sort.cedar
where Sort.cedar has the contents given in Figure 1. The
language is identified by the last component of the file
name. This is logically identical to the previous mech-
anism; its pragmatics are discussed in § 5.

The SML value of a module is always a function. When
this function is applied, the result is one of:

another function, with an arrow type;
an interface, with INTERFACE # as its type for some n;

a binding whose values are instances, each with some
interface as its type.

Interfaces and instances are opaque in SML; i.e., there is
nothing to do with them except to hand them around as
uninterpreted values, or pass them as arguments to some
function derived from a Cedar module. The functions are
also opaque, in the sense that the implementation of ap-
plication is outside the province of SML, and depends on
the implementation of Cedar. The only requirements im-
posed by SML are that there be no side-effects visible in
the model, and that the types supplied for Cedar modules
correctly express the Cedar rules for what arguments can
properly be given to each function. The operations of com-
piling and loading modules and establishing linkages are
the result of applying these opaque functions to interface
and instance arguments.

In order to make the interface between SML and Cedar
clearer, we will describe in some detail exactly how
opaque SML values are derived from Cedar modules, and
how Cedar implements application of opaque functions.
When a Cedar module M is compiled, any interface 7
needed by M (as an argument for a parameter declared in
its DIRECTORY statement) must be compiled first, and the



compiler must have access to the object file for 7. All the
compile-time external dependencies of a module are speci-
fied in this way. When a module is loaded, any instance
needed by M (as an argument for a parameter declared in
its IMPORTS statement) must be satisfied by filling in links
in the compiled code with procedure descriptors exported
by other modules. All the load-time external dependencies
of a module are specified in this way. These relations are
expressed in SML by passing as arguments to M the values
corresponding to an interface (for compilation) or an
instance with procedure descriptors (for loading).

Interface parameters

Consider an interface that depends on no other interfaces,
Le. its DIRECTORY statement is empty, and hence it can be
compiled without reference to any other modules. SML
treats the module containing the interface as a function
value, Its type is an arrow type with no parameters and
one result, e.g.
[1 = [INTERFACE Sori]

where Sort is the name of the interface, as in Figure 1. The
application of this function (to no arguments) will result in

an object of type INTERFACE Sort.
SortInterface: INTERFACE Sort ~ @SortModule.cedar]

declares a name SortInterface that can be used to specify
the dependency of other modules on this interface, An in-
terface BTree defined in the module BTreecedar that de-

pends on Sort would have a type like
[SortParameter: INTERFACE Sort] — [INTERFACE BTree]
To express this dependency in the model, we apply the
BTree module value to the Sort interface value:
BTreelnterface. INTERFACE BTree ~
@ BTreeModule.cedar{SortParameter~SortInterface};

In this example we used different names for various en-
tities having to do with the Sorr and BTree interfaces:

SortInterface and BTreelnterface for the SML names to
which the interface values are bound;

Sort and BTree for the names of the interface types:
INTERFACE Sort and INTERFACE BTree;

SortModule.cedar and BTreeModule.cedar for the names
of the (files containing the) Cedar modules which
define the interfaces;

SortParameter for the name of the parameter 1o
BTreeModule which has type INTERFACE Sort,

Normally the same name is used for all these purposes, so

the two bindings in the last paragraph would be
Sort: INTERFACE Sort ~ @Sort.cedar])
BTree: INTERFACE BTree ~ @BTree.cedar{Sort~Sort;

Instance parameters

An instance of an interface that is EXPORTed is
represented as a record that contains procedure descrip-
tors, etc. These procedure names are declared in the inter-

face being exported and bound in the exporting PRO-

GRAM module, We can think of the interface module as a

declaration for this record. Consider the implemen-tation

module SortImpl in Figure 1. SortImpl exports an instance

of the Sort interface and calls no procedures in other mod-

ules (i.e. has no imports). This module has the arrow type
[Sort: INTERFACE Sort] = [Sortinst: Sori]

and can be used as follows:
Sort: INTERFACE Sort ~ @Sort.cedar]);
Sortinst. Sort ~ @SortImpl.cedar{Sort~ Sort;

which declares first a name Sort of type INTERFACE Sort
whose value is the interface defined by Sort.cedar, and then
a name SortInst of type Sort, whose value is the instance ex-
ported by SortImpl.cedar. 1f SortImpl imported an instance
for BTree, then the type would be

[Sort: INTERFACE Sort, BTree: INTERFACE BT'ree, BTreelnst: BTree] —~

[Sortinst; Sort]

and the exported instance would be computed by

Sortlnst: Sort ~ @SortImpl.ceda Sort, BTree, BTreelnsi},
Here in the argument [Sort, BTree, BTreelnsf] we have
omitted the parameter names; see §4.1 for the semantics

of this.

3.3 Syntax

SML is described by the BNF grammar below. Whenever
"x, .." appears, it refers to 0 or more occurrences of x
separated by commas, "|" separates different productions
for the same non-terminal. Words in which all letters are
capitalized are terminal symbols which are reserved words
in the language; punctuation symbols other than ::=, |
and ... are also terminals. Words that are all lower case are
non-terminals; the definitions for the following non-ter-
minals are omitted:

name, which stands for an name,
string, which stands for a string literal in quotes, and

filename, which stands for a string of characters that
are legal in a file name.

Subscripts are used to identify specific non-terminals, so
they can be referenced without ambiguity in the accom-
panying explanation.

€xp = Aexp; = exp,INexp;
LET exp; IN exp,
exp; * exp,

exp, infixOp exp,
€xp; . name
[expy, ... ]

[decl]

[ binding ]

name

string

ENV

INTERFACE name
STRING | TYPE



| exp; - exp,

| @ filename
decl = declElement, ...
declElement ::= name:exp
binding = bindElement, ...
bindElement ::= [decl]~ exp,

| name : exp, ~ exp,

| name ~ exp,

| [name,..] ~ exp,
infixOp = 4+ |=1/I\|*| THEN
3.4 Semantics

The value of an SML expression is defined by induction on
the syntax. The evaluation rules are those of the A-cal-
culus, together with definitions of the primitives for han-
dling types, declaratins and bindings. In this section ENV
stands for the current environment.

