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An Instruction Fetch Unit for a High-Performance
Personal Computer

BUTLER W. LAMPSON, GENE McDANIEL, AND SEVERO M. ORNSTEIN

Abstract — The instruction fetch unit (IFU) of the Dorado
personal computer speeds up the emulation of instructions by
prefetching, decoding, and preparing later instructions in parallel
with the execution of earlier ones. It dispatches the machine’s
microcoded processor to the proper starting address for each
instruction, and passes the instruction’s fields to the processor on
demand. A writeable decoding memory allows the IFU to be spe-
cialized to a particular instruction set, as long as the instructions
are an integral number of bytes long. There are implementations
of specialized instruction sets for the Mesa, Lisp, and Smalltalk
languages. The IFU is implemented with a six-stage pipeline, and
can decode an instruction every 60 ns. Under favorable conditions
the Dorado can execute instructions at this peak rate (16 mips).

Index Terms — Cache, emulation, instruction fetch, microcode,
pipeline.

I. INTRODUCTION

HIS paper describes the instruction fetch unit (IFU) for
the Dorado, a powerful personal computer designed to
meet the needs of computing researchers at the Xerox Palo
Alto Research Center. These people work in many areas of
computer science: programming environments, automated
office systems, electronic filing and communication, page
composition and computer graphics, VLSI design aids, dis-
tributed computing, etc. There is heavy emphasis on building
working prototypes. The Dorado preserves the important
properties of an earlier personal computer, the Alto [13], while
removing the space and speed bottlenecks imposed by that
machine’s 1973 design. The history, design goals, and general
characteristics of the Dorado are discussed in a companion
paper (8], which also describes its microprogrammed pro-
cessor. A second paper [1] describes the memory system.
The Dorado is built out of ECL 10K circuits. It has 16 bit
data paths, 28 bit virtual addresses, 4K—16K words of
high-speed cache memory, writeable microcode, and an I/O
bandwidth of 530 Mbits/s. Fig. | shows a block diagram of
the machine. The microcoded processor can execute a micro-
instruction every 60 ns. An instruction of some high-level
language is performed by executing a suitable succession of
these microinstructions; this process is called emulation.
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Fig. 1. Dorado block diagram.

The purpose of the IFU is to speed up emulation by
prefetching, decoding, and preparing later instructions in
parallel with the execution of earlier ones. It dispatches the
machine’s microcoded processor to the proper starting
address for each instruction, supplies the processor with an
assortment of other useful information derived from the in-
struction, and passes its various fields to the processor on
demand. A writeable decoding memory allows the IFU to be
specialized to a particular instruction set; there is room for
four of these, each with 256 instructions.

There are implementations of specialized instruction sets
for the Mesa [9]. Lisp [12], and Smalltalk [5] languages. as
well as an Alto [13]| emulator. The IFU can decode an in-
struction every 60 ns, and under favorable conditions the
Dorado can execute instructions at this peak rate (16 mips).

Following this introduction, we discuss the problem of
instruction execution in general terms and outline the space
of possible solutions (Section II). We then describe the archi-
tecture of the Dorado’s IFU (Section III) and its interactions
with the processor which actually executes the instructions
(Section 1V): the reader who likes to see concrete details
might wish to read these sections in parallel with Section II.
The next section deals with the internals of the IFU, de-
scribing how to program it and the details of its pipelined
implementation (Section V). A final section tells how big and
how fast it is, and gives some information about the effective-
ness of its various mechanisms for improving performance
(Section VI).

II. THE PROBLEM

It has long been recognized that the algorithm for exe-
cuting an object program can be most easily described by
another program, called an interpreter, which treats both the
instructions and the data of the object program as its own
data. The simplest microprogrammed computers actually do
execution in just this way; the microinstructions can specify
only general-purpose data manipulations, and all the know!-
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edge about the instructions being emulated is expressed in
the microprogram.

We illustrate this point with the following fragment of an
emulator for a stack-based instruction set. The fragment in-
cludes the basic instruction fetch operation and code for two
instructions: PushConstant, which pushes the next instruc-
tion byte onto the stack. and PushLocalVar, which pushes the
contents of the local variable addressed by the next byte
(relative to a pointer in the register localData). The notation
is self-explanatory for the most part. Microinstructions are
separated by semicolons, and parallel operations in the same
microinstruction by commas. This code uses no special-
purpose operations, except that we have compressed the
details of the stack manipulation into a Push operation.

Registers: PC, localData, opcode, temp
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all three instructions need to reference the stack; this is
contention for the same resource. Furthermore. the Add in-
struction needs the contents of the stack after both the pre-
vious instructions are finished; this is not only contention,
but dependency of one instruction on the results of another.
In spite of these problems, this approach can be made to
work. especially for numeric computations, and in conjunc-
tion with a sympathetic compiler. Indeed, it is used in high-
performance machines such as the CDC 6600 [14] and 7600,
the IBM 360/91 [16], the MUS [4], and the Cray-1 [10]:
typically, only part of the processor is duplicated. often into
specialized devices called functional units. However, with
1977 technology this approach is too expensive for a personal
machine. and hence was not considered for the Dorado.

Dolnstruction: — Top of the microcode instruction emulation loop.
Fetch[PC]; — Start a memory fetch from address in PC; data arrive later.
PC « PC + 1; — Increment PC register for next instruction.

if interruptPending then goto processinterrupt
opcode «<— memoryData;
goto opcode;

— Use the memory data we previously fetched
— The opcode value is the starting microcode address.

— Fetch the next instruction byte, which is the index in the local data for the variable to be pushed.

PushConstant: — Dispatch address for the PushConstant instruction.
Fetch(PC]; — PC points to the next instruction byte.
PC«<PC+ I: — Increment PC register for next instruction.
Push{memoryData]. goto Dolnstruction;

PushLocalVar: — Dispatch address for the PushLocal Var instruction.
Fetch[PC];

PC < PC + 1;

temp <— memoryData;
temp « temp + localData;
Fetch[temp]:
Push[memoryData]. goto Dolnstruction;

In order to make this emulator run faster (given a fixed
time for each primitive operation, presumably established by
circuit speeds), it is necessary to do more of the operations
concurrently. One possibility is to enhance the processor, so
that it can do several operations in a single microinstruction.
For instance, the first two microinstructions might be re-
placed by

Fetch[PC].PC « PC + |;— Start a memory fetch from
address in PC; data arrive later. Increment PC for next

instruction. .
This approach is fine as far as it goes, but it is limited to

combining independent operations. A Fetch and the follow-
ing retrieval of data, for example, cannot be combined with-
out making the microinstruction slower since the memory
takes time to respond.

A second approach is to make several copies of the entire
processor, and let them work on several instructions at once.
With n copies. this would run n times as fast if there were no
synchronization problems: it would also be very simple to
implement (although perhaps not cheap). Unfortunately, a
program written in a conventional language and encoded into
a conventional instruction set typically has a great deal of
interaction between the successive instructions. For instance,
consider the instruction sequence PushConstant, Push-
LocalVar, Add. We see from the microcode above that

— Now temp is the address of the local variable.

A third possibility (often combined with the second) is to
pipeline the execution of an instruction by dividing it into
parts, each one to be performed by a separate processor or
stage. Different stages can operate concurrently on succes-
sive instructions. In this example, we might have one stage
for fetching the instruction (GetInstruction), and another for
executing it (PushConstant and PushLocalVar). Successive
instructions can then execute as follows (where each line
represents a “major cycle”):

Getlnstruction[1]
Execute[1] Getlnstruction[2]
Execute[2] Getlnstruction[3)
Execute[3) Getlnstruction[4] - - -

Each instruction spends the same amount of time executing
as before, but the throughput is doubled. The reader will find
a general discussion of pipelines in [18]-{23].

A. About Pipelines

An ideal pipeline has no communication between the
stages except when work is passed from one stage to its
successor. The unit of work which is passed between stages
is called an item. The crucial problems in designing a pipe-
line are:

hand-off of items from one stage to the next;
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buffering of items within a stage;

contention among stages for resources (a form of
communication);

dependency of one stage on the activity of another (also a
form of communication). Particularly troublesome is back-
ward dependency, in which an early stage depends on the
results of a later one (e.g., a conditional branch): and

irregularity in the flow of items through the pipe. This can
arise from variations in the rate of

processing items in the different stages (e.g., memory
fetches may be slow, or variable in rate, or both);

input (e.g.. fetch requests to a memory pipe);

output (e.g.. decoded instructions from an IFU pipe).

The main performance parameters of a pipeline are:

throughput or bandwidth —the rate at which items are
processed to completion when there are no dependencies
(let ¢+ be the time to complete one item):;

latency — the time for one item to traverse the entire pipe-
line when it is otherwise empty (let / be the latency); and

elasticity — the ability of the pipe to deliver results at full
bandwidth in spite of irregularity. More buffering means
more elasticity, more bits of storage in the pipe, and perhaps
more latency.

A synchronous uniform pipeline is one in which each stage
takes the same amount of time. With n stages we have
I = nt, where ¢ is the time of each stage. With many small
stages, ¢ can be made small and the throughput high, at the
expense of the latency. The only absolute limit to this process
is the cost of synchronization between stages (which is a
lower bound on #; in a synchronous pipeline this is the time
to pass through a register).

