INFORMATION AND COMPUTATION 76, 278-346 (1988)

Pebble, a Kernel Language for
Modules and Abstract Data Types*

B. Lampson’ anp R. BursTaLL!

'Systems Research Center, Digital Equipment Corporation,
130 Lytton Ave., Palo Alto, California 94301; and
YDepartment of Computer Science, University of Edinburgh,
Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland

A small set of constructs can simulate a wide variety of apparently distinct
features in modern programming languages. Using a kernel language called Pebble
based on the typed lambda calculus with bindings, declarations, dependent types,
and types as compile time values, we show how to build modules, interfaces and
implementations, abstract data types, generic types, recursive types, and unions.
Pebble has a concise operational semantics given by inference rules. @) 1988

Academic Press, Inc.
.

1. INTRODUCTION

Programming language designers have invented a number of features to
support the writing of large programs in a modular way which takes
advantage of type-checking. As languages have grown in size these features
have been added to the basic structure of expressions, statements, and
procedures in various ad hoc fashions, increasing the syntactic and seman-
tic complexity of the language. It is not very clear what the underlying con-
cepts or the language design options are. In particular cases various kinds
ol parameterised types or modules are offered, and it is unclcar how these
are related to the ideas of function definition and application, which can be
formalised very simply in the lambda calculus.

This paper describes a relatively small programming language called
Pebble, which provides a precise model for these features. It is a functional
language, based upon the lambda calculus with types. It is addressed to the
problems of data types, abstract data types, and modules. It also deals with

* This work was supported in part by the Xerox Palo Alto Research Center. An earlier
version was presented at the International Symposium on Semantics of Data Types in
Sophia-Antipolis, France, in June of 1984, and appears in the proceedings of that symposium,
“Lecture Notes in Computer Science, Vol 173" (G. Kahn, D. B. MacQueen, and G. Plotkin,
Eds.), pp. 1-50, Springer-Verlag, Berlin/New York.

278

0890-5401/88 $3.00

Copyright " 1988 by Academic Press, Inc.,
All rights of reproduction in any form reserved.

PEBBLE, A KERNEL LANGUAGE 279

the idea of generic values. It does not reflect all aspects of programming
languages, since we have not dealt with assignment, exceptions, or con-
currency, although we believe that these could be added to our framework.
Our intention is that it should be possible to express the semantics of a
sizeable part of a real programming language by giving rules which rewrite
it into Pebble. This follows the method used by Bauer and his colleagues
(Bauer ef al, 1978) to express the semantics of their wide spectrum
language. We were particularly concerned with the Cedar language (an
extension of Mesa (Mitchell er al., 1979)) which is in use at Xerox PARC.
One of us has defined the quite complex part of this language which is con-
cerned with data types and modules in terms of rewrite rules which convert
Cedar to an earlicr version of Pebble (Lampson, 1983).

An earlier version of this paper appeared as (Burstall and Lampson,
1984). In revising it we have

— provided a better treatment of union types;

— introduced the notion of “extended type” which enables us to carry
around the operations appropriate to a value as part of its type;

‘ — introduced a type constructor “®” which enables one to apply a
polymorphic function without giving an explicit type argument;

- introduced a notion of inclusion between bindings so that a module
can accept a bigger binding than the one it needs;

— introduced a coercion mechanism lo implement these last two
features;

- corrected a mistake in the semantics of recursion.

We have also removed a number of minor errors and infelicitics. These
changes in the direction of practicality have enlarged somewhat the original
small language which was intended primarily to explicate the concepts of
modules and system modelling. The original simplicity may still be discer-
ned with the eye of faith.

This paper was mostly written in 1983. (Refereeing and revising the Jour-
nal version took some time.) Since then the world has moved along and
people have become much more familiar with existential and universal

_ . dependent types due to the growing appreciation of Martin-Lof's work on
type theory. If we were rewriting it today we might be more concise and
less pedagogical in the first part of the paper. None the less our aims have
been somewhat different from those of most people concerned with type
theory. Starting from our original .concern with the module structure of .
Cedar, we are now trying to design a language which could be a firm basis
for a practical system programming language. We have kept our formal
semantics fairly close to a possible practical implementation.

280 LAMPSON AND BURSTALL

Recently we have made some simplifications in Pebble, profiting from
work by uca Cardelli (1986) on a Pebble-like language with a
denotational semantics. We have a version of the language with simpler
operational semantics and we have added exceptions and assignment.
However, it is a sizeable task to write a new paper on the basis of our new
formal semantics, so we have decided to publish the present version in the
meantime.

The first part of this paper is informal with examples, addressed to the
language designer or uscr. The reader may or may not wish to dig into the
precise semantic definition in Sections4 and 5. For a less detailed
exposition of Pebble stressing motivation see Burstall (1984).

Practical Motivation

A principal idea which we wish to express in our formalism is the linking
together of a number of modules into a large program. This may be sum-
marized as follows: Each program module produces an implementation of
some collection of data types and procedures. In order to do so it may
require the implementations supplied to it by some other modules. This
traffic in implementations is controlled by interfaces which say what kind
of implementation is required or produced by a module. These interfaces
name the data types and specify the argument and result types of the
procedures. Given a large collection of modules, perhaps the work of many
people at different times, it is essential to be able to express easily different
ways of connecting them together, that is, ways of providing the implemen-
tations needed by cach module. An input interface of a module may be
satisfied by the implementations produced by several different modules or
different “versions™ of the same module.

