To: Forest Baskett
Doug Clark
Dave Cutler
Sam Fuller
Alan Kotok
Jud Leonard
Dick Sites
Bob Stewart
Bill Strecker
Bob Supnik
Bob Taylor
Chuck Thacker
Jamie Woodward

I thought you might find this interesting. I don't currently
plan to pursue it any further myself, but I would be glad to
answer questions, hear comments, discuss other possible
schemes, and help to promote it.

Butler Lampson

9} e T‘p £y AA '
E«, &/ Cpsa }’ \::&J ,};_\

_)J \(\t &0)«;;\ i;f\a ?‘d A

VOR: VAX on a RISC
Butler W. Lampson
Systems Research Center

Digital Equipment Corporation
CIRCUS: :Lampson

Company Confidential

1. Introduction

One way to make a fast VAX is to build a fast machine with a sim-
ple instruction set, and translate VAX instructions into
sequences of simple instructions (as opposed to interpreting VAX
instructions with sequences of simple instructions, the way
current machines do). We call the fast machine a VR (VAX RISC),
and the resulting VAX a VOR (VAX on RISC). 1In order to make the
translation as transparent as possible, we keep a cache of
translated instructions, and do the translation only on cache
misses. Thus the translated instructions are never visible to the
program. (This idea was proposed for the C-machine at Bell Labs,
and is used in a 68000 Smalltalk system done at Xerox Parc.)

VOR is attractive if the following proposition is true:

P1l) A RISC can run programs significantly faster than a VAX
built with the same technology for about the same cost.

More precisely, a practical compiler can translate a Fortran,
Pascal, C or Bliss program into RISC code which runs faster (say,
two times faster) than the VAX code produced by our current com-
pilers. I won't try to argque for this proposition here; if you
don't believe it, you may still wish to read on for amusement.

If it is true, however, then the reason for running VAX programs
on the VR is compatibility with existing programs, both DEC's and
its customers' (another possible reason is the greater compact-
ness of the VAX code; I won't consider this any further here).
Since most programs are compiled, a modest compiler effort will
make it possible for most programs to run as VR programs. It is
OK for VAX programs to run more slowly (since most programs will
be converted, and converting any given program should not be too
hard unless it is written in assembler). This is just as well,
since they certainly will run more slowly. We capture this
essence of this argument in:

December 6, 1984

P2) A VOR is successful if VAX programs run as fast as they
would on a conventional implementation of the VAX in the
same technology.

The advantage of the VOR is that programs recompiled for the
native VR will run faster. The drawbacks are that

the extra hardware for VAX emulation increases the cost, and

the cache must be larger to hold the large translations of
VAX into RISC instructions.

P2 asserts that the advantage outweighs the drawbacks.

You might ask: why is a RISC faster than a VAX? I don't hope to
settle this question, but it's worthwhile to make a few observa-
tions. The native RISC has three advantages:

Simple instructions can be decoded quickly and executed at
the rate of one per cycle. It is difficult or impossible to
attain this peak rate for VAX instructions. Simple instruc-
tions are quite common.

Having lots of registers is valuable if procedures are
large, or if register assignments are done across procedure
boundaries. In the limit all the local variables for all
procedures could be in registers. Access to registers is
faster.

RISC branches are faster, and because they are deferred it
is often possible to do useful work in the pipeline stutter
after a branch. This is only occasionally possible in a VAX
implementation.

The VOR doesn't have all these advantages when emulating the VAX,
and indeed I think it will be hard to get better performance run-
ning VAX instructions than from a VAX done in the same technol-
ogy. But there are two important gains that remain.

One is that the translator can generate VR instructions
based on the entire VAX instruction, which is impractical
when the instruction must be decoded at top speed. Thus a
register to register or memory to register move can
translate into one VR instruction, and even rl:=r2+r3 is
only one VR instruction. 1It's hard to do this in less than
four cycles with on-the-fly decoding: one for each operand
specified, and one to do the add.

Probably more important is that the VR is simple and small.
This means that its design can be optimized much better,
since the designer can get it all in his head, and because
of the small size signal propagation delays are not as
important. This means that a faster cycle time should be

December 6, 1984

possible.

The rest of this document sketches a VOR implementation. Section
2 gives the overall architecture. Section 3 describes the proper-
ties of a VR, and Section 4 outlines the translations for the
operand specifiers, and for a few instructions. Section 5
discusses cache invalidation, and Section § gives possible ways
of dealing with a few problems not directly related to the
instruction-by-instruction translations.

Many details which require bit-fiddling are omitted, since this

is only a sketch. Unfortunately, some important details are prob-
ably also omitted; comments on these will be gratefully received.

December 6. 19R4

2. Architecture

Translated instructions are stored in the VR's instruction cache,
along with ordinary VR instructions. Since the translated
instructions don't exist in the ordinary address space, they must
have pseudo-addresses, the VR must be able to generate these
pseudo-address as PC values, and the cache must be able to store
them. To be specific, suppose we have a 32-bit VR with 16-byte
cache lines which uses byte addresses, even though it can only do
32-bit fetches and stores, and therefore traps if the low 2 bits
of address are non-zero. Suppose also for simplicity that the VR
also handles 32-bit real byte addresses. We convert a VAX PC to
a VR PC by adding 2**32 and then shifting it left 6 bits (this
works for either virtual or real addresses). The resulting value
addresses the first of a group of sixteen 32-bit VR instructions.
It is looked up in the cache in the usual way. Since it is 39
bits wide, the cache must handle 39-bit real addresses, or in
general addresses with 7 more bits than a vanilla RISC would
need.

There are two major questions to answer for ordinary instruction
execution:

Ql) How do VAX instructions get translated and put into the
cache?

Q2) How does the VR get from one VAX instruction to the next?