Lambda
exp = Aexp; = exp,IN exp;

The exp, is evaluated and must yield a declaration 4. The
value of exp is a closure, consisting of?

the parameters, which are the declaration 4,
the environment binding, which is ENV;
the body, which is the expression expy.

The type is exp; — exp,. The exp type-checks if in every
environment P THEN ENV, where P is a binding of type d,

exp, and exp, type-check, and
expy has the type exp,.

In other words, the result and body must type-check for
any arguments which satisfy the parameter declaration,
and the body must have the type specified as the result
type of the A-expression. This check is implemented by
constructing a P with each name bound to a value differ-
ent from any other value.

LET
exp = LETexp; IN exp,

The exp, is evaluated and must yield a binding &. The type
and value of exp are the type and value of exp, in the en-
vironment 4 THEN ENV,

Application

exp = exp; exp,

| exp;* exp,
The exp, and exp, are evaluated to yield a function fof
type D= U and a value x; usually exp, has the form [ bind-

ing]. Then for the first alternative, the expression D~x is
evaluated to yield a binding args; of course this expression

must type-check. For the second alternative, the expres-
sion x4+ (ENVN(D—x)) is evaluated to yield a binding args;
see §4.1 for the meaning of these operators. The type of
exp is U, or Ulargs] if U is a function (see § 3.1.4 for a dis-
cussion of this case).

For the value there are two cases to consider:

1. The function fis a closure, i.e., the value of an SML
A-expression. If the closure has environment E and
body body, then the value of exp is the value of

LET (args THEN E) IN body

2. The function is a primitive, either "built-in" or more
likely, derived from a Cedar module (see § 3.2). The
value is whatever result the primitive computes from
the argument args; a primitive is responsible for ensur-
ing that the result has the proper type.

Infix operators
These are discussed in § 4.1.

Dot, group, declaration and binding
exp :'= exp;.name
The exp; must evaluate to a binding b, whose type is a

declaration d. The type of exp is the type of the name in d,
and the value is the value of the name in b.

exp m= [expp..]
This is a constructor for a group, which is a binding with
anonymous names for the elements.

exp = [decl]
decl = declElement, ...
declElement ::= name:exp,

The type of exp is TYPE. Its value is the set of [name, type]
pairs obtained by evaluating the exp, expressions in the
declElements, and pairing them with the corresponding
names.

If a binding is used where a declaration is required (e.g.,
in a A, or after a colon), then it is coerced to a declaration
in the obvious way. Thus [x~T, y~U] is coerced to [x: 7, y:
U]. Of course, this fails unless each component in the bind-
ing is a type.

exp = [binding]
binding = bindElement, ...
bindElement ::= [decl] ~exp,

| name : exp, ~ exp,
| name ~ exp,
| [name,..] ~ exp,

In the first alternative for bindElement, decl is evaluated
to a declaration d and exp, must evaluate to a binding or
group b with type d; the bindElement binds each name n
in d to the value of n in &. If n does not appear in b there is
a type error. If b is a group its elements must all have



different types, the elements of 4 must all have different
types, and the bindElement binds each name » in d to the
value in b with the same type; if there is no such value,
there is a type error.

The second alternative allows the brackets around a single-
component declaration and group to be omitted. If only a
name appears before the ~, as in the third alternative, the
type is inferred from that of exp,. The fourth alternative is
the same, except that exp, must evaluate to a binding or
group with the same number of components as there are
names in the brackets, much like the first alternative.

Note that because of the definition of application, these
rules are also used for binding arguments to function
parameters.

Names and literals

exp :i= name

The type and value of exp are the type and value of
ENV.name.

exp :i= string

A string literal like "abc" is a primitive value.

€xp ::= INTERFACE name

This literal primitive type is discussed in § 3.2. Note that
name here is part of the literal, and is not looked up in
ENV,

exp 1= STRING|TYPE
Literals denoting primitive types.
exp 1= exp; - exp,

The exp; must evaluate to a declaration 4. The value of exp
is a function type T. If fhas type T, it takes values of type
exp;, and the type of f[x] is (A d=TYPE IN exp,)lx}; see
§3.1.4. If g has type T—U, then DOMAIN[g] is T and
RANGE][g] is U.

exp 1= @ filename

This expression is shorthand for the text stored in file
filename, If the file contains a model, then exp can be
replaced by the contents of the file. If it contains a Cedar
module, then the type and value of exp are derived from
that module as described in § 3.2.

4. Functions and arguments

In addition to providing the basic abstraction mechanism
of SML, functions and function application play a number
of important roles in the practical use of models:

They allow the interconnections among modules to be
expressed, even when there are multiple versions of in-
terfaces and instances; see § 2 for examples.

They allow the relation between a model and the en-
vironment it depends on to be expressed: a model

with free names can easily be converted by A-abstrac-
tion into one with no free names, in which all depen-
dence on the environment is explicit in the parameter
declaration, and the nature of the model’s value is ex-
plicit in the result declaration. An application of the
function makes the choice of environment explicit.
See the BTree models later in this section, and the
Appendix, for examples.

They allow different configurations of a system to be
produced. For instance, by parameterizing a model
with a DiskDriver instance, different configurations of
the system which use different disk drives can be pro-
duced by applying the model to different DiskDriver
instances.

They allow the choice of translator for a system ele-
ment to be made explicit, and make it easy to specify
parameters of the translation (e.g., target machine, op-
timization level, etc.). See § 5 for further discussion of
this point.

In this section we present some SMIL. facilities for manip-
ulating functions and their applications which are not gen-
erally needed for ordinary computation, but are useful in
writing models.