We believe that linking should not be described in a primitive and ad
hoc special purpose language; it deserves more systemaltic treatment. In our
view the linking should be expressed in a functional applicative language,
in which modules are regarded as functions from implementations to
implementations. Furthermore this language should be typed, and the
interfaces should play the role of types for the implementations. Thus we
have the correspondence

implementation « value
interface «» type

module « function.

Function application is more appropriate for linking than schemes based
on the names of the modules and the sequence in which they are presented.
By choosing suitable structured types in a functional language we can get a

PEBBLE, A KERNEL LANGUAGE 281

simple notation for dealing with “big" objects (pieces of a program) as if
they were “small” ones (numbers); this is the basic good trick in matrix
algebra. Thus we hope to make “Programming in the Large” look very
much like “Programming in the Small.”

Another advantage ol this approach to linking is that the linking
language can be incorporated in the programming language. We hope in
this way to achieve both conceptual economy and added flexibility in
expressing linking. By contrast, the usual approach to the linking problem,
exemplified by Mesa and C-Mesa (Mitchell et al. 1979), has a program-
ming language (Mesa) with a separate and different linking language
(C-Mesa) which sits on top of it so to speak. The main advantage of this
approach is that a scparate linking language can be used for linking
modules of more than one programming language, although in the past
this advantage has becn gained only at the price ol using an extremely
primitive linking language.

A linking system called the System Modeller was built by Eric Schmidt
for his Ph. D. thesis work, supervised by one of us (B.L.). He used an
carlier version of Pebble with some modifications, notably to provide
default values for arguments since these are often obvious from the context
(Schmidt, 1982; Lampson and Schmidt, 1983). The System Modeller was
uscd several people to build large systems, but the implementation has not
been polished sufficiently for widespread use.

Our other practical motivation was to investigate how lo provide
polymorphic functions in Cedar, that is ones which will work uniformly for
argument values of different types; for example, a matrix transpose
procedure should work for integer matrices as well as f{or real matrices.

There have been two experimental implementations of Pebble, one by
Glenn Stone at Manchester University in Prolog, and one by Hugh Stabler
at Edinburgh University in ML. These were both student projects. There
have been several other partial implementations.

Outline of the Paper

We start from Landin’s view of programming languages as lambda
calculus sweetened with syntactic sugar (Landin, 1964). Since we are deal-
ing with typed languages, we must use typed lambda calculus, but it turns
out that we need to go further and extend the type system with dependent
types. We take types as values, although they need to be handled only dur-
ing type-checking (which may involve some evaluation) and not at
execution time. We thus handle all variable binding with just one kind of
lambda expression, as opposed to Reynolds (1974). Another extension is
necded because, while procedures accept n-tuples of values, for example,
(1,5,3), at the module level it is burdensome to rely on position in a
sequence to identify parameters and it is usual to associate them with

282 LAMPSON AND BURSTALL

names, [or"examplc (x~1, y~5, z~3). This leads to the notion of a
hinding. To elucidate the notion of a parameterised module we include such
bindings as values in Pebble. It turns out that the scoping of the names
which they contain docs not crecate problems.

To define a precise meaning for Pebble programs we give an operational
semantics in the form of inference rules, using a formalism due to Plotkin
(1981), with some variations. We could have attempted a denotational
semantics, but this would have raised theoretical questions rather different
from our concerns about language design. As far as we know it would be
quite possible to give a satisfactory denotational semantics for Pebble. Car-
delli (1986) gives a denotational semantics for a quite similar language.
Our semantics gives rules for type-checkirig as well as evaluation. Our rules
are in fact deterministic and hence can be translated into an interpreter in a
conventional programming language such as Pascal.

Related Work

Our work is of course much indebted to that of others. Reynolds, in a
pioneering effort, trcated the idea of polymorphic types by introducing a
special kind of lambda expression (Reynolds, 1974) and McCracken built
on this approach (McCracken, 1979). The language Russell introduced
dependent types for functions and later for products (Demers and
Donahue, 1980). MacQueen and Sethi have done some elegant work on
the semantics of a statically typed lambda calculus with dependent types
(MacQueen and Sethi, 1982), using the idea that these should be expressed
by quantified types: this idea of universally and existentially quantified
types was introduced in logic by Girard (Girard, 1972) and uscd by
Martin-Lof (Martin-Lof, 1973) for the constructive logic of mathematics.
Mitchell and Plotkin seem to have independently noted the usefulness of
existentially quantified types for explaining data abstraction (Plotkin and
Mitchell, 1985). We had already noted this utility for dependent products,
learning later of the work on Russell and the connection with quantified
types. It is a little hard to know who first made these observations; they
seem o have been very much “in the air.”

A notable difference between our approach and that of others using
quantified types is that we take types as values and have have only one
kind of lambda expression. Russell also takes types as values, but they are
abstract data types with operations, whereas we start with types viewed as
simple predicates without operations, building more complex types from
this simple basis. The idea of taking bindings as values also appears in
(Plotkin, 1981) with a somewhat similar motivation. Qur work has been
influenced by previous work by one of us with Goguen on the design of the
specification language Clear (Burstall and Goguen, 1977).