Translation is done by a separate element called a translator T
which plays the role of a memory to the VR.

VR processor------ VR cache------- Translator------ Memory bus

It watches the addresses the cache sends to the memory when there
is a miss. An address <2**32 is an ordinary address; T passes it
on to the memory unchanged, and passes back the resulting data
unchanged to the cache. Thus T does no work in this case. An
address >2**32 is a pseudo-address for a translated instruction.
T does not pass this address on to the memory. Instead, it
fetches the corresponding VAX instruction (VI), decodes it very
much as the decoding section of an existing VAX processor does,
and generates translated VR instructions (TIs) to satisfy the
miss. These are delivered to the cache just as though they had
come from the memory, and the VR proceeds to execute them.

We left room for 16 TIs in the address space occupied by one VAX
byte PC. This means that no VI can take more than 16 TIs to emu-
late. Many more VR instructions might be executed as subroutines,
of course. If 16 is not enough, we can increase it to 32, 64 or
whatever, at the cost of storing a couple of extra address bits
for each cache line and return link.

December 6, 1984

A more important issue is the breakage in the cache: each VI con-
sumes cache space in multiples of 4 words (the cache line size).
So if a VI translates into a single TI, as many MOVs will for
example, there will be 3 wasted words. This is part of the cost
of the emulation, though it is alleviated a bit by the instruc-
tion joining described below.

We can make a rough estimate that the translation will be 4 times
the size of the translated instructions, including breakage, by
looking at the sizes of a few translations done using the scheme
of Section 4. This means that the instruction part of the cache
will have to be about 5 times as large as that for a vanilla VAX
to yield the same miss rate. E.g., if a 8 KB instruction cache
is enough to yield a 5% miss rate, then VR will need a 40 KB
instruction cache,

It is desirable to keep the miss rate moderately low, so that T
does not have to be too fast. For instance, with a 5% miss rate
for instructions, if T takes 5 times as long to generate each TI
as VR does to execute it, the total execution time increases from
20 VRs (assuming no misses) to 19+5=24, or a 20% slowdown. We can
probably do considerably better than this with a fairly simple
translator.

Now for Q2. A straightforward solution would be to generate a
branch TI at the end of each translated sequence. This is unat-
tractive because it consumes an entire cycle on every VI, and
also takes up a lot of space. So I propose to add a kludge to VR
which allows this branch instruction to be encoded more compactly
and executed in parallel. The idea is to leave room in each cache
line for two small numbers called where and when. Where is added
to the address of the first word in the line to yield an implicit
branch address, and when is a count of the number of TIs to exe-
cute before taking the implicit branch. If the pipelining is like
the Titan's, when must be at least 2. The implicit branch is exe-
cuted in parallel with whatever is going on in instruction
(when-1). For ordinary misses, when is loaded with a value such
as 0 that disables the mechanism.

If desired, we could avoid doing an add for an implicit branch by
making where replace the lsb of PC instead of adding to it.
Occasionally the translator would have to generate an explicit
branch, when VPC advances so as to change some bits not replaced
by where.

We are still in trouble, since every translation must be at least
of length 2, and we have many common cases in which the transla-
tion should be of length 1. To fix this, the translator will join
a short translation of VI1 with the translation of the next VI,
VI2. There are several cases. The translation of VI1 is of
length 1 (if it were of length 2, no joining would be needed).
But VI2's translation may be of any length L:

December 6, 1984

L=1 Put TI2.1 with TI1l.1] of VI1 and set when=2,

L=2 Put both TI2.1 and TI2.2 with TIl,1, making 3 instructions
in all, and set when=3.

L>2 Set when=2 and where=(the address of VI2)+4 (pointing to
TI2.2). This means that TI2.1l will be joined, but there will
be at least 2 more TI2s that are not joined, so there will
be time for the when for VI2 to take effect.

VI2 may still have a complete translation in the proper place if
it is branched to. For L>2 it will always have this translation,
since the join sequence jumps into the middle of it. For L<=2
this translation will never be generated unless VI2 is the target
of a successful branch.

We need to keep track of the current VPC. Without joining this is
simple, since it is set exactly by implicit branches (and, of
course, by explicit branches). With joining we need an extra
joined bit in the cache entry which indicates that the first TI
of the line is a complete translation for a VI. The use of this
bit is described in C8 below.

The translator will presumable be implemented by a microcoded
processor much like the I-Box of a standard VAX implementation.
Its most important microinstructions are those which emit TIs,
parameterized in a couple of ways as discussed in Section 4.

Note: One unfortunate consequence of the pseudo-address scheme is
that when a TI PC is mapped from virtual to real it must be
reconverted to the VPC form. This means some multiplexors in the
TLB.

December 6, 1984

3. The VR
To keep things definite, I take the Titan as the basis for the
VR. I am not sure that this is the best design, but I know that
it is a reasonable RISC, and it is certainly a simple one. How-
ever, it is necessary to make some changes. I have kept these as
few as possible just to reduce the number of variables in this
proposal. I am not taking a position on whether it is a good idea
to make bigger changes, or to have a quite different VR. It is
vitally important to keep VR simple, since we don't want to
compromise the performance of native RISC programs.

Titan

For the uninitiated, I will summarize the Titan here. It is a
32-bit machine with 64 registers. Register 0 is a pseudo-register
with special properties: when read, it is the program counter;
when written, there is no effect. Instructions are of four
kinds:

Load or store--rl:=(r2+d)~"
(r2+d)~:=rl.
Here d is a 16-bit signed displacement.

Operate--rl:=r2 op r3. The op may be arithmetic or logical.
Also, r2 may be a 6-bit signed literal instead of a regis-
ter.