The minimum time to do the smallest indivisible piece of
work (e.g.. to read from an internal RAM) tends to be a
practical limit also. This limit can be evaded, however (at
some cost), by making n copies of the hardware, assigning
the work to them in round-robin fashion, and selecting the
results by the same round-robin rule. If a single stage has
1 = s, such a duplicared stage has t+ = 5/n plus the time
for multiplexing the results. When this method is used, the
copies are usually called functional units.

Usually, the main goal is to maximize the throughput; in
the absence of dependencies, latency is unimportant. As
dependencies increase. however, latency becomes more
important. To see why this is true, consider the backward
dependency caused by a conditional branch. Strictly speak-
ing, when a branch instruction is encountered, fetching can-
not proceed until the result of the branch is known. When it
is. the target instruction of the branch must traverse the pipe
before any more instructions can be completed. If w is the
fraction of branch instructions, the average completion time
will be + + wi. Thus, if { = 5¢ (a five-stage uniform pipe),
aw of 20 percent will halve the throughput. In this example,
of course, it is sensible to make a guess and follow one path,
so that w is the fraction of instructions for which a wrong
guess is made: note that w = 20 percent is a fairly accurate
prediction. Following a guessed path is easy because
there are no forward dependencies (program state is never
changed by instruction fetching), so that a wrong path can be
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abandoned with no ill effects. However, no such shortcut is
possible in the case of the Add instruction mentioned
earlier because it is not practical to guess the result of the
PushLocalVar.

B. Pipelining Instruction Execution

Let us now see how to apply these ideas to instruction
execution. Following many earlier designs (e.g.. [4].[16]), we
can divide this task into four stages:

1) instruction fetching and preparation;

2) operand preparation: address calculation, fetching and
reformatting:

3) computation;

4) result storage.

Each of these in turn may be divided into substages. We
observe that in any conventional architecture there are many
dependencies among the last three stages because results are
constantly being stored into memory or register locations
from which operands are fetched. Furthermore, if every store
operation is regarded as a dependency. there could never be
much concurrency. Hence, it is necessary to compare the
address of each location modified by a store to all the ad-
dresses referenced by earlier stages. Even these dependencies
are common enough to be painful; hence, provision is usually
made in such a pipeline for modifying the actions of earlier
stages when operands are changed by stores. As a result of all
this, pipelining the last three stages of instruction is a com-
plex and expensive business. A fast multiport cache inside
the processor makes the problem much easier, but is not
feasible with this technology. An interesting but untried idea
is to impose programming restrictions which forbid harmful
dependencies; if all the code is generated by compilers this is
quite feasible.

Hardly any of these problems arise, however, in separating
instruction fetching from the rest. If we assume that exe-
cution cannot modify the code being executed, there are no
dependencies except those arising from branches. If this as-
sumption is unacceptable, then checks must be made for such
modifications, but since they are rare in practice, the checks
can be at a very coarse grain, and fairly drastic resetting
actions can be taken. The absence of forward dependencies
means that instruction fetching activities can be abandoned
without any communication to other parts of the machine.

The function of an instruction fetching and preparation
stage or IFU, then, is to hand off to the rest of the machine
the relevant information for each instruction, conveniently
formatted for later use. Whether the rest of the machine is a
single microcoded processor, an operand preparation stage in
a pipeline, or a collection of functional units which can oper-
ate concurrently is unimportant to the IFU, except as it affects
the meaning of “conveniently formatted.” We will call this
part of the machine the execution unit or EU, and will not be
much concerned with its internal structure.

The EU demands instructions from the IFU at an irregular
rate, depending on how fast it is able to absorb the previous
ones. A simple machine must completely process an in-
struction before demanding the next one. In a machine with
multiple functional units, on the other hand, the first stage in
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the EU waits until the basic resources required by the in-
struction (adders, result registers, etc.) are available, and
then hands it off to a functional unit for execution. Beyond
this point the operation cannot be described by a single pipe-
line, and complete execution of the instruction may be long
delayed, but even in this complicated situation the IFU still
sees the EU as a single consumer of instructions, and is
unaware of the concurrency which lies beyond.

Under this umbrella definition for an [FU, a lot can be
sheltered. To illustrate the way an IFU can accommodate
specific language features. we draw an example from Small-
talk [5]. In this language. the basic executable operation
is applying a function f(called a merhod) to an object
o0: f(o.*-+). The address of the code for the function is not
determined solely by the static program, but depends on a
property of the object called its class. There are many imple-
mentation techniques for finding the class and then the func-
tion from the object. One possibility is to represent a class as
a hash table which maps function names (previously con-
verted by a compiler into numbers) into code addresses, and
to store the address of this table in the first word of the object.
The rather complex operation of obtaining the hash table
address and searching the table for the code address associ-
ated with fis in the proper domain of an IFU, and removes a
significant amount of computation from the processor. No
such specialization is present in the Dorado’s IFU, however.

C. Pipelining Instruction Fetches

For the sake of definiteness, we will assume henceforth
that the smallest addressable unit in the code is a byte; the
memory delivers data in units called words, which are larger
than bytes; an instruction (and its addresses. immediate oper-
ands, and other fields) may occupy one or more bytes. and the
first byte determines its essential properties (length, number
of fields, etc.).

Matters are somewhat simplified if the addressable unit is
the unit delivered by the memory or if instructions are all the
same length, and somewhat complicated if instructions may
be any number of bits long. However. these variations are
inessential and distracting.

The operation of instruction fetching divides naturally into
four stages.

1) Generating addresses of instruction words in the code.
typically by sequentially advancing a program counter, one
-memory word at a time.

2) Ferching datra from the code at these addresses. This
requires interactions with the machine’s memory in general,
although recently used code may be cached within the IFU.
Such a cache looks much like main memory to the rest of the
IFU.

3) Decoding instructions to determine their length and
internal structure, and perhaps whether they arc branches
which the IFU should execute. Decoding changes the repre-
sentation of the instruction, from one which is compact and
convenient for the compiler, to one which is convenient for
the EU and IFU.

4) Formatting the fields of each instruction (addresses,
immediate operands, register numbers, mode control fields,
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or whatever) for the convenience of the EU: e.g., extracting
fields onto the EU’s data buses.

Buffering may be introduced between any pair of these
stages, «ither the minimum of one item required to separate
the stages. or a larger amount to increase the elasticity. Note
that an item must be a word early in the pipe (at the interface
to the memory), must be an instruction late in the pipe (at the
interface to the L U), and may need to be a bvre in the middle.

There are three sources of irregularity (see Section II) in
the pipeline, even when no wrong branches are taken.

1) The instruction length is irregular. as noted in the pre-
vious paragraph; hence. a uniform flow of instructions to the
EU implies an irregular flow of bytes into the decoder, and
vice versa.

2) The memory takes an irregular amount of time to fetch
data; if it contains a cache, the amount of time may vary by
more than an order of magnitude.

3) The EU demands instructions at an irregular rate.

These considerations imply that considerable elasticity is
needed in order to meet the EU’s demands without intro-
ducing delays.

D. Handoff to the EU

From the IFU’s viewpoint, handing off an instruction to
the EU is a simple producer—consumer relationship. The EU
demands a new instruction. If one is ready, the IFU delivers
it as a pile of suitably formatted bits, and forgets about the
instruction. Otherwise. the IFU notifies the EU that it is not
ready; in this case the EU will presumably repeat the request
until it is satisfied. Thus, at this leve] of abstraction. handoff
is a synchronized transfer of one data item (a decoded in-
struction) from one process (the IFU) to another (the EU).

Usually, the data in the decoded instruction can be divided
into two parts: information about what to do, and parameters.
If the EU is a microprogrammed processor, for example,
what to do can conveniently be encoded as the address of a
microinstruction to which control should go (a dispatch ad-
dress), and indeed this is done in the Dorado. Since micro-
instructions can contain immediate constants, and in general
can do arbitrary computations, it is possible in principle to
encode all the information in the instruction into a micro-
instruction address; thus, the instructions PushConstant(3)
and PushConstant(4356) could send control to different
microinstructions. In fact, however. microinstructions are
expensive, and it is impractical to have more than a few
hundred, or at most a few thousand of them. Hence. we want
to use the same microcode for as many instructions as pos-
sible, representing the differences in parameters which are
treated as data by the microcode. These parameters are
presented to the EU on some set of data buses: Section IV has
several examples.

Half of the IFU-EU synchronization can also be encoded
in the dispatch address; when the IFU is not ready, it can
dispatch the EU to a special Not Ready location. Here the
microcode can do any background processing it might have,
and then repeat the demand for another instruction. The same
method can be used to communicate other exceptional condi-
tions to the EU, such as a page fault encountered in fetching
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an instruction, or an interrupt signal from an 1/0 device. The
Dorado’s [FU uses this method (see Section I1I-D).

Measurements of typical programs [7].[11] reveal that
most of the instructions executed are simple, and hence, can
be handled quickly by the EU. As a result, it is important to
keep the cost of handoff low since otherwise it can easily
dominate the execution time for such instructions. As the EU
gets faster, this point gets more important; there are many
instructions which the Dorado, for instance, can execute in
one cycle, so that one cycle of handoff overhead would
be 50 percent. This point is discussed further in Sections [I1
and IV.