PEBBLE, A KERNEL LANGUAGE 283
2. INFORMAL DESCRIPTION OF PEBBLE

This section describes the language, with some brief examples and some
motivation. We first go through the conventional [eatures such as
expressions, conditionals, and function definitions. Then we present those
which have more interest:

the usc of bindings as values with declarations as their types;

the usc of types as values (at compile time);

the extension of function and product types to dependent types;

the method of defining polymorphic functions.

Finally we say something about type-checking.

The rcader may wish to consult the formal description of values and the
formal syntax, given in Section 4, when he is unclear about some point.
Likewise the operational semantics, given in Section 5, will clarify exact
details of the type-checking and evaluation.

2.1. Basic Features

Pebble is based upon lambda calculus with types, using a [airly conven-
tional notation. It is entirely functional and consists of expressions which
denote values. This distinction between expressions and values is in accord
with our desire to keep our semantics quite close to a practical implemen-
tation; for example, we choose to use closures as the values of lambda
expressions. Note that in passing from expressions to values we lose type
information, e.g., in passing from a binding expression to a binding value
or from a lambda expression to a closure.

We start by describing the values, which we write in this font for the
remainder of this section. They are:

- primitive values: integers and booleans;

— function values: primitive operations, such as +, and closures which
are the values of lambda expressions;

- tuples: nil and pairs of values, such as [1,2];

- bindings: values such as x ~3 which associate a name with a value,

sets of these values which associate sets of names and values, and fix
bindings which arise in defining recursive functions;

- lypes

the primitive types int and bool

types formed by x and —

dependent types formed by © and >,
void, the type whose only element is nil

64176711

284 LAMPSON AND BURSTALL

in[crrézl product types formed by ®

extended types formed by xt

the type type which is the type of all types including itself, and
declarations, such as x: int, which are the types of bindings;

- symbolic applications: these consist of a function value applied to an
argument, written f! e. They arise during type-checking. These are not final
values of expressions, but are used in the formal semantics.

We now consider the various forms of expressions, putting aside for the
moment the details of bindings, declarations, and dependent types, which
will be discussed in later sections. These are as [ollows:

- applications: these are of the form “operator operand,” for example,
factorial 6, with juxtaposition to denote application. Parentheses and
brackets are used purely for grouping. If E, is an expression of type 1, - 1,
and E, is an expression of type {,, then E| E, is an expression of type #,. As
an abbreviation we allow infixed operators such as x+y for +[x, y].

— tuples: nil is an expression of type void. If E, is an expression of type
1, and E, one of type 1, then [E,, E,] is an expression of type 1, x t,. The
brackets are not significant and may be omitted. The functions fst and snd
select components, thus fst[1,2] is 1.

- conditionals: IF E, THEN E, ELSE E, where E, is of type bool.

- local definitions: LET B IN E evaluates E in the environment
enriched by the binding B. For example,

LET x:int~ y+2z IN x+abs x

first evaluates y + = and then evaluates x + abs x with this value for x. The
int may be omitted, thus

LET x:~ y+z IN...
The binding may be recursive, thus
LET REC f: (int - int) ~... IN...

We allow E WHERE B as an abbreviation for LET B in E.

- function definitions: functions are denoted by lambda expressions,
for example,
Ax:int - int IN x +abs x

which when applied to 3 evaluates 3 + abs 3, yielding 6. If T, evaluates to
t,, T, evaluales to t,, and E is an expression of type f,, then

AN:T, > T,INE

PEBBLE, A KERNEL LANGUAGE 285

is a function of type t; — ,. The result type T, may be omitted. Thus
Ax:int IN x + abs x

defines the same function as the previous example. Functions of two or
more arguments can be delined by using x, for example,

Ax:intx y: bool — int IN...
We allow the abbreviation
S(i: int > int) i~ ...
for
S (int > int) ~ Ai:int - int IN...

An example may help to make this all more digestible:

LET REC fact(n: int — int) :~

IF =0 THEN 1 ELSE n * fact(n — 1)
IN LET k:~2+2+2 IN

Jact(fst[k, k+17)

This all evaluates to factorial 6. Slightly less dull is

LET owice((f: int > int) - (int — int)) :~
An:int —int IN f(f n)
IN(1wice square)(2)

which evaluates to square(square(2)), that is 16. We shall see later how we
could define a polymorphic version of fwice which would not be restricted
to integer functions.

Note that a lambda expression evaluates to a closure which consists of
the declaration and body of the lambda expression together with a binding
corresponding to the environment in which the lambda expression was
evaluated; this gives values for the free variables in the body.

The reader will note the omission of assignment. Its addition would scar-
ceely affect the syntax, but it would complicate the formal semantics by
requiring the notion of store. It would also complicate the rules for type-
checking, since in order to preserve static type-checking, we would have to
make sure that types were constants, not subject to change by assignment.
This matter is discussed further in Section 3.5.