Shift and extract--rl:=(r2,r3)[i..j]. This puts bits i
through j of the 64 bit quantity obtained by concatenating
r2 and r3 into rl. There is a variation which puts j bits
of r3 starting at the byte addressed by the two low-order
bits of r2 into rl, written rl:=r3[8*r2+j..8*r2].

Branch--IF condition(rl) THEN GOTO (PC+d)
--rl:=PC; GOTO (r2+d)
A branch doesn't take effect until after the next instruc-
tion is executed. Conditions are comparisons with 0 and
tests of single bits in rl.
Titan has stalls only in the following cases:

Load or Store in the next instruction after a Store (1
cycle).

Load, Store or Branch indexed by ri in the next instruction
after setting ri (1 cycle).

Attempt to read a coprocessor result that isn't ready.

Cache miss.

Exception (3 cycles).

December 6. 1984

Changes

Cl) Titan numbers the bits and bytes backwards from the VAX. It
also has the floating-point slightly different. VR has the same
data types as VAX.

C2) Just as Titan has a pseudo-register for its PC, VR has a VPC
pseudo-register (rl5) for the VAX PC, for the use of PC-relative
operand specifiers, JSB, CALL and exceptions. It holds the byte
address of the first byte of the instruction (see T2 below).
Normally this is (PC rsh 6)-2**32, unless it points to TI2.1l or
TI2.2 of a joined translation, in which case VI1.L (the length of
VI1l) must be added. It would be unpleasant to store this in each
cache line and add it in automatically. Instead I propose to make
T take account of it during normal execution (see T2), and have a
single bit in the cache line, copied into the VR machine state,
which indicates that a joined instruction is in progress. When VR
takes an exception and the emulator code needs to recover VPC, it
tests this bit, and if it is set executes the instruction at (PC
OR 12). This is the last word of the cache line, not used for a
TI when joining has been done, and T will leave there a TI to
increment rl5 by VI1.L. If you don't like this encoding trick,
there are plenty of other possibilities.

C3) Titan has word addresses. VR addresses bytes, although it
will trap a Load or Store unless the two lsb of the address are
zero (but see C5). This unaligned reference trap captures the
address and the source or destination register for use by the
trap routine, so that the reference can be completed correctly
with reasonable efficiency. The trap is done with the same
mechanism used for page faults. However, the register must also
be captured, and there must be a way to OR the captured register
number into the rl field of some later instruction (or something
equivalent in its effect).

C4) VR has a Load Immediate instruction, just like Load except
that it loads the effective address instead. It is written
rl:=r2+d. It differs from an operate instruction in having a 16-
bit immediate operand. Perhaps there should also be one which
does rl:=r2+(d*2**16), though I have not assumed this below.

C5) VR has versions of Load and Store which ignore the two lsb
of address, rather than trapping if they are non-zero. These are
for reading and writing byte operands. These versions save the
two 1lsb in a pseudo-register BN; they are written (r+d)~B. Also,
there are versions which trap only if the 1lsb are 11, for reading
and writing 2-byte operands; written (r+d)~W. These set BN:=0 if
they trap, so that the unaligned address trap can load or store
the 4 bytes addressed, just as it does in the 32-bit case, and
the extract and insert code can believe that it should always
work on the bytes pointed to by BN.

Note that ~B and "W only affect the traps taken and the loading

December 6, 1984

of BN; they don't do any shifting or masking.

C6) VR probably has a way to modify only the low-order byte or
halfword of a register. Doing this with vanilla Titan instruc-
tions adds two cycles, which is unpleasant. At the same time the
CC can be computed correctly for a byte or 2-byte operation.

C7) VR has pseudo-registers for the condition code. I propose to
have three CC registers, one for N and Z, one for C, and one for
V. They will be set in the obvious way directly from the ALU out-
put for VAX instructions which set them in the obvious way; there
must be some way in the instruction to specify that the CC regis-
ters should be set. Fortunately Titan instruction are not very
tightly encoded, so there are spare bits. For 32-bit Load and
Store, it probably works to set CC whenever rl is one of the 16
VAX registers. The NZ register will just be loaded with the
result; Titan can do all the simple arithmetic branches on com-
parisons with 0.

For VIs that set the CC in a messier way, extra TIs will be gen-
erated to get the CC registers set correctly. Possibly there will
be added versions of Operate to help this, but things will be
kept simple by taking extra cycles when necessary. Likewise,
extra TIs will be generated and extra cycles taken when a condi-
tional branch tests a complex combination involving C and V.

The CC pseudo-registers must be set properly for byte and half-
word operands. This should probably be done as a byproduct of Cé6.

C8) Obviously VR must have a VAX branch instruction, which con-
verts a 32-bit number representing the new VPC into the correct
39-bit PC value (PC=(VPC+2**32) lsh 6).

More doubtful changes

C9) VR might have some provision for sign-extension. This is not
absolutely required, since sign extension is not that common on
the VAX and it costs only 2-3 cycles to do it with Titan instruc-
tions.

Cl0) It might be worthwhile to make a special case for a condi-
tional branch as the last TI: if the branch succeeds, execution
of the next TI (which would be the first TI of the next VI in
sequence) is turned into the NOP demanded by Titan branch
sequencing. Since about 3/4 of VAX branch instructions other than
CALL and RETURN actually branch, this might be quite valuable.

Tricks

There are some tricks that can be used to avoid further modifica-
tions to the RISC.

Tl) To ensure that auto-increment and auto-decrement don't take

December &6 1984

- 10 -

permanent effect until after the danger of faults is past, the
standard scheme is a log of register changes, which can be used
to undo the change in case there is a fault. An alternative sug-
gested by Dave Cutler requires no change to the VR. Instead, T
keeps track of the changes caused by auto-increment etc. Whenever
a changed register is used, T generated the right code. E.qg.,
after rl is autoincremented by 4, the address 25(rl) would be
translated into 29(rl). Then the register change instructions are
put out at the end of the TIs. Since executing the TIs of a VI
can never cause a page fault (because the whole VI is translated
at once), this is safe.

k 1g this really true?