E. Autonomy

Perhaps the most important parameter in the design of an
IFU is the extent to which it functions independently of the
execution unit, which is the master in this relationship. At
one extreme we can have an IFU which is entirely indepen-
dent of the EU after it is initialized with a code address
(it might also receive information about the outcome of
branches); this initialization would only occur on a process
switch, complex procedure call, or indexed or indirect jump.
At the other extreme is an IFU which simply buffers one word
of code and delivers successive bytes to the EU; when the
buffer is empty, the IFU dispatches the EU to a piece of
microcode which fetches another memory word’s worth of
code into the buffer. The first IFU must decode instruction
lengths, follow jumps, and provide the program counter for
each instruction to the EU (e.g., so that it can be saved as a
return link). The second leaves all these functions to the EU,
except perhaps for keeping track of which byte of the word it
is delivering. One might think that the second IFU cannot
help performance much, but in fact, when working with a
microcoded EU it can probably provide half the performance
improvement of the first one. at one-tenth the cost in
hardware. The reason can be seen by examining the inter-
preter fragment at the beginning of Section 1I; half a dozen
microinstructions are typically consumed in the clumsy
Getlnstruction operation, and things get worse when in-
structions do not coincide with memory words.

When deciding what tradeoffs to make. one important pa-
rameter is the speed of the EU. It is pointless to be able to
execute most instructions in one or two cycles, il several
cycles are consumed in Get/nstruction. Hence, a fast EU
must have an autonomous IFU. An important special case is
the speed of the memory relative to the microinstruction
time. If several microinstructions can be executed in the time
required to fetch the next instruction from memory, the pro-
cessor can use this time to hold the IFU’s hand. or to perform
the GetInstruction itself. On the Dorado, the cache ensures
that memory data arrive almost immediately. so there is no
free time for handholding.

An autonomous IFU must do more than simply trans-
forming instructions into a convenient form for the EU. There
are two natural ways in which its internal operation may be
affected 5y the instruction stream: decoding instruction
lengths, and following branches. Any IFU which handles
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more than one instruction without processor intervention
must calculate instruction lengths. Following branches is de-
sirable because it avoids the cost of a startup latency at every
branch instruction (typically, every fifth instruction is a
branch). However, it does introduce potential complications
because a conditional branch must be processed without ac-
curate information (perhaps without any information) about
the actual value of the condition; indeed, often this value is
not determined until the processor has executed the preceding
instruction. A straightforward design decides whether to
branch based on the opcode alone, and the processor restarts
the IFU at the correct address if the decision turns out to be
wrong.

The branch decision may be based on other historical infor-
mation. The S-1 [17], for instance, keeps in its instruction
cache one bit for each instruction, which records whether the
instruction branched last time it was executed. This small
amount of partial history reduces the fraction of incorrect
branch decisions to 5 percent [F. Baskett, personal commu-
nication|. The MUS [4| remembers the addresses of the last
eight instructions which branched: such a small history
leaves 35 percent of the branches predicted wrongly, but the
scheme allows the prediction to be made before the in-
struction is fetched. More elaborate designs [16] follow both
branch paths, discarding the wrong one when the processor
makes the branch decision. Each path may, of course, en-
counter further branches, which in turn may be followed
both ways until the capacity of the IFU is exhausted. If each
path is truly followed in parallel, then following n paths
will in general require n times as much hardware and »
times as much memory bandwidth as following one path.
Alternatively, part or all of the IFU’s resources may be mul-
tiplexed between paths to reduce this cost at the expense
of bandwidth.

F. Buffering

As we saw in Section II-B, a pipeline with any irregu-
larities must have buffering to provide elasticity, or its per-
formance at each instant will approximate the performance of
the slowest stage at that instant; this maximizing of the worst
performance is highly undesirable. From the enumeration in
Section II-C of irregularities in the IFU, we can see that to
serve the EU smoothly, there should be a buffer between the
EU and any sources of irregularity, as shown in Fig. 2. Simi-
larly, to receive words from the irregular memory, there
should be a buffer between the memory and any sources of
irregularity. Because of the irregularity caused by variable
length instructions, a single buffer cannot serve both func-
tions. Note that additional regular stages (some are shown in
the figure) have no effect one way or the other.

The cost of introducing a buffer (in the ECL 10K MSI
technology) is the RAM storage to implement it, a multi-
plexor to bypass it when it is empty, and its control; see Fig. 6
for details. The bypass ensures that the buffer does not in-
crease the latency. In addition, there is typically a very minor
performance penalty: when the pipe is reset, any external
resources (the memory in the case of the IFU) which have
been used to fill the buffers are wasted. If some other pro-
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pipe stage regular
single-item
buffer
irregular
outputs
multi-item compensating
buffer buffer
regular
irregular
throughput
regular
compensating
buifer
irregular
inputs
Fig. 2. Sources of irregularity in an IFU pipeline.

cessor could make better use of the resources, something has
been lost.

III. ARCHITECTURE OF THE DORADO IFU

We now turn from our discussion of general principles to
the actual [FU of the Dorado. The Dorado pipelining is much
simpler than that found in vector machines like the TI ASC
[25]. Itis more in the spirit of the Amdahl 470 V/6 pipelining
[24].[18]. Its structure follows from the principles of the
previous section, although we must admit that the design in fact
proceeded less from general principles than from the goal of
delivering one decoded instruction per microcycle. This per-
formance requirement dictates an autonomous [FU, and it
also requires careful attention to the details of IFU-EU hand-
off. In the Dorado. the EU is a microcoded processor with a
number of data paths. and a pipelined implementation which
allows it to execute a microinstruction every 60 ns; in order
to remind the reader of this implementation, we use the word
“processor” to denote the Dorado’s EU. The processor does
not have any significant concurrency visible to the micro-
program, however. In particular, all the work done in a given
cycle is specified directly by the microinstruction executed in
that cycle, although memory references are done by an au-
tonomous unit which in fact is shared with the IFU (see
Fig. 1).

The processor gives the IFU an initial program counter
(PC). and subsequently receives a sequence of decoded in-
structions, which are from sequential bytes except where the
IFU has followed a branch. This sequence continues until the
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processor resets the IFU with another PC, unless a fault or
interrupt is detected. For each instruction the IFU supplies a
microcode dispatch address (into which NotReady and all
other exceptions are encoded). some bits of initial state for
the processor, a sequence of field data values, and the PC
value for the first byte of the instruction. The uses made of
this information are described in Section IV.

A. Byte Codes

The IFU's interpretation of the code is based on a definite
model of how instructions are encoded. Although this model
is not specialized to the details of a particular instruction set,
good performance depends on adherence to certain rules. The
IFU deals only with instructions encoded as variable length
byte sequences—byte codes [3).[11]. Variable length in-
structions provide code compaction since frequent in-
structions can be small. There is also a performance payoff
in cache and virtual memory systems since the compaction
enhances locality and thus reduces cache misses and page
faulting. Our experience has shown that byte codes provide
a flexible format for different languages without favoring a
particular one. The choice of eight bits as the grain is a
compromise among optimum encoding, the desire to keep
code addresses short, and simplicity of the hardware. A
larger grain is highly undesirable both because more than half
the instructions can fit into one byte and because table lookup
as a decoding technique is not feasible for units much larger
than eight bits. A finer grain improves code compactness
somewhat at the expense of more complex length calculation
and word disassembly.

The first byte of each instruction, called the opcode, is
decoded by full table lookup. It may be followed by as many
as two optional data bytes (known as alpha and beia, re-
spectively) that are passed to the processor with only slight
reformatting. Of course. the processor is free to interpret
these bytes as it wishes. but the IFU can only do complex
decoding operations on the opcode byte. The limitation to
three byte instructions reduces hardware complexity at a con-
siderable cost in speed for longer instructions; bytes after the
third must be fetched explicitly by the processor, which then
restarts the [FU at the proper point.

B. The Decoding Table

The IFU decodes an instruction by looking up its first byte
in a 1024 word RAM called the decoding 1able. The addi-
tional two bits of address come from an instruction-set regis-
ter. The 27 bit contents of the table describe the instruction
in sufficient detail for the IFU and the processor to do their
jobs, and the opcode byte itself is not passed to the processor.
Thus, the table lookup does most of the transformation of the
instruction; it also governs some minor transformations of the
data bytes such as sign extension.

This method of instruction decoding has a number of ad-
vantages. It makes the decoder completely programmable in
a very simple and economical way. It also allows any sub-
structure of the opcode (e.g., register or mode fields) to
be extracted with complete flexibility. Indeed, it is not ne-
cessary for such fields to exist explicitly. If single byte
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PushConstant instructions for values 0-4 are desired, any
five opcode values can be assigned for this purpose. and the
table can produce the values 0—4. Furthermore, no sharp
distinction is needed between “controi” and *“data” in the
instruction encoding since both control information and data
values are produced by the same table lookup.

Of course, nothing is perfect. This scheme may fail when
an instruction has many small fields, especially if they cross
byte boundaries. The PDP-11 and Nova instruction sets are
interesting borderline cases: it works quite well to look up the
first byte and use the result to select either a second lookup
in an alternate table lookup. or treatment of the next byte as
data. A convenient way to describe this is to have the first
byte specify either a two byte instruction, or a one byte
instruction which switches the “instruction set” temporarily
for decoding the next byte.

This facility of modifying the instruction set register on the
fly is not implemented in the Dorado since it is not very useful
for the instruction sets we actually use. It is simple, however,
and could easily be added; the only delicate point is that the
instruction set register must be saved on an exception, or else
exceptions must be prohibited before instructions which are
decoded with an alternate table. Currently, only the processor
can change the instruction set, and it normally does so only
when switching from one language to another. This facility is
used in the Interlisp implementation, for example. since the
nucleus of this system is written in BCPL and compiled into
a different instruction set than the one used for Lisp.