2.2. Bindings and Declarations

An unconventional feature of Pebble is that it treats bindings, such as
x~3, as values. They may be passed as arguments and results of functions,

286 LAMPSON AND BURSTALL
o

and they may be components of data structures, just like integers or any
other values. The expression x:int ~ 3 has as its value the binding x~ 3. A
binding is evaluated by evaluating its right hand side and attaching this to
the variable. Thus if x is 3 in the current environment, the expression
yeint~x + | evaluates to the binding y ~ 4. The expression x: int ~ 3 may
be wrilten more brieflly x:~3; the type of 3, which is int, is supplied
automatically.

The type of a binding is a declaration. Thus the binding expression
x:~ 3 has as its type the declaration x: int. Bindings may be combined by
pairing; unlike most other values, a pair of bindings is another binding.
Thus [x:~3, b:~true] is also a binding. After LET such a complex
binding acts as two bindings “in parallel,” binding both x and b. Thus

LET x:~0 IN LET[x:~3, y:~x] IN [x, »]

has value [3,0] not [3, 3], since both bindings in the pair arc evaluated in
the outer environment. Thus the pair constructor *,” is just like any other
function. The type of the binding [x:~3, b:~true] is (.x:int)x (h: bool)
since as usual il e, has type 1, and ¢, has type t, then [e,, ¢,] has type
1y x1,. Using pairing to combine bindings does introduce a left-to-right
ordering which is strictly unnecessary, but this representation avoids
introducing any extra machinery.

For convenience we have a syntactic sugar for combining bindings “in
series.” We write this B, B,, which is short for [B,, LET B, IN B,]. Therc
are no other operations on bindings, with the possible exception of equality
which could well be provided.

Declarations occur not only as the types of bindings but also in the
context of lambda expressions. Thus in

Axiint = int IN x4+ 1

x:int is a declaration, and hence x: int —int is a type. In fact you may
write any cxpression after the 2 provided that it evaluates to a type of the
form d— 1t where d is a declaration. To make two argument lambda
expressions we simply use a x declaration, thus '

Axiintx print - int IN x + y

which is of type int x int — int, and could take [2, 3] as an argument. This
introduces a certain uniformity and flexibility into the syntax of lambda
expressions.

We may write some unconventional expressions using bindings as values.
For cxample,

LETh:~(x:~3)IN LET 5 IN x

PEBBLE, A KERNEL LANGUAGE 287

which evaluates to 3. Another example is

LET f(b: (x:intx print) »int) :~LETHIN x + y
IN flx:~ 1, y:~2]

which also evaluates to 3. Here f takes as argument not a pair of integers
but a binding.

The main intended application of bindings as values is in elucidating the
concept of a parameterised module. Such a module delivers a binding as its
result; thus, a parameteriscd module is a function from bindings to bin-
dings. Consider a module which implements sorting, requires as parameter
a function lesseq on integers, and produces as its result functions issorted
and sort. It could be represented by a function from bindings whose type
would be

lesseq: (int x int — bool) —
(issorted: (list int — bool) x sort: (list int — list int))

We go into this in more detail in Section 3.1.

If a module requires as its parameter a binding, say one binding to f and
h, it docs no harm to give it a bigger but compatible one binding to fand g
and /. This is often called “inheritance” or “subclassing.” So when we apply
a function to an argument which is a binding, a coercion is done on this
binding to “shrink” it down to the right shape, this shape being determined
by the declaration of the parameter of the function. For example we accept

LET Arith :~ (lesseq: (int x int — bool) ~ ..., add: (int x int - int)} ~...) IN
LET SortModule(lesseq: (intxint — bool) — (issorted:...xsort:...}:~ ... IN
SortModule(Arith)

in which SortModule needs lesseq and it gets lesseq and add.
Since “~ " is a function, it also coerces a binding; thus we accept

b: (lesseq:...i~ (lesseq:...~ ..., add:...~ ...)

Pebble also has an anti-LET, which impoverishes the environment
instead of enriching it:

IMPORT BIN E

evaluates E in an environment which contains only the bindings in B, for
example,

IMPORT B IN x

The value of this expression is the value of x in the binding B, if x is indeed
bound by B. Otherwise it has no value. This is very useful if B is a named
collection of values from which we want to obtain the one named x. If we .
write simply, LET B IN x, and x is missing from B, we would pick up any

288 LAMPSON AND BURSTALL

x that happens to be in the current environment. The construction in the
example is so useful that we provide the syntactic sugar B $ x for it. Thus
stack 8 pop is the value of pop in the binding stack.

2.3. Types
We can now explain how Pebble handles types. It may be helpful to

begin by discriminating between some of the diflerent senses in which the
word “type” is customarily used. We use ADT to abbreviate “abstract data

type.”

Predicate type, simply denoting a sct of values. Example: bool
considered as {true, falsc}.

- Simple ADT, a single predicate type with a collection of associated
operations. Example: stack with particular operations:

push: (int x stack — stack) ~ ..., etc.

- Multiple ADT, several predicates (zero or more) with a collection of
associated operations. Example: point and line with particular operations:

intersection: (line x line — point) ~ ..., etc.

— ADT declaration, several predicate names with a collection of
associated operation names, each having inputs and outputs of given
predicate names. Example: predicale names point and line with operator
names:

intersection: (line x line — point), etc.