T2) Similarly, T adjusts for changes in rl5 as execution proceeds
through the operand specifiers; rl5 is not actually updated until
when and where send control to the next VI. This is a much bigger
win than avoiding the register change log using T1l, since there
is no convenient place to store the OS lengths. In the same way
T will generate a TI to save the correct value of VPC after a
subroutine call.

T3) The integer overflow trap can be handled by generating an
explicit test as part of the TIs for every VI that can generate
it when the trap is enabled. We add the enable bit to the PC
pseudo-address to avoid any other testing of it.

T4) The trace trap can be handled in the same way, by generating
an explicit TI to cause the trap at the end of every VI when the
trap is enabled, and adding the enable bit to the PC pseudo-
address.

December 6, 1984

ll

4, Translations

The strategy is to generate zero or more TIs for each operand
specifier (0S), ending up in T with each 0S encoded as one of:

Rr a register
Cc a 6-bit signed constant
Md(r) a memory address, contents of r + d

How an OS is encoded is governed by the opcode-dependent use
(rwmav) of the operand, and the operand size s (which governs the
translations of auto-increment, auto-decrement and indexing.

Note that the registers don't have to be VAX registers; the
translator is free to assign scratch registers, of which there is
an ample supply.

For each 0Si (i IN [1..6]) T keeps the following information

Ki: the kind, one of R, C or M. Set according to table 4.1, and
not changed thereafter.

rci: the register, either a register number r or a short constant
c, i.e., 6 bits plus a one-bit flag. Initialized to ti, a
different temporary register for each 0S. Set to a register
if Ki=R, to a constant if Ki=C according to Table 4.1. Also
changed by Read as indicated below.

mi: the memory address d(r), valid only if Ki=M; set up accord-
ing to table 4.1.

For each VAX register r, T keeps adjlr], the adjustment arising
from auto-increment, auto-decrement and advancing of the PC (see
Tl and T2 above), according to Table 4.1. Each adjlr] is initial-
ized to 0.

Note that different opcodes which specify differend operand sizes
for the same operation may generate quite different sequences.
For example, it may be desirable for an 8 or 16 byte ADD to gen-
erate the address of a memory operand and call extracode (see
below) to get it copied into registers.

Notation:

<..0> generate these VR instructions

s operand size, in [0..5]

X index register, initialized to nil

c small -2**15<=c<2**]15

c.lsb least significant 16 bits of c

c.msb most significant 16 bits of c

mn.d the 4 part of mn=d(r)

mn.r the r part of mn=d(r)

ti, tti two sets of 6 temporary registers, one per OS

December 6, 1984

Mode

literal c

immediate

register r

index [r]

register deferred (r)

base d(r)

base deferred @d(r)

auto-decrement -(r)

auto-increment (r)+

auto-increment deferred

Q(r)+

Index: IF x=nil THEN

- 12 -

Translation

IF usef#r OR x#nil THEN error, Kn:=C, rcn:=c

IF use not IN rav OR x#nil THEN error, kn:=R,

IF ¢ small THEN <rcn:=c>

ELSE <rcn:=c.msb; rcn:=rcn lsh 16;
rcn:=rcn+c.lsb>

IF use=a OR x#nil THEN error, Kn:=R,
IF adjlr]l=0 then rcn:=r
ELSE rcn:=NewR(); <rcn:=r+adjlrl>

IF x#nil THEN error
ELSIF adjlr]l=0 THEN x:=r .
ELSE x:=NewR(); <x:=r+adjlrl>

let d=0 in base

let dd=d+adjlr]
IF dd small THEN Kn:=M, mn:=dd(r), Index
ELSE <rcn:=dd.msb; rcn:=rcn 1lsh 16;
rcn:=rcn+dd.lsb; rcn:=r+rcn>,
Kn:=M, mn:=0(rcn), Index

let dd=d+adjlr], Kn:=M; mn:=0(rcn),

IF dd small THEN <rcn:=(r+dd)”~>, Index

ELSE <rcn:=dd.msb; rcn:=rcn lsh 16;
rcn:=r+rcn; rcn:=(rcn+dd.lsb)~>, Index

adjlrl:=adjlr]-2**s, Kn:=M, mn:=adjl[r]l(r), Index
Kn:=M, mn:=adjlrl(r), Index, adjlrl:=adjlrl+2**s

<rcn:=(r+adjlr])~>, Kn:=M, mn:=0(rcn), Index,
adjlrl:=adjlrl+2**s

nothing

IF x#nil AND i#0 THEN

rx=NewR(), <rx:=x 1lsh i; rcn:=rx+mn.r>,
mn:=(mn.d+(adjlx]*2**s)) (rx)

IF x#nil AND i=0 THEN

<rcn:=x+mn.r>, mn:=mn.d{(rcn)

**** What if the displacement overflows 16 bits?

Table 4.1: Operand specifier handling

December 6,

1984

13

Once T has each OS encoded (and has generated any instructions
needed to make it possible to encode the OS in one of these
forms), it interprets some opcode-specific commands to generate
the instructions that do the work. These take one of the follow-
ing forms. Here n refers to an OS and r is a register.

Read(n, r, s): IF Kn#M THEN nothing.
IF Kn=M THEN
rcn:=r,
IF s=2 THEN <r:=mn”">,
ELSIF s=1 THEN
<ttn:=mn~W; r:=ttn[8*BN+16..8*BN]>,
ELSIF s=0 THEN
<ttn:=mn~B; r:=ttn[8*BN+8..8*BN]>,
ReadR(n, r): IF Kn=C THEN <r:=rcn> ELSE Read(n, r)
This is used for an operand which is going to be the second operand of
Operate, and hence can't be a short constant (Titan allows only the
first operand to be a constant).