Multiple decoding tables have other uses. In fact, the IFU
can be viewed as a rather general byte-stream processor. For
example, consider the problem of generating halftone values
for a gray scale image; the task is to transform a sequence of
gray pixels (p, bits each, at a resolution of r, pixels/in), into
a sequence of binary pixels (one bit each. at a resolution of
ry pixels/in). Both sets of pixels are packed into words, 16/p,
per word and 16 per word, respectively. Thus, as each binary
pixel is generated, it is necessary to keep track of whether
a new binary word must be started (once every 16 binary
pixels), and whether a new gray pixel is needed (once every
r»/r, binary pixels); in the latter case, a new gray word may
be needed. Typical algorithms use a single scan-line buffer
containing an error value which must be compensated at each
binary pixel. The IFU can be used to fetch values from this
buffer in parallel with the processor. Special pseudoopcode
values can be used to mark the points which require one or
more of the speciul actions above. The decoding table will
dispatch the processor to the special code for these functions
without any processor overhead. A trial implementation us-
ing this idea was about twice as fast as one without the IFU.

C. Pipeline Stages and Buffering

Fig. 3 shows the pipeline stages in the IFU. An item var-
ies in size, but all stages except one operate in a single
60 ns cycle. For the most part all state is held in the buffers
between the stages, which themselves are purely functional
or combinatorial.

At the beginning of the pipe, PC values are generated
and put on the mcmory address bus (ADDRESS), and the
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Fig. 3. Pipeline stages in the Dorado IFU.

corresponding 16 bit words are returned from the memory
(MEMORY), at a peak rate of one per cycle. If there are no
cache misses and no collisions with the processor, the mem-
ory can accept an address in every cycle and return data words
at the same rate two cycles later. Thus, under these ideal
conditions the memory is not irregular. A double-rate (30 ns)
stage (BYTES) delivers bytes to the decoder (DECODE), which
can accept one opcode byte and one operand byte in a single
cycle, although it requires a full cycle to process an instruction.
This arrangement allows two byte instructions to pass through
the pipe at the rate of one per cycle; longer instructions require
two cycles. but are rare. Because DECODE requires a full cycle,
the peak rate for one byte instructions is still one per cycle.
Note that the processor cannot demand instructions faster than
this, anyway.

From DECODE on, an item is an instruction; one of these
items is held in a buffer from which it is handed off to the
processor (DISPATCH). It turns out that the processor proper
requires some of the decoded instruction before it executes
the first microinstruction (the dispatch address and other ini-
tial state: see Section IV-B), but consumes the field data
later, one byte at a time. The physical IFU also contains a
logical extension of the processor (EXECUTE), which holds this
deferred information and doles it out on demand.

There are two words of buffering after MEMORY, but there
is no other buffering except for the minimum single item
between stages, contrary to the arguments of Section II-F.
This design was adopted partly to save space, and partly
because we did not fully understand the issues in maintaining
peak bandwidth. Fortunately, the peak bandwidth of the IFU
is substantially greater than what the processor is likely to
demand for more than a very short interval (Section VI), so

that not much useful throughput is lost because of the inade-
quate buffering.
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D. Exceptions

Exception conditions are handled by extending the space
of values stored in an item and handed off from one stage to
the next, rather than by establishing separate communication
paths. Thus, for example, a page fault from the memory is
indicated by a status bit returned along with the data word;
the resulting “page fault value” is propagated through the
pipe and decoded into a page fault dispatch address which
is handed to the processor like any ordinary instruction.
Each exception has its own dispatch address. Interrupts cause
a slight complication. The IFU accepts a signal called
Reschedule which means “cause an interrupt™; this signal is
actually generated by 1/0 microcode in the processor, but it
could come from separate hardware. The next item leaving
DECODE is modified to have a reschedule dispatch address.
The microcode at this address examines registers to find out
what interrupt condition has occurred. Since the reschedule
item replaces one of the instructions in the code, it has a
PC value. which is the address of the next instruction to be
executed. After the interrupt has been dealt with, the IFU will
be restarted at that point.

The exceptions may be divided into three classes.

1) The IFU has not (yet) finished decoding the next in-
struction, and hence. is not ready to respond to a processor
demand.

2) It is necessary to do something different (to handle an
interrupt or a page fault).

3) There has been a hardware problem — it is not wise to
proceed.

Since more than one exception condition may obtain at a
time. they are arranged in a fixed priority order. Exceptions
are communicated only by a dispatch; hence, all exceptions
having to do with a particular opcode must be detected before
it is handed off. Thus, all the bytes of an instruction must
have been fetched from memory and be available within the
IFU before it is handed off.

E. Contention and Dependencies

There is no contention for resources within the IFU, and
the only contention with the rest of the Dorado is for access
to the memory. The IFU shares with the processor a single
address bus to the Dorado’s cache. but has its own bus for
retrieving data. The processor has highest priority for the
address bus, which can handle one request per cycle. Thus,
under worst case conditions the IFU can be locked out
completely; eventually, of course, the processor will demand
an instruction which is not ready and stop using the bus.
Actual address bus conflicts are not a major factor (see
Section VI-C).

Although ideally the MEMORY stage is regular, in fact col-
lisions with the processor can happen: these irregularities are
partially compensated by the two words of buffering after
MEMORY. In addition. cache misses, although very rare, cost
about 30 cycles when they do occur.

There is only one dependency on the rest of the execution
pipeline: starting the IFU at a new PC. Since no attempt is
made to detect modifications of code being executed, or to
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execute branches which depend on the values of variables,
the only IFU-processor communication is handoff syn-
chronization and resetting of the PC, and these are also the
only communication between the IFU stages. The IFU is
completely reset when it gets a new PC; no attempt is made
to follow more than one branch path, or to cache information
about the code within the IFU. The shortage of buffering
makes the implementation of synchronization rather tricky
(see Section V).

The IFU takes complete responsibility for keeping track of
the PC. Every item in the pipe carries its PC value with it, so
that when an instruction is delivered to the processor, the PC
is delivered at the same time. The processor actually has
access to all the information needed to maintain its own PC,
but the time required to do this in microcode would be pro-
hibitive (at least one cycle per instruction).

The IFU can also follow branches. provided they are PC
relative. have displacements specified entirely in the in-
struction, and are encoded in certain limited ways. These
restrictions ensure that only information from the code (plus
the current PC value) is needed to compute the branch ad-
dress, so that no external dependencies are introduced. It
would be possible to handle absolute as well as PC-relative
branches, but this did not seem useful since none of the target
instruction sets use absolute branches. The decoding table
specifies for each opcode whether it branches and how to
obtain the displacement. On a branch DECODE resets the ear-
lier stages of the pipe and passes the branch PC back to
ADDRESS. The branch instruction is also passed on to the
processor. If it is actually a conditional branch which should
not have been taken, the processor will reset the IFU to
continue with the next instruction; the work done in follow-
ing the branch is wasted. If the branch is likely not to be
taken, then the decoding table should be set up so that it is
treated as an ordinary instruction by the IFU, and if the
branch is taken after all. the processor will reset the IFU to
continue with the branch path; in this case the work done in
following the sequential path is wasted. Even unconditional
jumps are passed on to the processor, partly 1o avoid another
case in the IFU, and partly to prevent infinite loops in the [FU
without any processor intervention.

IV. IFU-PROCESSOR HANDOFF

With a microcoded execution unit like the Dorado’s pro-
cessor, efficient emulation depends on smooth interaction
between the IFU and the processor. and on the right kind of
concurrency in the processor itself. These considerations are
less critical in a low-performance machine, where many mi-
crocycles are used to execute each instruction, and the loss of
a few is not disastrous. A high-performance machine, how-
ever, executes many instructions in one or two microcycles.
Adding one or two more cycles because of a poorly chosen
interface with the IFU or because a very common pair of
operations cannot be expressed in a single microinstruction
slows the emulator down to 50-200 percent. The common
operations are not very complex, and require only a modest
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Fig. 4. Buses between the IFU and the processor/memory.

amount of hardware for an efficient implementation. The
examples in this section illustrate these points.

Good performance depends on two things.

1) An adequate set of data buses, so that it is physically
possible to perform the frequent combinations of independent
data transfers in a single cycle. We shall be mainly concerned
with the buses which connect the [FU and the processor,
rather than with the internal details of the latter. These are
summarized in Fig. 4.

2) A microinstruction encoding which makes it possible
to specify these transfers in a single microinstruction. A
horizontal encoding does this automatically; a vertical one
requires greater care to ensure that all the important com-
binations can still be specified.

We shall use the term folding {or the combination of sev-
eral independent operations in a single microinstruction.
Usually, folding is done by the microprogrammer, who
surveys the operations to be done and the resources of the
processor, and arranges the operations in the fewest possible
number of microinstructions.

A. How the Processor Sees the [IFU

The processor has four main operations for dealing with the
IFU. Two are extremely frequent:

1) IFUJump: The address of the next microinstruction
is taken from the IFU; a ten bit bus passes the dispatch
address to the processor’s control section. In addition, parts
of the processor state are initialized from the IFU. and other
parts are initialized to standard values (see Section [V-B).
IFUJump causes the IFU to handoff an instruction to the
processor if it has one ready. Otherwise. the IFU dispatches
the processor to the NotReady location. The microcode may
issue another IFUJump at that point, in which case the pro-
cessor will loop at NotReady until the IFU has prepared the
next instruction. An IFUJump is coded in the branch control
field of the microinstruction, and hence. can be done concur-
rently with any data manipulation operation.