We begin by reviewing the rules for binding arguments to
parameters given in § 3.4, When the argument is a bind-
ing, its elements are matched by name with the param-
eters. Thus if P is bound by

P~ A|x: STRING, y: INTERFACE ¥] = [z: INTERFACE Z] IN [...]
then P takes two arguments. Suppose we also have y
bound by

y: INTERFACE Y ~ @Y.ceda],
The arguments to P may be specified as a binding;:

2 INTERFACE Z ~ P[x~"1it", y~)]
Altcrnatively, since the types are all distinct (and this is
the normal case; multiple versions of interfaces or in-
stances are not too common), the arguments may be speci-

fied as a group:
z: INTERFACE Z ~ P["lit", }

and they are matched by type to the parameters. In both
cases the elements of the argument binding or group are
matched to the elements of the parameter declaration
based on some distinguishing property; the order of "lit"
and y does not matter in either example. The reason for
the absence of binding by position in the binding is that ar-
gument lists are often rather long.

4.1 Defaulting

Another feature of SML which is motivated by long argu-
ment lists is the defaulted form of application: exp,*exp,.
Defaulting allows the programmer to omit many param-
eters; a missing parameter named » is supplied as ENV.n,
where ENV is the current environment, Thus with the

binding for y above, and
x: STRING ~ "lit"



in ENV, the expression P*[] is equivalent to P[x, y}. Of
course, if there is no binding for » in ENV, or if it has the
wrong type, there is an error, since this is just a shorthand.
The model at the end of this section gives other examples
of defaulting.

Note that in a model consisting of a single large binding
with all the elements as its values, defaulting all the argu-
ments corresponds to the interconnection rule used by
most linkers, which connects all the external references to
a name n with the single definition of a.

To define the defaulting rule precisely, we need to intro-
duce a few operators on declarations and bindings. The
union operator + was defined in § 3.1.3; it combines two
declarations or bindings with no names in common. The
restriction operator 1 takes a binding as the first operand
and removes all the names which do not appear in the
declaration which is the second operand. Thus

[x: STRING~ "lit", y: INTERFACE Y~ Def§] t [x; STRING]
is equal to

[x: STRING~ "lit"].
There is an error unless the resulting binding btd has type
d, i.e., unless each name in d actually appears in b with the
corresponding type.

The same operator also works with a declaration as the
first operand, removing all the names which do nor appear
in the binding which is the second operand. Thus

[x: STRING, y: INTERFACE Y] * [x: STRING~ "lit"]
is equal to

[x: STRING].
In this form & must have type 4tb; i.e., each name n in b
must actually appear in &, and 47 must have the type
declared for nin d.

The exclusion operator — takes a declaration as the first
operand and removes all the names which do occur in the
declaration or binding which is the second operand. Thus
[x: STRING, y: INTERFACE Y] — [x: STRING]
is equal to
[y: INTERFACE Y}
and so is
[x: STRING, y: INTERFACE Y] — [x: STRING~ "lit"}.
Like dth, d—b is an error unless b has type dth, or
equivalently
d=(d— b)+{db)
Similarly, d} —d, is an error unless
d,=(d,—d)+d,

Now we can define application with defaulting in terms of
ordinary application; f*b is equal to

Sb+(ENV T (DOMAIN[f] - b))
where DOMAIN[f] is the domain declaration for the func-
tion f(see § 3.4).

4.2 Splitting

SML also provides two operators \ and / which split a func-
tion that takes several arguments into one that takes some
of the arguments and returns a function that takes the
others. Thus

P:[x: STRING, y: INTERFACE Y]—>[z: INTERFACE Z]~. ..
can be split to yield

PSplit: [x: STRING]~>([y: INTERFACE Y]—>[z: INTERFACE Z])~

P\[x: STRING]

The split function can then be applied once, leaving a
curried function which takes fewer arguments than the
original one, because some of the argument values have
been fixed. For example, with the bindings for y and
PSplir given above,

PI: [y: INTERFACE ¥] — [z: INTERFACE Z] ~ PSplif"lit"],

z: INTERFACE Z ~ Pify]
binds z to the same value as before, but does it in one ex-
tra step.

The main application of splitting and subsequent currying
is to fix the interface arguments of a Cedar module with-
out fixing the instance arguments. This makes for a clearer
model when modules are applied to several implementa-
tions of the same interface, It also reflects the realities of
the implementation, in which compilation automatically
fixes the interface arguments, but instances are bound only
on loading.

There are two splitting operators. £\ 4 is a function of type
d—>({(DOMAIN[f]— d)—RANGE[f]);
it leaves & "on top". Symmetrically, 1/ 4 has type
(DOMAIN[f]— d)—(d—RANGE[f]);
it leaves 4 "underneath,” and can be pronounced "f keep-
ing d." Both require that DOMAIN[f]—d be legal, i.e. that
the splitting declaration be a subset of the function’s do-
main. The precise definition of f/ d is
A DOMAIN[f]— d=>(d—RANGE[f]) IN (A d=> RANGE[f] IN f*[})
The defaulted application collects the argument values for
ffrom the argument bindings of the two nested A-expres-
sions. There is a similar definition for /'\ 4, but more en-
lightening is this one:
f/ (DOMAIN[/}~d)

Splitting and defaulting can be used together, of course, so
that the last example with P/ is equivalent to:

PI: [y: INTERFACE Y] = [z INTERFACE Z} ~ (P /[y: INTERFACE

.

2z INTERFACE Z ~ PI*(}
In fact, the declaration for P7 is unnecessary; we can write
this as:

PI ~ (P/[y: INTERFACE Y])*[],

2z INTERFACE Z ~ PI*{]
The / operator makes explicit the parameters remaining
for PI; the other way of writing it is less clear without the
declaration:

P1 ~ (P\[x: STRINGD*].



4.3 A more realistic example

The B-tree package presented in this section is a small sys-
tem, but one which displays most of the features of larger
ones. It consists of an implementation module in the file
BTreeImpi.cedar and an interface BTree that BTreeImpl ex-
ports. There is no client of BTree in the example; the
model returns a function which, when given suitable argu-
ments, returns the BTree interface and an instance which
implements it. A client model would have a reference to
this model and a client for the interface.