Addr(n, r) IF Kn=M THEN <r:=mn>, rcn:=r
ELSE reserved operand fault

Do(op,nl,n2,n3) <nl:=n2 op n3>

Write(n, r) IF Kn=R THEN <rcn:=r>
ELSIF Kn=C THEN reserved operand fault
ELSIF Kn=M THEN <mn”":=r>

Finally, T generates TIs to adjust any registers for which adj#0.

Here are some examples of simple opcodes.

MOVL E.g., MOV r5,r7 MOV ml,r7 MOV r5,m2 MOV ml,m
Read(1l, rc2) - r7:=ml” - tl:=ml~"
Write(2, rcl) r7:=rb5 - m2~:=r5 m2~:=tl
ADDL E.g., ADD r5,r7,r9 ADD ml,r7,rS ADD r5,r7,m3 ADD ml,m
Read(l, rcl) —-—= tl:=ml~ -——- tl:=ml~
Read(2, rc2) -—- -—= -——- t2:=m2~
Op(ADD, 1,2,3) r9:=r5+r7 r9:=tl+r7 t3:=r5+r7 t3:=tl+t
Write(3, rc3) - -—- m3~:=t3 m3~:=t3

Rather than generating TIs to do the work, T may generate calls
on extracode, vanilla VR instructions that handle lengthy opera-
tions. These are just ordinary VR subroutine calls, to ordinary
VR code which resides at fixed addresses in system space, and
must be present for VAX emulation to work. Presumably all the VAX
instructions which are interpreted by the MicroVAX would be done
in extracode, together with page fault and perhaps other trap
handling. The linkage to extracode is 2 cycles at most, and only
1l cycle if there is anything that can be put after the call
instruction. Hence it may be desirable to put a lot of other

December 6, 1984

14

things into extracode. For example, the byte and 2-byte write
sequences are quite lengthy, and come at the end of the instruc-
tion; they could be put into extracode. There are two advantages
to putting something into extracode:

the size of T is reduced;

less space is taken in the cache for the TIs (of course we
must pay for the space taken by the extracode, so it isn't
useful unless more than one cached instruction is using it).

The obvious drawback is the cost of the linkage. In addition, it
is difficult if not impossible to parameterize extracode with
register numbers, so all parameters must be moved into fixed
registers, or there must be different versions of the extracode
for each register combination allowed.

December 6. 1984

5. Invalidating TIs

This is the worst problem with the VOR. Whenever a store is done,
we must make sure that any translation which could be affected by
the store is invalidated. Stores can some from the processor
itself, from another processor, or from an i/o device. The
latter, unfortunately, is quite common when code page frames are
reassigned and overwritten.

The basic difficulty is that a cache invalidation needs to be
done on a fairly large unit, typically a cache line or 16 bytes.
Unfortunately, the VOR cache may have as many as 4 lines occupied
by TIs tagged with a single VAX PC byte address. Since the last
three lines can only be reached by passing through the first, and
since the VAX architecture allows the effect of a store on the
instruction stream to be deferred until the next execution of REI
or whatever, it is sufficient to invalidate only the first line.
So a total of 16 lines would have to be examined. The straight-
forward implementation of this scheme will be much too slow.

If the tags are implemented in VLSI, we can have an associative
lookup which would check every line in a single cycle. Then there
will be no problem with invalidation. If the tags are implemented
in the usual way with of-the-shelf RAMs, however, this method
won't work and we must be more clever. If you are only interested
in a VLSI VOR, the only reason to read the rest of this section
is to convince yourself that the cache tags should be built with
associative lookup on the real address.

I have considered a number of invalidation schemes, including
several that track down invalid TIs in the cache and zap them. I
have concluded, however, that it's too hard to make this method
have good performance, in the light of the fact that the reuse of
code pages means there are a lot of stores that invalidate TIs.
As a result, I am proposing a scheme based on sequence numbers.

The basic idea is to keep a sequence number SN for each page that
contains VI bytes which have been translated into TIs that are in
the cache, and also for each cache line containing TIs. Whenever
a TI is fetched, the SNs are compared; if they don't match, there
is a miss. Whenever a store is done into the page, its SN in
incremented; because of the previous sentence, any TIs for the
page that are in the cache are automatically invalidated. We
keep these SNs in each TLB entry and each cache entry, and com-
pare them on each cache lookup just as we compare the real
addresses.

When a store is done, we may have only the real address (if it is
done by another processor or an i/o device). Hence we must be
able to find the TLB entry from the real address. This is done
with another direct-mapped cache called RT (for Real address to
TLB index). It is a table of suitable size, say 1024 entries;
each entry holds a TLB entry address. Of course not all pages can

December 6, 1984

._.16_

have valid RT entries, i.e. ones that point to a TLB entry whose
real page number is that of the page.

To account for this, we introduce the idea of hot pages. A hot
page is one whose TLB entry

has a valid SN, and

can be reached from RT.)
When a page becomes hot, it gets a suitable SN assigned,
guaranteed not to match anything now in the cache. Any store
makes a page cold; external stores find the TLB entry through RT,
and this always works for a hot page. An attempt to fetch TIs
that have bytes in a page will cause it to be made hot. When a
page becomes hot, it must have a RT entry; this will disp}acg the
page currently using that RT entry, and it becomes cold (if it
wasn't already).

I1f we keep assigning sequence numbers to pages when they become
hot, we will run out eventually. Therefore we run a background
Cleanup process (implemented with a small finite-state machine,
most likely) which scans the cache and erases old SNs so they can
be reused. To avoid losing valid TIs in this process, we assign
SNs in cycles. At any time there is a current cycle, a next one
and a last one. Cleanup removes each last cycle SN from the
cache; if it agrees with the corresponding TLB entry (found
through RT), then it is still valid and Cleanup updates it and
the TLB's SN to the current cycle. Otherwise the SN is zapped.
During the cycle new SNs are assigned from next cycle. At the end
there are no cache entries with last cycle SNs, so these SNs can
be reused.