2) IFUData: The IFU delivers the next field datum on the
IFUData bus. which is nine bits wide (eight data bits plus a
sign). Successive IFUData’s during emulation of an in-
struction produce a fixed sequence of values determined by
the decoding table entry for the opcode, and chosen from a
small constant A in the decoding table entry; the alpha byte,
possibly sign extended; either half of the alpha byte: the beta
byte; the instruction length.

IFUData is usually delivered to the A bus, one of the pro-
cessor’s two main input buses, from which it can be sent
through the ALU, or used as a displacement in a memory
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reference. In this case it is encoded in the microinstruction
field which controls the contents of this bus, and hence, can
be done concurrently with all the other operations of the
processor. IFUData can also be delivered to B, the other main
input bus, from which it can be shifted, stored, sent to the
other ALU input, or output. This operation is encoded in the
special function field, where it excludes a large number of
relatively infrequent operations as well as immediate con-
stants and long jumps. all of which also use this field. For the
details of the processor and its microinstructions, see [8].

The other two IFU-related operations are less frequent, and
are also coded in the special function field of the micro-
instruction:

1) PC: The IFU delivers the PC for the currently executing
instruction to the B bus.

2) PC «: Resets the IFU and supplies a new PC value
from the B bus. The IFU immediately starts fetching in-
structions from the location addressed by the new PC.

In addition, there are a number of operations that support
initialization and testing of the hardware.

Strictly speaking. the IFUData and PC operations do not
interact with the IFU. All the information the IFU has about
the instruction is handed off at the I[FUJump, including the
field data and the PC (about 40 bits). However. these bits are
physically stored with the IFU, and sent to the processor
buses incrementally, in order to reduce the width of the buses
needed (to 9 bits. plus a 16 bit bus multiplexed with many
other functions). From the microprogrammer’s viewpoint.
therefore, the description we have given is natural.

We illustrate the use of these operations with some exam-
ples. First. here is the actual microcode for the PushConstant
instruction introduced in Section II.

PushConstantByte:
Push[IFUData]., IFUJump:

To push a 16 bit constant, we need a three byte instruction:
alpha contains the left eight bits of the constant and beta the
right eight bits.

PushConstantWord:
temp <« LeftShift|I[FUData, 8];
Push[temp or IFUData], IFUJump;

Opcode Partial decoding table contents

PushCO  Dispatch < PushC,N « 0, Length « 1
PushCl Dispatch <« PushC,N « I, Length « |
PushC2 Dispatch < PushC, N « 2, Length « |
PushCB Dispatch < PushC, Length « 2
PushCW Dispatch < PushCWord, Length « 3

Notice that the first microinstruction uses the IFU to ac-
quire data from the code stream. Then the second micro-
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instruction simultaneously retrieves the second data byte and
dispatches to the next instruction. These examples illustrate
several points.

Any number of microinstructions can be executed to emu-
late an instruction, i.e., between IFUJumps.

Within an instruction. any number of IFUData requests are
possible: see Table 111 for a summary of the data delivered to
successive requests.

[FUJump and IFUData may be done concurrently. The
[FUData will reference the current instruction’s data. and
then the IFUJump will dispatch the processor to the first
microinstruction of the next instruction (or to NotReady).

Suppose analysis of programs indicates that the most
common PushConstant instruction pushes the constant 0.
Suppose further that 1 is the next most common constant,
and 2 the next beyond that, and that all other constants occur
much less frequently. A lot of code space can probably be
saved by dedicating three one byte opcodes to the most
frequent PushConstant instructions, and using a two
byte instruction for the less frequent cases, as in the
PushConstantByte example above, where the opcode byte
designates a PushConstantByte opcode and alpha specifies
the constant. A third opcode, PushConstantWord, provides
for 16 bit constants, and still others are possible.

Pursuing this idea, we define five instructions to push
constants onto the stack: PushCO, PushCl, PushC2,
PushCB, PushCW. Any five distinct values can be assigned
for the opcode bytes of these instructions since the meaning
of an opcode is completely defined by its decoding table
entry. The entries for these instructions are as follows (N is
a constant encoded in the opcode. Length is the instruction

— Reduced from 9 microinstructions to 1!

— put alpha into the left half of temp
— or in beta, push the result onto the stack, and dispatch to the next instruction.

length in bytes, and Dispatch is the microcode dispatch
address; for details, see Section V-D):

— Remarks

— push O onto the stack

—push 1 onto the stack

— push 2 onto the stack

— push alpha onto the stack

— push the concatenation of alpha and beta onto the stack.

The microcode to implement these instructions is the fol-
lowing; we have seen it before:
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— PushC0/1/2, (IFUData = N). PushCB, (IFUData = alpha)

PushC:
Push{IFUData], IFUJump:
PushCWord: —PushCW,
temp < Lshift[IFUData, 8]; — (IFUData = alpha here)

Push[temp or IFUData], IFUJump:;

Observe that the same single line of microcode (at the label
PushC) implements four different opcodes, for both one and
two byte instructions. Only PushConstantWord requires two
separate microinstructions.

B. Initializing State

A standard method for reducing the size and increasing the
usefulness of an instruction is to parameterize it. For ex-
ample, we may consider an instruction with a base register
field to be parameterized by that register; the “"meaning”
of the instruction depends on the contents of the register.
Thus, the same instruction can perform different functions,
and also perhaps can get by with a smaller address field. This
idea is also applicable to microcode, and is used in the
Dorado. For example, there are 32 memory base registers. A
microinstruction referencing memory does not specify one of
these explicitly: instead, there is a MemBase register, load-
able by the microcode, which tells which base register to use.
Provided the choice of register changes infrequently, this is
an economical scheme.

For emulation it presents some problems, however. Con-
sider the microcode to push a local variable; the address of the
variable is given by the alpha byte plus the contents of the
base register localData, whose number is localDataRegNo

PushLocalVar:
MemBase <« localDataRegNo;
Fetch[IFUDatal;
Push[memoryData], [FUJump;

This takes three cycles, one of which does nothing but
initialize MemBase. The point is clear: such parametric state
should be set from the IFU at the start of an instruction. using
information in the decoding table. This is in fact done on
the Dorado. The decoding table entry for PushLocalVar
specifies localData as the initial value for MemBase, and the
microcode becomes

PushVar:
Fetch{IFUData];
Push[memoryData|, IFUJump;

One microinstruction is saved. Furthermore, the sane mi-
crocode can be used for a PushGlobalVar instruction, with a
decoder entry which specifies the same dispatch address, but
globalData as the initial value of MemBase. Thus, there are
two ways in which parameterization saves space over speci-
fying everything in the microinstruction: each micro-
instruction can be shorter, and fewer are needed. The need
for initialization, however, makes the idea somewhat less
attractive since it complicates both the IFU and the EU, and
increases the size of the decoding table.

A major reduction in the size of the decoding table can be

— (IFUData = beta here).

had by using the opcode itself as the dispatch address. This
has a substantial cost in microcode since typically the number
of distinct dispatch addresses is about one-third of the
256 opcodes. If this price is paid and parameterization elimi-
nated, however, the IFU can be considerably simplified since
not only the decoding table space is saved, but also the buff-
ers and buses needed to handoff the parameters to the pro-
cessor, and the parameterization mechanism in the processor
itself. On the Dorado, the advantages of parameterization
were judged to be worth the price, but the decision is a fairly
close one. The current memory base register and the current
group of processor registers are parameters of the micro-
instruction which are initialized from the IFU. The IFU also
supplies the dispatch address at the same time. The remainder
of the information in the decoding table describes the data
fields and instruction length; it is buffered in EXECUTE and
passed to the processor on demand.

C. Forwarding

Earlier. we mentioned folding of independent operations
into the same microinstruction as an important technique for
speeding up a microprogram. Often, however, we would like
to fold the emulation of two successive instructions, de-
ferring some of the work required to finish emulation of one
instruction into the execution of its successor. where we hope

— Make memory references relative to the local data.
— Use contents of PC + 1 as offset.
— Push variable onto stack, begin next instruction.

for unused resources. The Cray-1 permits such chaining in
the case of vector operations [10], |23]. In the Dorado, with
no a priori information about what instruction comes next,
we use a simple trick (suggested by E. Fiala) which makes
instruction forwarding possible in many common cases.

We define for an entire instruction set a small number n of
cleanup actions which may be forwarded to the next instruc-

—IFU initializes MemBase to the local data
—Push variable onto stack, begin next instruction.

tion for completion; on the Dorado up to four are possible,
but one must usually be the null action. For each dispatch
address we had before, we now define n separate ones, one
for each cleanup action. Thus, if there were D addresses to
which an IFUJump might dispatch, there are now nD. At
each one, there must be microcode to do the proper cleanup
action in addition to the work required to emulate the current
instruction. The choice of cleanup action is specified by
the microcode for the previous instruction; to make this
convenient, the Dorado actually has four kinds of IFUJump
operations (written [FUJumpli| for i = 0-3), instead of the
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one described above. The two bits thus supplied are ored
with the dispatch address supplied by the IFU to determine
the microinstruction to which control should go. To avoid any
assumptions about which pairs of successive instructions can
occur, all instructions in the same instruction set must use the
same cleanup actions and must be prepared to handle all the
cleanup actions. In spite of this limitation, measurements
show that forwarding saves about 9 percent of the execution
time in straight-line code (see Section VI-D): since the cost
is very small. this is a good deal.