The BTree interface uses some constants found in Ascii,
which contains names for the ASCII character set. The
BTreeImp! module depends on the BTree interface (since it
exports it), and it uses three standard Cedar interfaces:
Rope defines procedures to operate on immutable, garbage
collected strings. /O defines procedures to read and write
formatted data to a stream. Space defines procedures to al-
locate Cedar virtual memory for large objects, in this case
the B-tree pages. Figure 8 is a first version of the package.

BTreel.model
LET [

Ascii: INTERFACE Ascii ~ @ Ascii.cedar],

Rope: INTERFACE Rope ~ @Rope.cedar*(],

I0: INTERFACE IO ~ @IO.cedar*]],

Space: INTERFACE Space ~ @Space.cedar*[]] 1IN
BTreeProc ~

A [Ropelnst: Rope. 101nst. 10, Spacelnst: Spacel
=> [BTree: INTERFACE BTree, BTreelnst: BTree] IN [
BTree: INTERFACE BTree ~ @BTree.cedar| Ascii],
BTreelnst: BTree ~ @ BTreelmpl.cedar
[BTree, Rope, 10, Space, Ropelnst, I0Inst, Spacelnst]

]

Figure 8: The fully-expanded B-tree model

This model, stored in the file BTreel.model, describes a B-
tree system composed of one interface BTree and a single
implementation module for it. The first four lines declare
four names used later, 4scii just defines some constants,
and needs no arguments; the arguments to the other inter-
face modules are defaulted to reduce clutter. Note that the

types are optional; these lines could read:
Ascii ~ @ Ascii.cedar],
Rope ~ @Rope.cedar*{},
10 ~ @I0.cedar*{],
Space ~ @Space.cedar*(]
since the types can be determined from the values.

Next we bind a name BTreeProc to a function with three in-

stances as parameters. If those are supplied, the function
will return an interface for the B-tree package, and an in-
stance of that interface. Within the.body of the A-expres-
sion which defines this function, there are bindings for the
identifiers BTree and BTreelnst. Here again the types could
be omitted.

The value of BTreel.model is a binding of BTreeProc to a
function. Another model might refer to the B-tree package
by
[BTree, BTreelnst] ~
(@BTreel.model). BTreeProc[Ropelnst, 101nst, Spacelnst]

The individual treatment of Ascii, Rope, 10, and Space is
clumsy, and it would be even more clumsy if there were

twenty such interfaces instead of four. To make this
neater, we can construct a binding for these names, and

refer to it in BTree.model. Figure 9 shows this, together
with defaulting of the interface arguments to BTreelmpl.

Cedar.model

[ Ascii: INTERFACE Ascit ~ @ Ascii.cedar],
Rope: INTERFACE Rope ~ @Rope.cedar™[],
10: INTERFACE IO ~ @IO.cedar*[},
Space: INTERFACE Space ~ @Space.cedar]] ]

BTree2.model
LET (@Cedar.model IN
BTreeProc ~

A [Ropelnst: Rope, I01nst: I0, Spacelnst: Space]
=> [BTree: INTERFACE BTree, BTreelnst: BTree] IN [
BTree: INTERFACE BTree ~ @ BTree.cedar] Ascii],
BTreelnst: BTree ~ @BTreelmpl.cedar*[Ropelnst, IQInst, Spacelnst} ]

Figure 9: The B-tree model with interfaces separated

The prefix of BTreel is split into a separate file called
Cedar.model. Now BTree2.model contains a LET statement
that makes the values in Cedar accessible in BTree. Divid-
ing BTreel into two models like this makes it possible to
establish standard naming environments, such as a binding
that names the commonly-used Cedar interfaces. The Ap-
pendix has a bigger example. Programmers are free to
redefine these bindings in their models; the operators on
bindings defined in § 4.1 make this easy.

The idea can be carried further by defining another bind-
ing with the standard implementations of the interfaces.
Figure 10 shows how this is done. It also replaces the inclu-
sion of the standard models in BTree with parameters, so
that the dependence of BTree on the environment is made
explicit. BTree3 has in its text (including text incorporated
by the @ construct) only the B-tree package itself. We can

apply BTree3 10 get a BTree interface and instance:
LET [Interfaces~@Cedar.model} IN
@ BTreed.modef{Interfaces, @Cedarlnsts.model Interfaces] ]

This is still clumsy in two ways: the four-component type
for the Interfaces parameter of BTreeProc, and the three
separate instance parameters to BTreelmpl; both of these
would be much longer in a larger system.

The first problem cannot be solved without giving up the
idea of type-checking a A-expression independently of its
applications. If we write a more general type for Interfaces,



Cedar.model

[ Interfaces ~ |
Ascil: INTERFACE Ascii ~ @ Ascit cedar],
Rope: INTERFACE Rope ~ @Rope.cedar*]],
JO: INTERFACE 10 ~ @IO.cedar*[),
Space: INTERFACE Space ~ @Space.cedar*{}]]

Cedarlnsts.model
A [Interfaces: [ Ascii: INTERFACE Ascii, Rope: INTERFACE Rope,
1O: INTERFACE 10, Space: INTERFACE Space]] => Interfaces IN
[Ascii, Rope, 10, Space] ~ LET InterfacesIN |
@ Asciilmpl.cedar],
@Ropelmpl.cedar*[],
@I0Impl.cedar*(],
@Spacelmpl.cedar*[] ]

BTree3.model
[ BTreeProc ~

A | Interfuces: [Ascii~INTERFACE Ascif, Rope~INTERFACE Rope,
TO~INTERFACE [0, Space~INTERFACE Space],
Inst: Interfaces)
=> [BTree. INTERFACE BTree, BTreelnst: BTree] IN
LET Interfaces IN |
BTree: INTERFACE BT'ree ~ (@BTree.cedaf Asci,
BTreelnst: BTree ~ @#Treelmpl.cedar*{Inst.Rope, Inst.10,
Inst.Space} 1]

Figure 10: Standard interfaces and instances as parameters

such as DECLARATION, then there is no way to check an
expression like [nterfaces.Ascii without the argument. This
problem also arises in Cedar itself, where a vague type (at
the Cedar level) like INTERFACE Rope prevents type-check-
ing of a module like BTreelmp! until the argument is
supplied, e.g., as @Rope.cedar*{]. This is the main reason
that compilation, which includes type-checking, requires
access to all the interfaces used by a module. Thus Cedar
in effect has two kinds of A-expression:

the ordinary kind, written as an ordinary procedure
body, or as the IMPORTS statement of a module;

an unchecked kind, written as the DIRECTORY state-
ment of a module,

Currently SML does not have an unchecked A-expression.