It is still possible to run out of next cycle SNs if Cleanup gets
too far behind. In this case TIs are executed directly and not
cached; this will slow things down several times, but should be
rare. The idea is to run Cleanup during cache misses, when the
cache is idle for several cycles. There should be time to clean
about 4 lines per miss. Since we can't assign more than one SN
per miss, if SN (not counting the 2-bit cycle part) has 2 less
bits than the cache line number we will never run out. In prac-
tice 5 or 6 bits should be plenty.

The details of the SN scheme and the invariant that it maintains
are given by the program in the Appendix. It is written in Modula
2; if you know Pascal, you should have no trouble with it.

Page crossings

We also have to worry about the fact that a VI can span two
pages, and in general the translation can be invalidated by
stores into either page. This is especially tricky since the
cache does business in real address, where there is no relation-
ship between the pages. The solution, however, is simple: when T
sees a page crossing during instruction decode, it immediately
generates a VR branch to the first pseudo-address in the new

Nacramher & 19QRA

17.

page. Stores into the first page will invalidate the initial TIs
of the VI; stores into the second page will invalidate the TIs
branched to. As long as no irreversible changes are done before
the branch, all will be well.

If the VAX ever branches to the first byte of the new page, it
will execute the second half of the translation; this would be
bad, and something must be done about it.

Performance hits

In addition to being ugly and complicated, the SN scheme has some
performance costs:

RT misses make TLB entries cold, losing any TIs on those
pages.

TLB misses displace TLB entries, losing any TIs on those
pages.

If we run out of SNs during a cycle, no more TIs can be
cached until the cycle is over; direct execution is slower.

Handwaving arquments suggest that these costs are small with a
TLB and RT of adequate size. It is probably desirable to make the
TLB remember entries for processes other than the one currently
running, as the Titan does, since losing the TLB on a context
switch not only means that it must be reloaded, but also that all
the TIs must be regenerated.

In addition the main path from the VR processor to the cache is
somewhat complicated. For reference we summarize all the compli-
cations introduced by VOR:

A cache line has about 20 extra bits, for the pseudo-address
and the SN, and where and when. The cache tag comparison is
about 15 bits wider, about 36 instead of 21 bits. The two-
bit cycle number must be compared with both the current and
the previous cycle number.

A TLB entry has about 10 extra bits, for hot and the SN,

There is another input to the cache line addressing, for the
pseudo-address. We can't just send the logical pseudo-
address as though it were a real address, because too many
cache lines would correspond to TIs beyond four per VI,
which are seldom used.

Cleanup must be able to address the cache and read the SN
and tag.

Details of an implementation are needed to determined whether any
of these factors will actually increase the cycle time.

December 6, 1984

6. Other issues

This section comments on a number of other issues connected with
the VOR.

6.1. Page size

The Titan pipeline depends on the fact that TLB lookup and cache
lookup can be done in parallel. This requires that the low-order
address bits used to address a cache set agree in the virtual and
the real address. The simple way to achieve this is to make the
page size big enough. Since this is not compatible with the VAX
architecture, we need another way.

The trick is to optimize for the case when enough bits do agree,
by addressing the cache immediately with the low-order virtual
address. When the cache tags and the real page number have been
read out, we compare the dubious bits of VA and RA in parallel
with comparing the tags and msb of real address. If both agree,
there is a hit. If the dubious VA and RA bits don't agree, we
take another cache cycle (causing a one-cycle stall), this time
using the real address just obtained from the TLB.

To take advantage of this, the operating system needs to ensure
that usually enough bits of VA and RA agree. How many is
"enough?" With a 64KB direct-mapped cache (as on Nautilus), we
need 16 bits to address the cache. The current page size is 9
bits, so 7 more bits must agree (the easy way would require a 64
KB page size!). With a 1 MB main memory, this means there are 16
places (2**20/2**16) where a page with given VA can go. This is a
little marginal, but so is 1 MB. With a more realistic 10 MB,
there are 160 places where a page can go. So the need for an
extra cache cycle should be infrequent. Of course, if the same
page appears in different places in two maps, one must lose out.
But the penalty is not too severe.

6.2. Why not static translation?

I considered a scheme in which VAX code is translated in larger
chunks, say a page at a time, and cached in main memory. This has
the advantage that no hardware T is required, and the VR and its
cache don't have to deal with pseudo-addresses. Also, much more
optimization of the translated code is possible. However, I can't
see any way to do this without losing a lot of transparency. The
main reason is that large amounts of main memory are required,
since the translation is quite expensive and hence can't be done
very often. It seems best to think of the translation as being
done during page-fault processing. Also, large auxiliary tables
are needed. There isn't much hope of concealing a six-fold
increase in the space needed for code from the operating system.

December 6, 1984

- 19 -

On the other hand, the proposal made by Dick Sites seems very
sound: to provide a tool which does automatic or semi-automatlc
translation of most VAX programs to RISC instructions. This
translation would be done only once, and the translated program
stored in the file system in place of the original. If the
automatic translator can't handle a program, it can still be run
under emulation. In this way many more programs can be quickly
converted to run in RISC native mode, and hence faster.

6.3. Compatibility

The goal of the VOR is VAX compatibility as good as the MicroVAX;
i.e., there needs to be code to handle instructions and traps not
implemented in hardware, but this is done transparently to normal
execution.