We illustrate this teature by moditying the implementation
of PushLocalVar given above. to show how one instruction’s
memory fetch operation can be finished by its successor,
reducing the cost of a PushLocalVar from two micro-
instructions to one. We use two cleanup actions. One is
null (action 0), but the other (action 2) finds the top of the
stack not on the hardware stack but in the memoryData reg-
ister. Thus, any instruction can leave the top of stack in
memoryData and do an [FUJump[2]. Now the microcode
looks like this:

PushLocalVar[0]:
Fetch[IFUData] . IFUJump(2]:
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This example shows that the folding enabled by forwarding
can actually eliminate data transfers which are necessary in
the unfolded code. At Add|2] the second operand of the Add
is not put on the stack and then taken off again, but is sent
directly to the adder. The common data bus of the 360/91 [15]
obtains similar, but more sweeping, effects at considerably
greater cost. It is also possible to do a cleanup after a
NotReady dispatch; this allows some useful work to be done
in an otherwise wasted cycle.

D. Conditional Branches

We conclude our discussion of IFU-processor inter-
actions. and give another example of forwarding. with the
example of a conditional branch instruction. Suppose that
there is a BranchNotZero instruction that takes the branch if
the current top of the stack is not zero. Assume that its
decoding table entry tells the IFU to follow the branch, and
specifies the instruction length as the first IFUData value.

— this entry point assumes normal stack, and leaves top of stack

in memoryData.

PushLocal Var[2]:
Push[memoryData], Fetch[IFUData],IFUJump[2]:

— this entry point assumes top of stack is in memoryData and

leaves it there.

BranchNotZero:
if stack = O then goto InsFromIFUData, Pop;
[FUJump;
InsFromlIFUData:
temp < PC + IFUData;
PC « temp:
IFUJump;

Straightforward microcode for the instruction is:

— IFU jumps come here. IFU assumed result #0.

— Test result in this microinstruction.

— Result was nonzero, IFU did right thing.

— Result was zero. Do the instruction at PC + IFUData.

— PC should be PC + Instruction length.

— Redirect the IFU.

— This will be dispatched to NotReady. where the code will loop

until the IFU refills starting at the new location.

In both cases, the microcode executes IFUJump(2] since
the top of stack is left in the memoryData register. rather than
on the stack as it should be. In the case of PushLocalVar|2].
the previous instruction has done the same thing. Thus, the
microcode at this entry point must move those data into
the stack at the same time it makes the memory reference
for the next stack value. The reader can see that successive
Push instructions will do the right thing. Of course, there
is a payoff only because the first microinstruction of
PushLocalVar(0] is not using all the resources of the
processor.

It is instructive to look at the code for Add with this forward-
ing convention:

Add[0]:

temp < Pop| ]:

StackTop « StackTop + temp, IFUJump(O];
Add[2]:

StackTop < StackTop + memoryData, IFUJump{0]:

The most likely case (the top of the stack nonzero) sim-
ply makes the test specified by the instruction and does an
IFUJump (two cycles). If the value is zero (the IFU took the
wrong path), the microcode computes the correct value for
the new PC and redirects the IFU accordingly (four cycles,
plus the I[FU’s latency of five cycles: guessing wrong is pain-
ful). If we think that BranchNotZero will usually fail to take
the branch, we can program the decoding table to treat it as
an ordinary instruction and deliver the branch displacement
as [FUData, and reverse the sense of the test.

A slight modification of the forwarding trick allows further
improvement. We introduce a cleanup action (say action 1) to
do the job of InsFromlFUData abave (it must be action 1 or

— this entry point assumes and leaves normal stack

— this entry point assumes top of stack is in memoryData,
leaves normal stack.
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3 since a successful test in the Dorado oR’s a 1 into the next
microinstruction address). Now we write the microcode
(including for completeness the action 2 of Section IV-C):

BranchNotZero{0]:

Test{stack = 0], Pop, IFUJump{0]:
BranchNotZero[2]:

Test{memoryData = 0], IFUJump{0]:
Everylnstruction[1]:

temp < PC + IFUData;

PC <« temp;

IFUJump(0]:
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account of the various irregularities which allow a stage to
accept an item without delivering one or vice versa. Thus, the
pipe has global control. Note that a stage delivers an output

— Redirect the IFU
— This will be dispatched to NotReady, where the code will loop until the IFU

—IFU jumps come here. Expect result #0.
— Test result in this microinstruction; if the test succeeds. we do IFUJump|1].

— Branch was wrong. Do the instruction at PC + [FUData.

refills starting at the new location.

Now a branch which was predicted correctly takes only one
microinstruction. For this to work, the processor must keep
the IFU from advancing to the next instruction if there is a
successful test in the IFUJump cycle. Otherwise, the PC and
IFUData of the branch instruction would be lost, and the
cleanup action could not do its job. Note that the first line at
Everylnstruction[1] must be repeated for each distinct
dispatch address; all these can jump to a common second
line, however.

V. IMPLEMENTATION

In this section we describe the implementation of the
Dorado IFU in some detail. The primary focus of attention is
the pipeline structure, discussed within the framework estab-
lished in Section Il and Section III-C, but in addition we give
(in Section V-D) the format of the decoding table, which
defines how the IFU can be specialized to the needs of a
particular instruction set. Fig. 3 gives the big picture of the
pipeline. Table | summarizes the characteristics of each
stage: succeeding subsections discuss each row of the table in
turn. The first row gives the properties of an ideal stage, and
the rest of the table describes departures from this ideal. This
information is expanded in the remainder of this section; the
reader may wish to use the table to compare the behavior of
the different stages.

The entire pipe is synchronous, running on a two-phase
clock which defines a 60 ns cycle: some parts of the pipe use
both phases, and hence are clocked every 30 ns. An “ideal”
stage is described by the first line of the table. There is a
buffer following each stage which can hold one item (b = 1),
and may be empty (represented by an empry flag); this is also
the input buffer for the next stage. The stage takes an item
from its input buffer every cycle (,,,, = 1) and delivers an
item to its output buffer every cycle (Z,.,, = 1); the item
taken is the one delivered (! = 1). The buffer is loaded on the
clock edge which defines the end of one cycle and the start of
the next. The stage handles an item if and only if there is
space in the output buffer for the output at the end of the
cycle; hence. if the entire pipe is full and an item is taken by
the processor, every stage will process an item in that cycle.
This means that information about available buffer space
must propagate all the way through the pipe in one cycle.
Furthermore, this propagation cannot start until it is known
that the processor is accepting the item, and it must take

item whether or not its input buffer is empty: if it is, the
special empty item is delivered. Thus, the space bookkeeping
is done entirely by counting empty items.

Implementing global control within the available time
turned out to be hard. It was considered crucial because of the
minimal buffering between stages. The alternative much eas-
ier approach is local control: deliver an item to the bufter
only if there is space for it there at the start of the cycle. This
decouples the different stages completely within a cycle, but
it means that if the pipe is full (best case) and the processor
suddenly starts to demand one instruction per cycle (worst
case), the pipe can only deliver at half this rate, even though
each stage is capable of running at the full rate; Fig. 5(a)
illustrates this cogging. Fig. 5(b) shows that with two items
of buffering after cach stage, local control does not cause
cogging. The Dorado has small buffers and global control
partly because buffers are fairly costly in components (see
below), and partly because this issue was not fully under-
stood' during the design. Note that it is easy to implement
global control over a group of consecutive stages which have
no irregularities since every stage can safely advance if there
is room in the buffer of the last stage. In this IFU, alas, there
are no two consecutive regular stages.

Unfortunately, the cost of buffering is not linear in the
number of items. A two item buffer costs more than three
times as much as a one item buffer; this is because the latter
is simply a register, while the former requires two registers
plus a multiplexor to bvpass the second register when the
buffer is empty, as shown in Fig. 6. Without the bypass a
larger buffer increases the latency of the pipe. which is highly
undesirable since it slows down every jump which the IFU
does not predict successfully. Once the cost of bypassing is
paid, however, a multiitem buffer costs only a little more
since a RAM can be used in place of the second register.
Although there are no such buffers in the Dorado, it is inter-
esting to see how they are made.

The RAM requires two counters to act as read and write
pointers, and a third to keep track of the number of items in
the buffer. In addition, it must be effectively two-ported since
in a single cycle it is necessary to write one item and read an
earlier one. In the Dorado two-port RAM’s are used in many
places; since no such part is available, they are implemented
by running an ordinary RAM at twice the machine cycle (both
16 X 4 and 256 X 4 RAM’s are available which can be read
or written in 10 ns), and using a multiplexor to supply the
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TABLE 1
SUMMARY OF THE PIPELINE STAGES
“

Stage Size Input Output Reset Remarks

“ideal" t=1; takesone t=1=1; delivers one Clearsbuffer ~ All state is in the buffer
item if output  item if buffer will tocmplyon  after the stage.
is possible beempty: b=1 . pe ...

e e, ——————————————

address ward Noinput Not if paused, mar and jump; Passi pc by incrementing;
contention, ar mem also accepts asource, hence has
busy; OK if space in new pevalue  state (pe).
any later buffer.
memory  word Internal 12; output is and jump; Must enforce fifo;
complications unconditional; b=2 discards out-  not really part of ifu;
put of fetches  has state of 0-2
in progress fetches in progress
bytes byte 1=.5 t=1=.5 and jump Break byte feature,
decode instr - ©.5; rate de- only Recycling to vary rate;
pends on ins- splits beta byte; encodes
truction length exceptions; does jumps.
dispaich  inst On ifulump anly NotReady is default
delay;
ifuHold is panic delay.
cxecute  byte OnifuData No output buffer Reset unnecessary
ADORESS bufter | | 4] - =1 [e]
MEMORY bufter a =
BYTES buffer = = =
DECODE bufter || <1 |
processor has = H = = n
(a)
ADDRESS butfer 78 7.8 7.8 -8 -9 -10
MEMORY buffer 5.6 5.6 5.6 -7 -8 -9
S
BYTES bufter 3.4 3.4 -4 -6 -7 -8
DECOQDE buffer 1.2 -2 3 -5 -6 -7
processor has —_ 1 2 4 5 6
(b)
Fig. 5. (a) Cogging with local control and one item buffering. (b) Smooth

operation with local control and two item buffering.

read address in one half-cycle and the write address in the
other. Fig. 6 shows this arrangement in a slightly simplified
form.