The second problem cannot be solved by prefixing LET
Inst and defaulting the instance arguments, since they have
the same names in /nst as the interfaces; if the elements of
Inst are given different names it won't have Interfaces as its
type. An attractive solution is to move down into Cedar
modules the notion of collecting interface and instance
parameters into bindings. Thus instead of a BTreelmpl with
seven parameters (BTree, Rope, 10, Space, Ropelnst, I0Inst
and Spacelnst), we would have one with three parameters
(BTree, Interfaces, and Instances). To make it clear which
parts of these large bindings are actually used, we can
modify the DIRECTORY statement according to this

example:
DIRECTORY Interfuces USING [Rope, 10, Space]

Cedar already has this facility for specifying which names
in a particular interface are used, so this is a natural exten-
sion.

5. Pragmatics

This section discusses a number of pragmatic issues in the
use and implementation of SML, and summarizes our ex-
perience with a preliminary version of the Modeller.

5.1 Files

We take the view that the software of a system is com-
pletely described by a single unit of text. An appropriate
analogy is the way a card deck was used to run a program
on a bare computer or under an operating system like
FMS that had no file system. Everything is said explicitly
in such a system description: there is no operator interven-
tion to supply compiler switches or loader options after
the GO button is pressed, and no dependence on a chang-
ing environment. In such a description there is no ques-
tion about when to recompile something, and version con-
trol is handled by distributing copies of the deck with a
version number written on the top of each copy, and a
diagonal stripe of marker which makes it easy to tell
whether the deck has been changed.

The monolithic nature of a card deck makes it unsuitable
for a large system. In 1982 a system is specified by text
which is stored in files. This provides modularity in the
physical representation: a file can name other files instead
of literally including their text. In Cedar, these files hold
the text of Cedar modules or system models. This represen-
tation is convenient for users to manipulate; it allows shar-
ing of identical objects, and facilitates separate compila-
tion. Unless care is taken, however, the integrity of the sys-
tem will be lost, since the contents of the named file may
change.

To prevent this, we abstract files into objects, which are
simply pieces of text. We require that names be unique
and objects be immutable. By this we mean that:

Each object has a unique name, never used for any
other object. The name is stored as part of the object,
so there is no doubt about whether a particular collec-
tion of bits is the object with a given name. A name is
made unique by appending a unique identifier t0 a
human-sensible string.

The contents of an object never change once the ob-
ject is created. The object may be erased, in which
case the contents are no longer accessible. If the file
system does not guarantee immutability, it can be en-
sured by using a suitable checksum as the unique
identifier of the object.



These rules ensure that a name can be used instead of the
text of an object without any loss of integrity, in the sense
that either the entire text of a system will be correctly as-
sembled, or the lack of some object will be detected.

With these conventions, a model can incorporate the text
of an object by using the name of the object. This is done
in SML by writing an object name preceded by an @. The
meaning of an SML expression containing an @-expression
is defined to be the meaning of an expression that replaces
the @ expression by its contents. For example, if the file
inner.model contains

"lit”
which is an SML expression, the binding

[x: STRING ~ @inner.sm,

y: STRING ~ "1it"]
has identical values for x and y.

As discussed in § 3.2, if the object O is not an SML expres-
son but a Cedar module, or an element written in some
other language, it is turned into an SML expression by con-
ceptually surrounding it with a text-to-SML value conver-
sion function, e.g., CEDAR["0"].

It is not essential that the text of a system element be
source text; all that is needed is a way to turn it into an
SML value. For a Cedar source module, this is done by
parsing the DIRECTORY, IMPORTS and EXPORTS
statements at the start of the module. But it can also be
done for a Cedar object module, which is the output of
the compiler and has all its interface parameters bound;
object modules have enough information (originally for
the benefit of the loader) to allow an SML INTERFACE or
function value to be derived. This is sometimes convenient
when dealing with a system in which some elements come
from an outside organization in object form only.

5.2 Miscellaneous problems

SML provides straightforward solutions to a number of
problems which have arisen in constructing Cedar systems.

Translators

Cedar programmers may use a number of programs that
analyze a source program written in some language, and
produce new source programs. For example, an LALR(1)
parser generator called PGS takes a Cedar source file with
a grammar embedded in it as stylized comments, and
produces:

Tables, a Cedar source file for an interface which
defines the structure of the parsing tables for this
grammar,

TablesImpl, a Cedar object file containing parsing
tables that can be loaded.

Actions, a Cedar source file which is a modification of
the input, containing:

code for the semantic actions, which is copied
from the input;

code to call the parser, supplied by PGS to
supplement replace the comments, which
contained the grammar.

Another example is a remote procedure call stub generator
[14] that takes the source for a Cedar interface, and pro-
duces four source files that must all be compiled. In each
of these cases the output files depend on the input file,
and if the input file were modified, the preprocessor
would have to be run again.

For each language in which a system element is written,
we need a way to derive an SML value from an object in
the language. For example, a pgs object is a function with
the type
[I->[Tables: [|—>|T: INTERFACE PGSTables],
TablesImpl: Tables,
Actions. ActionsInterface+ OtherParameters
+[ T: INTERFACE PGSTables, TImpl: T,
Parser. INTERFACE Parser, ParserImpl: Parser]
—[AI Actionsinterface] }
Here ActionsInterface is exported by the Actions module,
and OtherParameters is a declaration for any other param-
eters of that module. Actions also has the tables and the
parser itself as parameters.