The simple ADT is a special case of the multiple ADT which offers
notational and other conveniences to language designers. For the ADT
declaration we may think of a collection of (predicate) type and procedure
declarations, as opposed to the represcntations of the types and the code
for the operations.

Some examples of how thesc concepts appear in different languages may
help. The last column in Table I gives the terminology for many sorted
algebras.

In Pebble we take as our notion of type the first of these, predicate types.
Thus a type is simply a means of classifying values. We are then able to
define entities which are simple ADTs, multiple ADTs, and ADT
declarations. To do this we make use of the notions of binding and
declaration already explained, and the notion of dependent type explained
below.

There are two methods of achieving “abstraction” or “hiding” of data
type implementations. One method is by parameterisation. If a module

289

PEBBLE, A KERNEL LANGUAGE

aimeudig aameudig — — oads adexoed aoepIU] — — UoNEIEIP LAV
3LE10 a1nionng adA] 1wensqy — Apoq adeyded uonejuawaduwy — — 1av adumiy
®v1Q23[Y — — adf1 — — isn|D — 1ay aidwis
uog adA], adAy — adAL adA L adA] adf) a1ea1paly
©1Qa3[y TS TN J1assny EpY SO ni1o [eosed
1979VvL

290 LAMPSON AND BURSTALL

takes an ADT as a parameter, when writing the body of the module the

o
parameter has access to the ADT declaration which describes this
parameter but not to the ADT itsell. The other method is to use a
“password,” chosen by the programmer of the ADT or uniquely generated
automatically, to protect values of the abstract type. These approaches are
illustrated in Pebble in Sections 3.1 and 3.2.

Pebble treats types as values, just like integers and other traditional
values. We remove the sharp distinction between “compile time” and “run
time,” allowing evaluation (possibly symbolic) at compile time. This seems
appropriate, given that one of our main concerns is to express the linking
of modules and the checking of their interfaces in the language itscell.
Treating types as values enriches the language to a degree at which we
might lose control of the phenomena, but we have adopted this approach
to get a language which can describe the facilities we find in existing
languages such as Mesa and Cedar. A similar but more conservative
approach, which maintained the traditional distinction between types and
values, was pursued by David MacQueen at Bell Labs, with some
collaboration by one of us (R.B.). He has recently applicd these ideas to the
design of a module facility for ML (MacQueen, 1984); this is incorporated
in Standard ML (SML) (Harper. MacQueen, and Milner, 1986). The
theoretical basis for this work has becen developed in (MacQueen and
Sethi, 1982; MacQueen, Plotkin, and Scthi, 1984).

Allowing “type” to be a type causes inconsistency in logic systems which
use the “propositions as types” idea, as shown by Girard (1972). However
for programming languages inconsistency does not arise and a denotational
semantics can be given using closures, a form of retract (Amadio and
Longo, 1986). The language could be reformulated if desired using a type
hierarchy, but at a cost in complication.

2.4. Dependent Function Types and Polymorphism

A function is said to be polymorphic il it can accept an argument of
more than one type; for example, an equality function might be willing to
accept either a pair of integers or a pair of booleans. To clarify the way
Pebble handles polymorphism we should first discuss some different
phenomena which may be described by this term. We start with a dis-
tinction (due we belicve to C. Strachey) between ad hoc and universal
polymorphism.

~ Ad hoc polymorphism: the code executed depends on the type of the

(31

argument; e.g., “print 3” involves different code from “print ‘nonsense’”.

- Universal polymorphism: the same code is executed regardless of
the type of the argument, since the different types of data have uniform

PEBBLE, A KERNEL LANGUAGE 291

representation, e.g., reverse[1,2,3,4] and reverse[true, false, false]. (We
write [...] for lists in examples.)

We have made this distinction in terms of program execution, lacking a
_mathematical theory. Recently Reynolds has offered a mathematical treat-
ment (Reynolds, 1983).

In Pebble we take universal polymorphism as the primitive idea. We
are able to program ad hoc polymorphic functions on this basis (sce
Section 3.3 on generic types). But universal polymorphism may itself be
handled in two ways: explicit parameterisation or 1ype inferences.

— Explicit parameterisation: when we apply the polymorphic function
we pass an cxtra argument (paramecter), namely the type required to
determine the particular instance of the polymorphic function being used.
For example, reverse would take an argument ¢ which is a type, as well as a
list. Il we want to apply it to a list of integers we would supply the type
int as the value of ¢, writing reverse(int)[1,2,3,4] and reverse(bool)
[true, false, false]. To understand the type of reverse we need the notion of
dependent type, 1o be introduced later. This approach is due to Reynolds
(1974) and is used in Russell and CLU.

- Type inference: the type required to instantiate the polymorphic
function when it is applied to a particular argument need not be supplicd
as a parameter. The type-checker is able to infer it by inspecting the type of
the argument and the type of the required result. A convenient and general
method of doing this is by using unification on the type expression concer-
ned (Milner, 1978); this method is used in ML (Gordon, Milner, and
Wadsworth, 1979). For example, we may write reverse[1, 2, 3, 4]. Follow-
ing Girard (1972) we may regard these type variables as universally quan-
tified. The type of reverse would then be

for all : type.list(t) — list(r).