A normal stage has no state which changes as instructions
are executed; all the state is represented in the items as they
are stored in the interstage buffers. As a consequence, re-
setting the pipe is done simply by filling all the buffers with
empty items.

Every item carries with it a PC, which is the address in the
code from which its first byte was fetched. It is the IFU’s
handling of jumps which makes this necessary; otherwise, it
would suffice to remember the initial PC at the end of the
pipe, and to increment it by the instruction length as each
instruction goes by. Since no jumps can be executed between
the ADDRESS and BYTES states, this method is in fact used
there. It is especially convenient because BYTES handles one
byte at a time, so that the PC can be held in a counter which
is incremented once per item; later in the pipe an adder would
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be needed to handle the variable instruction lengths, and it
would cost about four times as much.

Every item also carries a starus field, which is used to
represent various values that do not correspond to ordinary
instructions: empty, page fault, memory error. These are
converted into unique dispatch addresses when the item is
passed to the processor, as discussed in Section 1II-D.

A. ADDRESS Stuge

This stage generates the addresses of memory words which
contain the successive bytes of code. Unlike the other stages.
it has no ordinary input. but instead contains a PC which it
increments by two (there are two bytes per memory word) for
cach successive reference. The PC can also take on a pause
value which prevents any further memory references until the
processor resupplies ADDRESS with an ordinary PC value. This
pause state plays the same role for ADDRESS that an empty
input buffer plays for the other stages; hence, it is entered
whenever this stage is reset. That happens either because of
a processor Reset operation (which resets the entire [FU pipe.
and is not done during normal execution), or because of a
Pause signal from DECODE. Correspondingly. a new PC can
be supplied either by a processor PC <« operation, or by a
Jump signal from DECODE when it sees a jump instruction.
Any of these operations reset the pipe between ADDRESS and
DECODE: the processor operations reset the later stages also.

ADDRESS makes a memory reference if the memory is will-
ing to accept the reference: this corresponds to finding space
in the buffer between ADDRESS and MEMORY, although the
implementation is quite different because the memory is not
physically part of the IFU. In addition, ADDRESS contends
with the processor for the memory address bus: since the [FU
has lowest priority, it waits until this bus is not being used by
the processor. Finally. it is necessary to worry about space for
the resulting memory word; the memory, unlike ordinary 1IFU
stages. delivers its result unconditionally, and hence, must
not be started unless there is a place to put the result. ADDRESS
surveys the buffering in the rest of the pipe, and waits until
there are at least two free bytes guaranteed; it is not necessary
for these bytes to be in the MEMORY output buffer since data
in that buffer will advance into later buffers before the mem-
ory delivers the data. It is, however, necessary to make the
most pessimistic assumptions about instruction length and
processor demands. On this basis, there are seven bytes of
buffering altogether: four after MEMORY, two after BYTES, and
one after DECODE.

B. MEMORY Stage

This stage has several peculiarities. Some arise from the
fact that most of it is not logically or physically a part of the
IFU, but instead is shared with the processor and 1/0 system.
A% we saw in the previous section, the memory delivers
results unconditionally, rather than waiting for buffer space
to be available; ADDRESS allows for this in starting MEMORY.
Furthermore, the memory has considerable internal state and
cannot be reset, so additional logic is required to discard
items which are inside the memory when the stage is reset.

Other problems arise from the fact that the memory’s la-
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no bypass with bypass with RAM and bypass

é Multiplexor/

register

Fig. 6. One, two, and many item buffers with bypassing.

tency is more than one cycle; in fact, it ranges from two to
about 30 cycles (the latter when there is a cache miss). To
maintain full bandwidth, the IFU must therefore have more
than one item in the MEMORY stage at a time; since/ = 2 when
the cache hits. and this is the normal case, there is provision
for up to two items in MEMORY. A basic principle of pipeline
stages is that items emerge in the order they are supplied. A
stage with fixed latency, or one which holds only one item,
does this automatically, but MEMORY has neither of these
properties. Furthermore, its basic function is random access,
with no sequential relationship between successive refer-
ences. Hence, if one reference misses and the next one hits,
the memory is happy to deliver the second result first. To
prevent this from happening, the IFU notifies the memory
that it has a reference outstanding when it makes the second
one, and the memory rejects the second reference unless the
first one is about to complete.

The irregularity of the memory also demands more than
one word of buffering for its output, and in fact two are
provided. They are physically packaged with the cache data
memory, as is the BYTES stage multiplexing required to pro-
duce individual bytes. As a result, a one byte bus suffices to
deliver memory data to the IFU.

C. BY7ES Stage

This is a very simple stage. which consists only of the
multiplexors just mentioned. It does, however, run twice as
fast as the other stages, so that it can deliver two byte in-
structions at the full rate of one per cycle. This means that the
multiplexors must look at both words of the MEMORY output
buffer, which runs only at the normal rate.

BYTES also includes a provision for replacing the first byte
coming from memory with a byte taken from a substitute
register within the stage. This feature makes it convenient
to proceed after a breakpoint without removing the one
byte breakpoint instruction from the code; instead, the op-
code byte displaced by the breakpoint is loaded into the
substitute register (by the microcode) and substituted for the
break instruction. Since the substitution is done only once.
the break is executed normally when control returns to it.
The substitute register is also a convenient way to address the
decoding table for loading and testing it.

D. DECODE Stage

The main complications in this stage are the decoding
table. the variable number of bytes required to make up an
instruction, the encoding of exceptions, and the execution
of jumps.

The decoding table is implemented with 1k X | RAM’s,
which provide room for four instruction sets with
256 opcodes each. It takes about two-thirds of a cycle to read
these RAM’s, with consequences which are described below.
The form of an entry is outlined in Table II; parity is also
stored. Most of this information is passed on directly to the
DECODE buffer. The last three fields, however, affect the
IFU’s handling of subsequent instructions.

The instruction length determines the treatment of both this
and ]ater instructions; the fact that it is not known until late
in the DECODE cycle causes serious problems. A simple imple-
mentation of DECODE addresses the decoding table directly
from the input buffer. If the instruction turns out to be one
byte long. it is delivered to the output buffer in the normal
way. If it is longer, the decoded output is latched and addi-
tional bytes are taken from BYTES until the complete in-
struction is in DECODE ready to be delivered (see Fig. 7(a)].
Unfortunately, the length must be known before the middie of
the cycle to handle two byte instructions at full speed.
Fig. 7(b) shows how this problem can be attacked by intro-
ducing a substage within DECODE; unfortunately. this delays
the reading of the decode table by half a cycle, so that its
output is not available together with the alpha byte. To solve
the problem it is necessary to provide a second output buffer
for BYTES, and to feed back its contents into the main buffer
if the instruction turns out to be only one byte long. as in
Fig. 7(c). Some care must be taken to keep the PC’s straight.
This ugly backward dependency seems to be an unavoidable
consequence of the variable-width items.

In fact, a three byte instruction is not handled exactly as
shown in Fig. 7. Since the bandwidth of BYTES prevents it
from being done in one cycle anyway, space is saved by
breaking it into two subinstructions, each two bytes long: for
this purpose a dummy opcode byte is supplied between alpha
and beta. Each subinstruction is treated as an instruction
item. The second one contains beta and is slightly special;
DECODE ignores its dummy opcode byte and treats it as a two
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TABLE 11
FIELDS OF A DECODING TABLE ENTRY
e ee———
Name Size Function
Dispatch 10 The starting microcode address for the instruction
MemBase 3 Selects one of cight memory base registers.
RBase 1 Selects one of two processor register groups.

SplitAlpha 1 Split the first data byte into two four-bit data items.

N 4 Encoded constant.

Sign 1 Extend sign of the first datlum provided to the processor.

Length 2 “The length of the instruction; also supplied as a datum.

Jump 1 Indicates a jump; decode computes a new pc from pe plus N (if length=1)
or alpha (if length=2).

Pause 1 Indicates that address should be reset.

byte instruction, and DISPATCH passes it on to EXECUTE after
the alpha byte has been delivered.

DECODE replaces the dispatch address from the table with an
exception address if necessary. In order to obey the rule
that exceptions must all be captured in the dispatch address,
the exception values of all the instruction bytes are merged
into its computation. For three byte instructions, this
requires looking back into BYTES for the state of the beta
byte. If any of the bytes are empty, DECODE keeps the partial
instruction item when it delivers an empty item with a
NotReady dispatch into its output buffer. If a Reschedule
is pending, it is treated like any other exception, by con-
verting the dispatch address of the next instruction item into
Reschedule. Thus, there is always a meaningful PC associ-
ated with the exception.