The only area I know of where this may not be feasible has to do
with detailed rules for the order in which page faults from
instruction fetches and from data references happen. VOR wants to
translate the entire instruction before beginning execution. I
understand that the current VAX spec demands that a fault from a
data reference early in the instruction must happen before a
fault from a reference to the rest of the instruction. Hopefully
no one will regard this as important.

I would be interested to know of other areas in which it may be
difficult or impractical to achieve complete compatibility.

6.4. Exceptions

VAX has a large assortment of exceptions which must be emulated.
The general strategy is similar to that used at the microcode
level in existing implementations. Interrupts are turned into VR
interrupts (perhaps fewer of them), and VR code turns them back
into VAX interrupts if appropriate. Traps like decimal overflow
and subscript range are detected explicitly by the TIs or
extracode and the appropriate state changes generated. This is
also done for integer overflow, and for the trace trap, using TI
sequences conditioned by whether these traps are enabled (see T3
and T4 above). Faults from malformed instructions, such as
reserved operand, are detected by T and give rise to TIs which
explicitly call extracode to report the fault. ASTs are checked
for explicitly on ring crossings by extracode.

6.5. TI misses after the first line

An attempt to fetch a TI can get a miss on any cache line, not
just on the first one. The translator probably can't start up a
translation in the middle. So it starts at the beginning
(remember that the VPC of the VI is easily computed from the

December 6, 1984

- 20 -

pseudo-address of any TI), generating the entire translation, and
then tells VR to continue. Some extra work may be done, but there
are no complications.

7. What next
What should be done to pursue the idea of a VOR? I think the next
steps are these.

1) Write the VR code for all the VAX instructions (except
perhaps the really infrequent ones). This will give essen-
tial information for calculating performance and cache size.

2) Using this information, simulate the operation of the cache
and T for some VAX instruction traces, and calculate the
miss rate as a function of cache size, as well as the aver-
age number of VR cycles per VI.

3) Examine VR implementations in MCA2 and CMOS. This should be
only a minor extension of vanilla RISC implementations,
except for the implementation of the translator, and the
need for a somewhat larger cache.

December 6. 1984

21

Appendix. Implementation details

(* Cache and translation buffer implementation for VOR *)
(* A * marks lines which implement the sequence number scheme
for invalidation. *)

CONST
NTLBIs=1024;
NLines=4096;
BytesPerWord=4;
UWewds BytesPerLine=4;
BytesPerPage=512;
NRealPages=2**21;
TIsPervVIi=16;
RTSize:=1024;

MaxN:=64;

TYPE
TLBI=[0..NTLBIs-1]; (* TLB index *)
LI=[0..NLines-1]; (* Cache line index *)

Address=[0..2%*32-1];
TLBAddress=RECORD (* one word, lsb first, to match Address *)
byte: BITS 9 FOR [0..BytesPerPage-1];
i: BITS 10 FOR TLBI;
residue: BITS 13 FOR TLBResidue;
END;

TLBResidue=[0..((LAST(Address)+1l) DIV BytesPerPage) DIV NTLBIs-1];

RealAddress=RECORD (* one word, lsb first *)
byte: BITS 9 FOR [0..BytesPerPage-1];
page: BITS 21 FOR RealPage;
fill: BITS 2 FOR NULL;

END;

RealPage=[0..NRealPages-1];

CacheAddress=RECORD (* one word, 1lsb first, to match RealAddress ¥*)
byte: BITS 2 FOR [0..BytesPerWord-1];
word: BITS 2 FOR [0..WordsPerLine-1];
line: BITS 12 FOR LI;
residue: BITS 14 FOR CacheResidue;
fill: BITS 2 FOR NULL;
END;

CacheResidue=[0..((LAST(RealPage)+1l)*BytesPerPage) DIV
(BytesPerWord*WordsPerLine*NLines)];

PAExtension=RECORD flag: BOOLEAN; TIAddress: [0..TIsPerVI-1] END;
* SN=RECORD y: Y; n: N END; (* sequence number *)

* vy=[0..3]; (* cycle of cleanup *)
* N=[0..MaxN];

December 6, 1984

- 22 -

VAR

* 1i: LI; (* the 1li being cleaned up *)

* cy: Y; (* current cycle of cleanup *)

* nMax: N; (* largest N used in cy+l *)
c: ARRAY LI OF RECORD (* the cache)

* sn: SN;
dirty: BOOLEAN;

residue: CacheResidue; (* the vanilla tag *)
pa: PAExtension; (* extra tag for pseudo-addrs *)
data: ARRAY [0..WordsPerLine-1] OF WORD;
END;
tlb: ARRAY TLBI OF RECORD (* the TLB *)
* sn: SN;
* hot: BOOLEAN; (* must = TRUE to execute TIs *)

realPage: RealPage;
residue: TLBResidue;
protection: Protection;
modified: BOOLEAN;

END;

* rt: ARRAY [0..RTSize] OF TLBI; (* map hot RealPages to TLBIs ¥*)

(*
Invariant:
(* Main part, which says that invalidation works *)
FOR ALL i IN TLBI: tlb[i].hot =>
FOR ALL 1i IN LI: cl[li].pa.flag (* line holds TIs *)
AND RealAddressFromLI(1li).page=tlb[i].realPage
AND Matches(c[lil.sn, tlb[i].sn)
=> c[li].data was translated from the current
contents of tlb[il].realPage
(* Auxiliary part, internal to the implementation of the SN scheme ¥*)
AND RTLookup(tlb[il].realPage)=i (* hot page is reachable via rt *)
AND (* SNs in the cache are getting cleaned up properly *)
FOR ALL 1li' IN LI: c[li]l.pa.flag (* i.e., the line holds TIs *) =>
c[li'].sn.y=cy-1 AND 1li'>=1i (* not yet cleaned up *)
OR c[li'].sn.y=cy (* not translated this cycle *)
OR c[li'].sn.y=cy+1 AND (c[li'].sn.n<nMax OR EXISTS i IN TLBI:
(RealAddressFromLI(1li').page=tlb[i].realPage
AND tlb[i].hot