Such a function might be applied like this:
| PascalTables: []—[T: INTERFACE PGSTables],
PascalTablesImpl: PascalTables,
Pascal Actions: [PascalParser. INTERFACE PP, X: INTERFACE X, XI: X,
T: INTERFACE PGSTables, Timpi: T,
Parser: INTERFACE Parser, Parserlmpl: Parser]
—[PascalParserimpl: PascalParser] }~
@ PascalGrammar.pgs]
Here the types are redundant and included for clarity; we
could have written
{ PascalTables, PascalTablesImpl, PascalActions|~ @ PascalGrammar.pgs]
with the same effect. In either case, the model can now
proceed to apply PascalActions. Supposing we have a suit-
able binding for PascalParser, the interface implemented
by this parser, and for Parser, ParserImpl, X and X1, we can
default these and write
PascalParserInstance. PascalParser ~
Pascal Actions*[T~ PascalTables{], TImpi~ PascalTablesImpl}

which leaves us with an instance PascalParserInstance of the
PascalParser, which can be returned from the model, or
passed to another component.

The code that derives SML values from PGS objects gets
control when @ PascalGrammar.pgs 15 applied. It is respon-
sible for invoking the PGS preprocessor and deriving SML
values from the files that PGS produces. Since these are or-
dinary Cedar files, code to derive SML objects from them
already exists.

-



In some cases, when a single object can be translated in
several ways, it may be better to apply a translation func-
tion to it explicitly in the model. This is the case for the
RPC stub generator, since it processes an ordinary Cedar
interface module, which might also be treated in the usual
way. So we might write

RPCStubGenerato] @UpdateFiles.string)

Compiler Options

Certain aspects of the Cedar compiler’s execution can be
controlled by specifying compiler options. When the com-
piler is run from the operating system’s command proces-
sor, these options are given as command line switches con-
sisting of a single letter. For example, "j" instructs the com-
piler to perform a cross-jumping optimization on the code
it generates, "b" instructs it to check for bounds faults, etc.
Since the behavior of a system depends on these options,
they are treated like any other parameters. The function
type of a Cedar module includes a STRING parameter op-
tions which can be specified explicitly; e.g.,
QuicksortPoints. SortPoints ~
@Quicksort.cedar{options~"]", Sort~SortPoints]

If options is missing, it is defaulted automatically, in a
slight departure from normal SML semantics. The model
can supply a binding; if it does not, there is a global bind-
ing for this name.

Multiple Exports

We have described systems where there is one exporter of
an interface and one or more importers. It is possible to
split the implementation of an interface among several
modules, and merge the exported instances together. This
often happens when the implementation becomes very
large and is split by the programmer. Because instances
are actually bindings in Cedar, with essentially the same
semantics as SML bindings, it is convenient to extend the
+ and THEN operators (§ 3.1.3) to them. Usually the in-
stances export disjoint names, so that + is the proper
operator:
BTreelmpl: BTree ~ @BTreelmplA.cedar*{]+ @BTreelmplB.cedar*{}

5.3 Implementation

The+implementation of the Modeller has three quite dis-
tinct parts:

The language implementation: parsing, prettyprinting
and evaluation of SML expressions.

The bridges to the programming languages for ele-
ments. The Cedar bridge, for example, derives an
SML value from a Cedar module, and when this value
is a function knows how to apply it by invoking the
Cedar compiler or loader.

The administrator, which retrieves the value of an ob-
ject from the file system, manages the cache of object

files, notices changes to elements and updates the mo-
dels accordingly, etc.

We will discuss only the language implementation here.

Since SML has no iteration constructs and no recursively-
defined functions, the evaluator can expand each applica-
tion of a closure by B-reduction, replacing it by the clo-
sure body with formals replaced by actuals. Similarly, an
@ reference to a sub-model can be replaced by the text of
the referent. This process of substitution must be applied
recursively, as the expansion of a A-expression may in-
volve expansion of inner A-expressions. The evaluator
does this expansion by copying the body of the A-expres-
sion, and then applying itself recursively after adding the
argument binding for the application to ENV.

ENV is maintained as a tree of bindings in which each
level corresponds to a [ . . . ] binding constructor, a bind-
ing added by a LET statement, or an argument binding.
Bindings are represented as lists of triples of [name, type,
value]. A closure is represented as a quadruple [parameter
declaration, result declaration, body, environment]. As ex-
plained in § 3.4, in an application the body is evaluated
with ENV equal to args+E, where args is the argument
binding and E is the environment from the closure. An @-
expression is represented by a pointer to the disk file
named, together with its type and, for a function, a
procedure for applying it. A interface value is represented
as a pair [module name, pointer to module file], and an in-
stance value as a pair [pointer to procedure descriptors,
pointer to loaded module].

The substitution property of Russell [4] guarantees that
variable-free expressions can be replaced by their values
without altering the semantics of Russell programs. Since
SML programs have no variables and allow no recursion,
the substitution property holds for SML programs as well.
This implies that the type-equivalence algorithm for SML
programs always terminates, since the value of each type
can always be determined statically.

5.4 Experience

The SML language, in a somewhat different form, has been
used by about five programmers in the past year, and sup-
ports the development of systems ranging from 1k to 50k
lines of code. Some of these systems, and in particular the
Cedar compiler, exist in numerous versions,

The implementation and use of this old SML language un-
covered a number of problems. The language has been
redesigned and the evaluator is being rewritten to take ad-
vantage of the more solid foundations of the language
described in this paper. The largest improvements have
been in the uniform treatment of declarations and bind-
ings as first-class values, the systematic derivation of SML



values from elements, and the use of S-reduction for
evaluation.

During the next year we expect to use SML and the Mod-
eller to control the development of the entire Cedar sys-
tem, which is now about 500k lines of source code.