If the Jump field is set, DECODE computes a new program
counter by adding an offset to the PC of the instruction. This
offset comes from the alpha byte if there is one, otherwise
from N and SplitAlpha; it is sign-extended if Sign is true.
The new PC is sent back to ADDRESS, as described in Sec-
tion V-A, where Pause is also explained. Jump instructions in
which the displacement is not encoded in this way cannot be
executed by the IFU, but must be handled by the processor.

E. pisparcH Stage

The interesting work of this stage is done by the processor.
which takes the dispatch address, together with the state
initialization discussed in Section 1V-B, from the DECODE
output buffer when it executes an IFUJump. Because empty
is encoded into a NotReady dispatch, the processor takes no
account of whether the buffer is empty. There are some ugly
cases, however. in which DECODE is unable to encode an
exception quickly enough. In these cases DISPATCH asserts a
signal called Hold which causes the processor to skip an
instruction cycle; this mechanism is rather expensive to im-
plement, and is present only because it was essential for
synchronization between the processor and the memory [1].
Once implemented, however, it is quite cheap for the I[FU to
use. The NorReady dispatch is still preferable because it
gives the microcode an opportunity to do some useful work
while waiting.

F. EXECUTE Stage

This stage implements the IFUData function; as we have
already seen, it is logically part of the processor. The se-
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Fig. 7.

quence of data items delivered in response to IFUData is
controlled by Jump, Length, N, and SplitAlpha according to
Table III; in addition, alpha is sign-extended if Sign is true.
EXECUTE also provides the processor with the value of the PC
in response to a different function.

VI. PERFORMANCE

The value of an instruction fetch unit depends on the frac-
tion of total emulation time that it saves (over doing in-
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TABLE 11
DaTa ITEMS PrOVIDED TO IFUDATA

Jump length N SplitAlpha ifuData

Yes x x X Length, ...

No 1 No x Length, ...

No 1 Yes X N. Length, ...

No 2 No No alpha. Length, . . .

No 2 No  Yes alphaHigh, alphal.ow, Length, . . .

No 2 Yes No N, alpha, Length, . . .

No 2 Yes Yes N, alphaHigh, alphal.ow, Length, ...
No 3 No No alpha. beta, Length, . ..

No k) No Yes alphalligh, alphul.ow, beta, Length, . ..
No k) Yes No N. alpha, beta, Length, . ..

No k) Yes Yes N. alphaHigh, alphal.ow. beta. Length, . ..

S —

struction fetching entirely in microcode). This in turn clearly
depends on the amount of time spent in executing each in-
struction. For a language like Smalltalk-76 [5], a typical
instruction requires 30—-40 cycles for emulation, so that the
half dozen cycles saved by the IFU are not very significant.
At the other extreme, an implementation language like Mesa
[9],[11] is compiled into instruction which can often be exe-
cuted in a single cycle: except for function calls and block
transfers, no Mesa instruction requires more than half a dozen
cycles. Forthis reason. we give performance data only for the
Mesa emulator.

The measurements reported were made on the execution of
the Mesa compiler, translating a program of moderate size;
data from a variety of other programs are very similar. All the
operating system functions provided in this single-user sys-
tem are included. Disk wait time is excluded since it would
tend to bias the statistics. Some adjustments to the raw data
have been made to remove artifacts caused by compatibility
with an old Mesa instruction set. Time spent in the procedure
call and return instructions (about 15 percent each) has been
excluded; these instructions take about 10 times as long to
execute as ordinary instructions, and hence put very little
demand on the [FU.

The Dorado has a pair of counters which can record events
at any rate up to one per machine cycle. Together with sup-
porting microcode, these counters provide sufficient pre-
cision that overflow requires days of execution. It is possible
to count a variety of interesting events; some are permanently
connected, and others can be accessed through a set of mul-
tiplexors which provide access to several thousand signals
in the machine, independently of normal microprogram
execution.

A. Performance Limits

The maximum performance that the IFU can deliver is
limited by certain aspects of its implementation; these limi-
tations are intrinsic, and do not depend on the microcode of
the emulator or on the program being executed. The con-
sequences of a particular limitation, of course. depend on
how frequently it is encountered in actual execution.

Latency: After the microcode supplies the IFU with a new
PC value, an IFUJump will go to NotReady until the fifth
following cycle (in a few cases, until the sixth cycle). Thus,
there are at least five cycles of latency before the first micro-

IEEE TRANSACTIONS ON COMPUTERS. VOL. C-33, NO. 8, AUGUST 1984

instruction of the new instruction can be executed. Of course,
it may be possible to do useful work in these cycles. This
latency is quite important since every instruction for which
the IFU cannot compute the next PC will pay it; these are
wrongly guessed conditional branches, indexed branches,
subroutine calls and returns, and a few others of negligible
importance.

A branch correctly executed by the IFU causes a three-
cycle gap in the pipeline. Hence, if the processor spends one
cycle executing it and each of its two predecessors, it will see
three NotReady cycles on the next IFUJump.

Additional time spent in any of these three instructions,
however, will reduce this latency, so it is much less important
than the other.

Bandwidth: In addition to these minimum latencies, the
IFU is also limited in its maximum throughput by memory
bandwidth and its limited buffering. A stream of one byte
instructions can be handled at one per cycle, even with some
processor references to memory. A stream of two byte in-
structions, however (which would consume all the memory
bandwidth if handled at full speed), results in 33 percent
NotReady even if the processor makes no memory references.
The reason is that the IFU cannot make a reference in every
cycle because its buffering is insufficient to absorb irregu-
larity in the processor’s demand for instructions. As we shall
see, these limitations are of small practical importance.

B. Not Reudy Dispatches

Our measurements show that the average instruction takes
three cycles to execute (inciuding all IFU delays). Jumps are
28 percent of all instructions, and incorrectly predicted
jumps (40 percent of all conditional jumps) are 10 percent.
The average nonjump instruction takes 2.5 cycles.

The performance of the IFU must be judged primarily on
the frequency with which it fails to satisfy the processor’s
demand for an instruction, i.e., the frequency of NotReady
dispatches. It is instructive to separate these by their causes:

* latency:

* cache misses by the IFU;

* dearth of memory bandwidth;

* insufficient buffering in the IFU.

The first dominates with 16 percent of all cycles, which is
not surprising in view of the large number of incorrectly
predicted jumps. Note that since these NotReady cycles are
predictable, unlike all the others, they can be used to do any
background tasks which may be around.

Although the IFU’s hit rate is 99.7 percent, the 25 cycle
cost of a miss means that 2.5 percent of all cycles are
NotReady dispatches from this cause. This is computed as
follows. One cycle in three is a dispatch, and 0.3 percent of
these must wait for a miss to complete. The average wait is
near the maximum, unfortunately, since most misses are
caused by resetting the IFU’s PC. This yields 33 percent of
0.3 percent, or 0.1 percent, times 25. or 2.5 percent.

The other causes of NotReady account for only 1 percent.
This is also predictable since more than half the instructions
are one byte, and the average instruction makes only one
memory reference in three cycles. Thus. the average memory
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TABLE IV
S1zE OF VARIOUS PARTS OF THE IFU

Function Chips %
address-bytes 40 17
decode 86 35
dispatch 24 10
execute 18 8
Processor interface 27 n
Clocks 18 8
Testing 7 11

bandwidth available to the IFU is two words, or three in-
structions, per instruction processed, or about three times
what is needed. Furthermore, straight-line instructions are
demanded at less than half the peak rate on the average, and
jumps are so frequent that when the first instruction after a
jump is dispatched, the pipe usually contains half the in-
structions that will be executed before the next jump.

C. Memory Bandwidth

As we have seen, there is no shortage of memory band-
width, in spite of the narrow data path between the processor
and the IFU. Measurements show that the processor obtains
a word from the memory in 16 percent of the cycles. and the
IFU obtains a word in 32 percent of the cycles. Thus, data are
supplied by the memory in about half the cycles. The pro-
cessor actually shuts out the [IFU by making its own reference
about 20 percent of the time since some of its references
are rejected by the memory and must be retried. The IFU
makes a reference for each word transferred, and makes
unsuccessful references during its misses, for a total of
35 percent. There is no memory reference about 45 percent
of the time.

D. Forwarding

The forwarding trick saves a cycle in about 25 percent of
the straight-line instructions, and hence speeds up straight-
line execution by 9 percent. Jumps take longer and benefit
less, so the speedup within a procedure is 6 percent. Like the
IFU itself, forwarding pays off only when instructions are
executed very quickly since it can save at most one cycle per
instruction.

E. Size

A Dorado board can hold 288 standard 16 pin chips. The
IFU occupies about 85 percent of a board; these 240 chips
are devoted to the various stages as shown in Table 1V.

in addition, about 25 chips on another board are part of
MEMORY and BYTES. The early stages are mostly devoted to
handling several PC values. DECODE is large because of the
decoding table (27 RAM chips) and its address drivers and
data registers, as well as the branch address calculation.

Table V shows the amount of microcode in the various
emulators, and in some functions common to all of them. In
addition, each emulator uses one quarter of the decode table.
Of course, they are not all resident at once.
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TABLE V
S1ZE OF VARIOUS EMULATORS

System Words Comments
Mesa 1587 Includes 1EEE floating point -~ move it
Smallalk 1143
Lisp 1480
Alto bepl 696
10 976 Disk, keyboard, regular and color display, Ethernet
Floating point XXXX IEEE standard; there is no special hardware support
General 535 what is this??
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