) AND c[li'l.sn.n<=tlbl[i]l.sn.n))
*

December 6. 1984

- 23 -

(* InternalStore, ExternalStore and FetchTI are the interface procedures
Cleanup runs concurrently *)

PROCEDURE InternalStore(a: Address; d: WORD);
VAR
ta: TLBAddress; i: TLBI;
ra: RealAddress; ca: CacheAddress; li: LI;
BEGIN
ta:=TLBAddress(a); i:=ta.i;
IF tlblil].residue#ta.residue THEN (* TLB fault *) ... END;
* IF tlb[i].modified=FALSE THEN (* Set modified *) ... END;
IF tlb[i].hot THEN Chill(i);
ra.page:=tlb[i].realPage; ra.byte:=ta.byte;
ca:=CacheAddress(ra); li:=ca.line;
IF c[lil.pa.flag OR c[li].residue#ca.residue THEN (* Miss *) ... END;
c[li].datalca.word]:=4d;
END InternalStore;

PROCEDURE ExternalStore(ra: RealAddress; d: WORD);
VAR ca: CacheAddress; li: LI;
BEGIN
(* Invalidate any TIs in the page being stored into *)
i:=RTLookup(ra.page);
IF tlb[i].realPage=ra.page AND tlb[i].hot THEN Chill(i) END;
(* Update the cache with the data being stored; it could also be
invalidated, in which case we wouldn't need the d parameter ¥*)
ca:=CacheAddress(ra); li:=ca.line;
IF c[lil.pa.flag=FALSE AND c[lil.residue:=ca.residue THEN
c[li].datalca.word]:=d;
END;
END ExternalStore;

PROCEDURE FetchTI(a: Address; x: PAExtension): WORD;
VAR

ta: TLBAddress; i: TLBI:;
ra: RealAddress; ca: CacheAddress; li: LI;
BEGIN
ta:=TLBAddress(a); i:=ta.i;
IF tlb(i].residue#ta.residue THEN (* TLB fault *) ... END;
* IF Warm(i)=FALSE THEN (* Can't cache TIs *) ... END;
ra.page:=tlb{i].realPage; ra.byte:=ta.byte;
ca:=CacheAddress(ra); li:=ca.line;
IF c[li]l.residueffca.residue OR c[li].pa#x
* OR NOT Matches(1li, i) THEN (* Miss *)
IF c[li].dirty THEN FlushLine(1li) END;
c[lil.pa:=x; cl[li].residue:=residue; c[lil.sn:=tlbl[i].sn;
... ;3 (* Fill in c[li).data with translated instructions *)
END;

RETURN c[li].datalca.word];
END FetchTI;

December 6, 1984

- 24 -

PROCEDURE Warm(i: TLBI): BOOLEAN;
(* call before generating TIs from VI bytes in page tlb[i].realPage *)
(* POST result=tlb[i].hot; i.e., returns FALSE if it couldn't *)
VAR j: [0..RTSize-1];
BEGIN
IF tlb[i].hot THEN RETURN TRUE;
(* Now we are sure to have a miss, since we are bumping the SN *)
j:=tlb[i).realPage MOD RTSize;
IF tlbl[il.hot THEN Chill(rt[j]) END; rt(jl:=i;
tlb[i]l.sn.y:=cy+1;
IF tlb([i].sn.y#cy+1l THEN tlb[i]l.sn.n:=1;
ELSIF nMax<LAST(N) THEN tlbl[i].sn.n:=nMax;
ELSE (* ran out of SNs in this cycle *) RETURN FALSE;
END;
tlb[i].hot:=TRUE; RETURN TRUE;
END Warm;

PROCEDURE Chill(i: TLBI);

BEGIN
IF tlb[i].sn.y=cy+1 THEN nMax:=MAX(nMax, tlb[i].sn.n+l) END;
tlb[i].hot:=FALSE;

END Chill;

PROCEDURE Cleanup();
VAR ra: RealAddress; i: TLBI;
BEGIN
<cy:=cy+1l MOD (LAST(Y)+1l); 1li:=0; nMax:=1; (* 0 never used in TLB *) >
REPEAT
IF c[li]l.sn.y-cy-1 THEN
c[lil.sn.y:=cy;
ra:=RealAddressFromLI(1li); i:=RTLookup(ra.page);
IF tlbl[i].realPage=ra.page AND Matches(1li, i) AND tlb[i].hot THEN
(* the cache entry is still valid ¥*)
IF cl[lil.sn.y=cy-1 THEN <c[li].sn.y:=cy;
IF tlb[i].sn.y=cy-1 THEN tlb[i].sn.y:=cy;
ELSE c[li].sn.n:=0; (* zap the entry *)
END;
END;
lis=1i+1;
UNTIL 1li>LAST(LI);
END Cleanup;

PROCEDURE Matches(li: LI; i: TLBI): BOOLEAN;
BEGIN RETURN
c(li]l.sn.n=t1lbl[i]l.sn.n
AND (c[li].sn.y=tlb[i].sn.y OR c[lil.sn.y=cy AND tlb[i].sn.y=cy-1)
END Matches;

PROCEDURE RealAddressFromLI(li: LI): RealAddress;
VAR ca: CacheAddress:
BEGIN
ca.byte:=0; ca.word:=0; ca.line:=1i; ca.residue:=c[li].residue:;

Necramber A& 1Q9QRA

- 25 -

RETURN RealAddress({ca);
END RealAddressFromLI;

PROCEDURE RTLookup(rp: RealPage): TLBI;
BEGIN RETURN rt[rp MOD RTSize] END RTLookup;

December 6, 1984