This form is used by MacQueen and Sethi (1982).

In Pebble we adopt the explicit parameterisation form of universal
polymorphism. This has been traditional when considering instantiation of
modules, as in CLU or Ada generic types. To instantiate a module we must
explicitly supply the parameter types and procedures. Thus before we can
use a gencric Ada package to do list processing on lists of integers, we must
instantiate it to integers. The pleasures of type inference polymorphism as
in ML seem harder to achieve at the module level; in fact one seems to get
involved with second order unification. This is an open area for research. It
must be said that explicit parameterisation makes programming in the
kernel language more tedious. However, Section 2.6 describes sugar which

292 LAMPSON AND BURSTALL

automalicallj" supplies a value for the type parameter when a function is
applicd, at the cost of some extra writing when it is deflined.

For example, we might want to definc a polymorphic function for
reversing a pair, applicd thus

swap[int, bool][3, true],

which evaluates to [true, 3]. Here swap is applied to the pair of types
[int, bool] and delivers a function whose type is int x bool — bool x int.
The type of swap is what we will call a dependent type (Girard, 1972;
Demers and Donahue, 1980). (A mild abuse of language, since it is really
the result of applying swap to [int, bool] which is dependent, rather than
the type of swap itsell.) We will need two kinds of dependent type construc-
tor, one analogous to — for dealing with functions, the other analogous to
x for dealing with pairs. We consider the former here, and deal with the
latter in the next section.
We might think naively that the type of swap would be

(type x type) = (1, X t; = 13 X 1})

but of course this is nonscnse because the type variables ¢, and ¢, are not
bound anywhere. The fact is that the 1ype of the result depends on the values
of the arguments. Here the arguments are a pair of types and 1, and 1, are
the names for these values. We nced a special arrow —» instead of — to
indicate that we have a dependent type; to the left of the —» we must
declare the variables f, and 7,. So the type of swap is actually

(1,1 type x 132 type) = (1 X 13 = 13 X 1y).

In order to have lambda abstraction be the only name-binding mechanism,
we introduce an operation > and take this as syntactic sugar for

(1,: type x 1,: type) D> 4 B: (1,: type x 1,: type) — type IN
LET BIN (1, xty >, x1;)

which evaluates to
(1,: type x 15: type) D¢

where ¢ is the closure which is the value of the 1 expression after the [>.
Thus > is a new valuc constructor for dependent function types. For
example, the type of swap[int, bool] is int x bool - bool x int.

We may now dcfine sivap by

swap(t,: lype X {5 type) = (1 X 15 = 1, X 1}) i~
Axpityxxyity =1y x 0 IN [x,,x,]

PEBBLE, A KERNEL LANGUAGE 293

Another example would be the list reversing function

REC reverse(t: type —» (list t — list 1)) :~
Al list 1 > list ¢ IN
IF /= nil THEN [ELSE append(reverse tail I, cons(head I, nil))

2.5. Dependent Product Types

A similar phenomenon occurs with the type of pairs. Suppose for exam-
ple that the first element of a pair is to be a type and the second element is
to be a value of that type; for example [int, 3] and [bool, false]. The type
of all such pairs may be written (r: type) xx t. As we did with —>, we take
its value to be 1: type O ¢ where ¢ is the closure which is the value of At:
type — type IN ¢, and © is a new value constructor for dependent product
types. It is a dependent type because the type of the second element depends
on the value of the first. Actually it is more convenient technically to let this
type include all pairs whose first element is not just a type but a binding of
a type to t. So expressions of type (f:type)xxt are [7:~int,3] and
[1 :~bool, false] for example.

A more realistic example might be

Automaton: type ~ (input: type x state: type x output: type)
xx (1t (input x state — state) x of: (state = output))

Values of the type Automaton are pairs, consisting of

(i) three types called input, state, and output;
(ii) a transition function, tf; and an output function, of.

By “three types called input, state, and output” we mean a binding of
types to these names. Section 3 illustrates various ways of using dependent
product types to describe modules.

The simplest use of dependent products is illustrated by Automaton, in
which the first of the product is a type. We can also use dependent
products to provide union types. (Indeed what we call “dependent product”
is often called “disjoint union of a family of types” by logicians.) When we
use Automaton, we are not concerned with what the types input, state, and
output might be, but only with how the functions f and of transform
values of these types. Sometimes, however, we may wish to test the value of
fst x and take advantage of what this tells us about the type of snd x. For
example, consider

1: type ~ (tag: bool xx (IF tag THEN int ELSE real)).

If x has type 1, then il x § tag = true, snd x has type int. Often ¢ is called a
union or sum type and wrilten int@® bool. The expressions (true, 3) and

294 LAMPSON AND BURSTALL

(false, 3.14) have type t, so that the separate injection functions commonly
provided for making union values are not needed.
We might try to write

Ax: t INIF x 8 tag THEN snd x+ 1 ELSE floor (snd x)

but this will not type-check, because the Pebble type-checker is unable to
keep track of the fact that after THEN the value of x § 1ag is true. (To do
so would be a major extension of the notion of type-checking.) We
therefore introduce an AS construct which can be used like this:

Ax: t INIF x 8 rag THEN (x AS true)+ 1 ELSE floor(x AS false).