6. Conclusion

SML is used to describe a system assembly and module in-
terconnection scheme in which polymorphism occurs
naturally, SML consists of the applicative subset of the
Cedar Kernel language, with values that correspond to
types, declarations and bindings, as well as the interfaces
and instances which characterize Cedar modules. SML is
based on the A-calculus; it uses Algol scope rules.

The most common value is a Cedar interface or instance.
Each Cedar interface defines a single INTERFACE value in
SML; each implementation has a function type that
depends on the interfaces it uses and implements. The in-
terconnections among modules are expressed by treating
each module as a function which returns instances of the
interfaces it implements, and passing each interface or
instance as an argument to the modules that use it, The
arguments also include any other information needed to
run the module in the system, such as character strings
that specify the compiler options.

A model logically includes the entire text of the system it
describes. In fact, however, the text of a module is stored
in a file which must be immutable, and is referenced from
the model by a file name followed by a unique identifier
for the particular version of the module. The filename is
used as a hint since the unique-id identifies the module un-
ambiguously. An object file is a source file that has been
compiled with interface types filled in. A module is recom-
piled only when one of its interfaces changes.

A system model is thus a stable, unambiguous representa-
tion for a system, It is easily transferred among program-
mers and file systems. It has a readable text representation
that can be edited by a user at any time. Finally, it is
usable by other program utilities such as cross-reference
programs, debuggers, and optimizers that analyze inter-
module relationships.
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Appendix: A real example

This model describes the BringOver program, which is a
substantial component in the Cedar system. First, we
present the model with its environment aggregated into
separate models, and with defaults for all the parameters.
Then we give a fully expanded version, to show the entire
dependency structure.

There are seven implementation modules within this
model (CWFimpl, ComParselmpl, Subrimpl, STPSubrimpl,
DFSubrImpl, DFParserImpl, BringOverImpl). All the rest are
interfaces.

First we define the two environment models. One is a big
binding for the Pilot interfaces on which BringOver and

many other parts of Cedar depend. The other is a
declaration for the instances of these interfaces. This



declaration is rather repetitive, but it is needed to provide
the proper names for defaulting the instance arguments of
the BringOver models. §4.3 explains how to avoid this
declaration by passing the entire interface binding, and a
corresponding binding for the instances, as two big
arguments to the client modules. Cedar currently does not
permit this, however, and we do not show it here,

Pilot.model

[ Ascii ~ @ Ascii.cedar*]];
CIFS ~ @CIFS.cedar*[};
ConvertUnsafe ~ @ConvertUnsafe.cedar*[];
Date ~ @Date.cedar*[];
DCSFileTypes ~ @DCSFileTypes.cedar*[];
Directory ~ @ Directory.cedar*{];
Environment ~ @Environment.cedar*(];
Exec ~ @Exec.cedar*{];
File ~ @File.cedar*[];
FileSiream ~ @FileStream.cedar*(};
Heap ~ @Heap.cedar*{];
Inline ~ @Inline.cedar*{];
KernelFile ~ @KernelFile.cedar*[];
LongString ~ @LongString.cedar*[];
NameAndPasswordOps ~ @NameAndPasswordOps.cedar*{];
Process ~ @Process.cedar*[};
Rope ~ @Rope.cedar*[];
Ropelnline ~ @Ropelnline.cedar*[];
Runtime ~ @Runtime.cedar*]];
Segments ~ @Segmenis.cedar*[};
Space ~ @Space.cedar*[];
Storage ~ @Storage.cedar*|];
STP ~ @STP.cedar*]];
STPOps ~ @STPOps.cedar*(];
Stream ~ @Stream.cedar*[},
String ~ @String.cedar*{];
System ~ @System.cedar*[];
SystemInternal ~ @SysiemInternal.cedar*[];
Time ~ @Time.cedar*{];
Transaction ~ @Transaction.cedar*[};
TTY ~ @TTY cedar*[);
UserTerminal ~ @UserTerminal.cedar*(} |

PilotInstancesDecl.model

LET @PilotInterfaces.model IN
[ CIFSImpl: CIFS,
ConvertUnsafelmpl. ConvertUnsafe,
-- 23 declarations are omitted for brevity--
TTYImpl: TTY,
UserTerminallmpl:. UserTerminal }

The models above are part of the working environment of
a Cedar programmer; they are constructed once, as part of
building the Pilot operating system.

Now we can write the model for BringOver. It picks up the
two Pilot models above, and then gives a single binding of
BringOverProc to a function which takes the instances as an
argument, and returns two interfaces and an instance of
each. The body of the function has

one LET to make all the Pilot interface and instance
names directly accessible for defaulting;

a second LET to bind all the internal interfaces and
instances of BringOver,

a binding to construct the two interfaces and two
instances which are the result of applying BringOver-
Proc.

BringOver.model

LET [Interfaces~@Pilot.model, InstancesDecl~@ PilotInstancesDecl.model IN
[BringQOverProc ~ A [Instances: InstancesDecl]=>
[BringOver: INTERFACE, BringOverImpl: BringOver,

BringOverCall: INTERFACE, BringOverCalllmpl: BringOverCall] IN

--Make the Pilot interface and instance names accessible

LET Interfaces Instances IN

LET [ -- These are the internal interfaces and instances
CWF ~ @CWF.cedar*[];
CWFImpl ~ @QCWFImpl..cedar*{];
ComParse ~ @ComParse.cedar*[);
ComParselmpl ~ @ComParselmpl.cedar*{};
Subr ~ @Subr.cedar*[};
Subrimpl ~ @SubrImpl.cedar*(];
STPSubr ~ @STPSubr.cedar*[];
STPSubrimpl ~ @STPSubrimpl.cedar*[];
DFSubr ~ @DFSubr.cedar*[];
DFUser ~ @DFUser.cedar*(};
DFSubrimpt4 ~ @DFSubrimpl.cedar*[l;
DFSubrImplB ~ @DFParserImpl.cedar*[];
DFSubrimp! ~ DFSubrimpl+ DFSubrimplB |

IN | -- These arc the exported interfaces and instances

; BringOver~ @BringOver.cedar*(];
BringOverCall ~ @BringOverCall.cedar*[];
[BringOverImpl: BringOver, BringOverCalllmpl: BringOverCall] ~
@BringOverlmpl.cedar*{} ] ]

To apply this model, we need instances for the Pilot
interfaces. We can get them from the following model; its
type is @ PilotiInstancesDecl.model.

PilotInstances.model

LET Interfuces@Pilot.model IN
[CIFSImpi: CIFS ~ CIFSImpl.cedar*[],
ConvertUnsafelmpl: ConvertUnsafe ~ ConvertUnsafelmpl.cedar*[],
Datelmpl: Date ~ Datelmpl,cedar*{],
-- 23 bindings are omitted for brevity--
TTYImpl: TTY ~ TTYImpl.cedar*{),
UserTerminallmpl: UserTerminal ~ UserTerminallmpl.cedar*(] ]

Using this binding, we can compute the exported inter-
faces and instances of BringOver:
[ BringOver, BringQverImpl, BringOverCall, BringOverCalllmpl} ~
BringOverProc|@PilotInstances.model]

Making the arguments explicit

In the previous version, we defaulted all the arguments,
since the modeller can supply for each parameter an actual
with the same name. We also omitted the types in
bindings. Here is a version with everything written out
explicitly.



LET {Interfaces~@ Pilot.model, InstancesDecl~@ PilotInstancesDecl.model IN
[BringOverProc ~ X [Instances: InstancesDecl]=>
[BringOver: INTERFACE, BringOverlmpl: BringOver,
BringOverCall: INTERFACE, BringOverCallImpl: BringOverCall] IN
LET Interfaces+ Instances IN
LET [ -~ These are the internal interfaces and instances
CWF: INTERFACE ~ @CWF .cedar*[];
CWFImpl: CWF ~ @CWFImpl.cedar*{|{ HeapImpl, InlineImpli,
LongStringImpl, Timelmpl],
ComParse. INTERFACE ~ @ComParse.cedar, ComParselmpl:
ComParse ~ @ComParselmpl.cedar] Ascii, ComParse, Exec, Storage,
String, TTY, Execlmpl, Storagelmpl, StringImpl, TTYImpl),
Subr: INTERFACE ~ @JSubr.cedaf{ File, Space, Stream, TTY],
Subrimpl; Subr ~ @SubrImpl.cedar| Ascii, CWF, DCSFileTypes,
Directory, Environment, Exec, File, FileStream, Heap, Inline,
LongString, NameAndPasswordOps, Runtime, Segments, Space,
Stream, Subr, System, TTY, CWFImpl, DirectoryImpl, ExecImpl,
FileImpl, FileStreamImpl, HeapImpl, InlineImpl, LongStringImpl,
NameAndPasswordOpsImpl, Runtimelmpl, SegmentsImpl, Spacelmpl,
StreamImpl, TTYImpl],
STPSubr; INTERFACE ~ @STPSubr.cedar|File, STP, Stream,
System, TTY],
STPSubrImpl: STPSubr ~ @STPSubrimpl.cedar CIFS,
ConvertUnsafe, CWF, Date, DCSFileTypes, Directory, Environment,
Exec, File, FileStream, Inline, LongString, NameAndPasswordOps,
Process, Space, Storage, STP, STPOps. STPSubr, STPSubrExtras,
Stream, String, Subr, TTY, UserTerminal, CIFSImpi,
ConvertUnsafelmpl, CWFImpi, Datelmpl, Directorylmpl, Execlmpl,
FileImpl, FileStreamimpl, InlineImpl, LongStringlmpl, '
NameAndPasswordOpsImpl, Processimpl, Spacelmpl, STPImpl,
STPOpsimpl, Storagelmpl, StreamImpl, StringImpl, Subrimpl
UserTerminallmpl),
DFSubr:, INTERFACE ~ @DFSubr.cedar{File, Stream, TTY),
DFUser; INTERFACE ~ @DFUser.cedaf DFSubr, TTY),
DFSubrimpl4: DFSubr ~ @DFSubrimpl.cedar{CWF, DFSubr,
DFUser, Directory. Environment, Exec, Heap, Inline, LongString,
Space, STPSubr, Stream. String, Subr. SysiemInternal, TTY,
CWFimpl. DFSubrimpl, DirectoryImpl, ExecImpl, HeapImpl,
Inlinelmpl, LongStringImpl, Spacelmpl, STPSubrimpl, StreamImpl,
StringImpl, Subrimpl, TTY Impl},
DFSubrimplB: DFSubr ~ @DFParserimpl.cedalfCWF, Date,
DFSubr, Exec, LongString. Stream. String, Subr, Time, CWFImpl,
Datelmpl, DFSubrImpl, ExecImpl, LongStringlmpl, Streamimpl,
Stringlmpl, Subrimpl, Timelmpl],

DFSubrlmpl: DFSubr ~ (DFSubrimplA) + (DFSubrimpiB) ]

IN [ -- These are the exported interfaces and instances

BringOver. INTERFACE ~ @ BringOver.cedar,

BringOverCall: INTERFACE ~ @ BringOverCall.cedar{Rope, TTY],

[BringOverimpl: BringOver, BringOverCalillmpl: BringOverCall] ~
@BringOverimpl.cedar | BringOverCall, BringOverlnterface, CIFS,
ComParse, CWF, Date. DFSubr, Directory, Exec, File, FileStream,
KernelFile, LongString, Rope. Ropelnline. Runtime, Space, Storage,
STP, STPSubr, STPSubrExtras, Stream, String, Subr, Time, TT .,
CIFSImpl, ComParselmpl, CWFImpl, Datelmpl, DFSubrimpl,
DirectoryImpl. ExecImpl, FileStreamImpl, KernelFileImpl,
LongStringImpl, Runtimelmpl, Ropelmpl, Ropelnlinelmpl, Spacelmpl
Storagelmpl, STPImpl, STPSubrimpl, STPSubrExtrasimpl,
Streamimpl, StringImpl, Subrimpl, TimeImpl, TTYImpi]

]