In general, if E has type d, xx1,, and [st E=E,, then E AS E, has type
(LET d, ~ E, IN t,) and value snd E. However, if fst Es E,, then E AS E,
is undefined, and hence the value of any expression in which this happens
is undefined. It is the programmer’s responsibility to establish the precon-
dition (st E=E,) before any occurrence of EAS E,. For the future we
expect to add exceptions to Pebble, and then a failing AS expression will
have an exception as its value instead of being undefined. (The AS device is
something of a patch, and we have since investigated some alternatives.)

Using this primitive, various kinds of sugar for unions can be devised. As
one cxample, we olfer the following:

Ny 1, @...®N;: 1, [or tag: string xx (IF tag =“N,” THEN ¢, ELSE...
ELSE IF tag="N," THEN ¢; ELSE void)

and

CASE N:~F OF

N, THEN E,

[

| N, THEN E,

ELSE E,

for

IF E8 tag="N,” THEN LET N :~(EAS“N,”) IN E,

ELSE ... ELSE
IF E8 tag ="N,” THEN LET N :~ (E AS “N,”) IN E,
ELSE E, ‘

For example, if

T :~ (one: int @ two: int x int @ many: list int);

PEBBLE, A KERNEL LANGUAGE 295

then we can write z: T~ (“two”, (5, 10))), and the function

sum(y: T—int) :~
CASE x:~ y OF
one THEN x
| two THEN st x+ snd x
| many THEN IF x=nil THEN 0 ELSE head x + sum(“many”, tail x)
ELSE error ()

will add up the integers in ils argument, so that sum(z) evaluates to 15.

This sugar is somewhat arbitrary, perhaps reflecting the fact that a
satisfactory syntax for discriminating the cases of a union type has yet to
be devised in any programming language.

2.6. Polymorphism without Tears

Although we are able to define polymorphic functions like swap or
reverse, it is irritating that we must supply an explicit type argument at
each call of the function. Why can't we say swap[3, truc] instead of
swap([int, bool][3, true]? ML accomplishes this by using unification to
infer the int and bool from the type of [3, true].

We propose that the Pebble programmer, deprived of unification, should
at least be allowed to supply a function which calculates these parameter
types from the type of the actual argument.

Consider the list reversing function, which we defined thus with
parameter type t,

REC reverse(t: type) —» (list t — list) :~
Al list t — list ¢ IN IF /=nil THEN... ELSE...

For our purposes we prefer the “uncurried” version which takes two
arguments

REC reverse({r: type xx I list 1) —» list 1) i~
IF I=nil THEN... ELSE...

which is used thus reverse (int, [1, 2, 3])—we write [...] for lists in exam-
ples. We would like to write reverse[1,2,3]. So in general reverse’ E
should mean the same as reverse(t, E), where ¢ is a type obtained by
inspecting the type of E. If we write tE for the type of E, ¢ should actually
be list '(tE), where list~' is the inverse of the type constructor list. (We
allow ourselves to write list=' for the lengthy name listinverse.) So
reverse’(1,2,3]) means the same as reverse(list ~'(list int), [1,2, 3]), ie,
reverse(int, [1,2,3]). We shall call list ! the “discovery function.” It dis-
covers the appropriate type parameter for polymorphic reverse by looking
at the type of the actual argument. Our idea is that the programmer should
supply the discovery function as part of the type of reverse’; then by look-

296 LAMPSON AND BURSTALL

ing at the type of reverse’ we can coerce the argument [1,2,3] to (int,
[123])

An alternative approach would be to not demand a discovery function
but instead use a general matcher, just as unification is used in ML. Then ¢
would get bound to int by matching list against list int. Since we have not
just types but functions from types to types we fear second order com-
plications in such a matcher and stick with discovery functions.

To put the discovery function into the type we need a new type construc-

r “® " called “inferred product.” We write
REC reverse’ ~ A (1: type xx [: list 1)@ list = —» ¢

IN IF... THEN... ELSE...

(very like reverse but with “@ list™' inserted). When we write
reverse’[1,2, 3] the type-checker finds the type of [1, 2, 3], namely list int,
applies the discovery function to it, binds (r: type xxI: listf) to (int,
[1,2,3]). and then proceeds to evaluate the type of the result; in due
course the body is evaluated.

A morc elaborate example is
compose({(1,: type X £ 1ype x {2 type xx f: (£, = 15) % f5: (1; = 13))

® (AT: type IN(— ~'(Istt 7)), snd(— ~'(sndt T)))) = (1, = 15)) i~

Ax: 1y IN f5(f,x) '

Here we have used functions fstt and sndt which extract the first and
second parts of a cross type to decompose the argument type.

An important property of the discovery function coercion is that it does
not endanger the security of the type system. When [1, 2, 3], with type list
int, is coerced to the type r: type xx [: list t @ list =', the discovery function
list 'is applicd to list int to yield int. This is only a guess about the type
that is nceded. The guess is paired with the original expression to give
(int, [1,2,3]), and this expression must have type : type xx I: list 1. The ®
constructor and the discovery function play no role in this type-check, and
il the type int guessed by the discovery function is wrong, the type-check
will fail. In fact, the value of the expression [l 2, 3] plays no role either;
only its type is important, since the coercion is a function from the type
listint to the type t: type xx I: list 1, nanely

AN list int - (1: type xx I: list 1)
IN(list ~ '(list int), N*)

which type-checks because list ~'(listint)=int and (int, N') has type
(r:type xx I: list t) when N’ has type list int.
2.7. Extended types

The inferred product allows us to compute the type argument of an
application when the type involved is the result of a type constructor such

PEBBLE, A KERNEL LANGUAGE 297

as list or —. Often, however, we want to deal with abstract types. For
example, consider the declaration

List: type ~ (1: type xx elem: type xx
empty: t X cons: (elemx 1 —) x
head: (t — elem) x tail: (t = t))

We can write a diflerent reverse, which works on these abstract lists:
reverse(L: List xxl: L$ t - L$1):~1F I=L8$empty THEN | ELSE...

This reverse uses L $ empty, L$ cons, L' $ head, and L § tail to manipulate
values of type L $1t, and it works quite independently of what particular
type 1. $ 1 happens to be, i.e., independently of the representation of lists. In
Sections 3.2-3.3 this style of programming is discussed further.

Il we have LL: List with LL $ elem = int, then

LL$ cons(1, LL § cons(2, LL § cons(3, LL 8 empty)))

has type LL$ r; we shall write it LL[1,2, 3], to emphasize the similarity
with the previous casc. As before, we would like to write reverse’
LL[1,2, 3] rather than reverse(LL, LL[1,2,3]), but the situation is more
complicated since LL is not a type. In fact, the type of this reverse is L:
Listxx L $t—» L$1, as we saw earlier. If we want to coerce LL[1,2,3]
into (LL, LL[1,2,3]), we have nothing to go on except the type of
LL[1,2,3]. We therefore must find some way to incorporate LL in the
type of LL[1,2,3], so we can write a discovery function that will extract
.

To accomplish this, we introduce the notion of an extended type; such a
type can be derived from a binding whose first component is N: for some
type . The primitive xt converts a binding and its type (a declaration) to
an extended type; thus

LX :~xU{List, LL)

defines a type. We make the equivalence rule that if an expression E has the
type LL $ 1 (the base type), then it also has the type xt(List, LL) (the
extended type), and vice versa. In other words, the xt constructor attaches
some values to the type LL $ t, but it does not change the predicate which
determines whether an expression has that type.

We want L.X to be the principal type of LL[1, 2, 3]. Then we can define

REC reverse'(L: List xx It xt(List, L)® xtd ~'(List) —» xt(List, L)) :~...

and write reverse’(LL[1, 2, 3)]), obtaining another value of type LX. Here
we have used the inverse constructor xtd ~'(List), with type (type — List);
when applied to xt(List, LL) it yields LL. The xtd ! function is a con-
venient specialization of xt~', which maps xt(List, LL) into the pair

298 LAMPSON AND BURSTALL

(List, LL), j,usl as x ~' maps (, x 1, into the pair (t,, ,). For the definition
of xtd ~" in terms of xt "', see below or Table VII.

It is convenient to introduce a coercion from bindings such as LL to
extended types such as LX, turning LL into xt(List, LL). With this we
never have to write xt explicitly, but can just say

REC reverse’(L: List xx I: L& xtd ~'(List) —» L) i~ ...

By adding another coercion, from xt(List, LL) to (L: List)xx I: L, we can
simplify this further to

REC reverse'(L: List xx[: L - L) :~ ...

The second coercion is just a specialization of the ® coercion to the dis-
covery function xtd ~'(List). More generally, it coerces an expression E of
type xt(b, d) to ((xtd ="' d) xt(b, d), E), or simply (b, E). These two coer-
cions are described precisely in lines (h8-9) of the coercel rule in Table VI.

There is onc subtlety in type-checking expressions involving extended
types. The rcsult type of LL$cons is LL$t, not LX. Since by the
equivalence rule for extended and base types, any expiession with one of
these types also has the other type, al first sight this causes no trouble. But
suppose we write reverse’(LL[1,2,3]). This is short for reverse’
(LL$ cons(1,..)) This expression does not type-check, because the
argument of reverse’ must have a principal type of the form xt(List, L) on
which xtd ~'(Lisr) can work to extract L. But the principal type of
LL % cons(1,..)is LL $ 1, which does not have this form; it needs to be LX,
which does.

To solve this problem we introduce a primitive, written as a postfix 1,
which elevates LL into a binding with the same value but a different type.
The type we want is

List' :~ t: type xx elem: type xx empty: LX x cons: (LX x elem — LX) x ..

This type is obtained from List by substituting LX, which is xt(List, LL),
for 1 after the first xx. The 1 primitive is defined precisely in Table VI.
Now we can write LL1 8 cons(l,...), which has type LX, as desired. We
have

REC reverse’(L: List xxl: L —> L) :~
IF I=L1 $empty THEN /
ELSE append(reverse L1 8 tail(l)), LT[L1T 8 head(1)]))

A very common situation in an abstract type is to have many functions
that take a value of the abstract type as their first argument. For instance
head and tail are such functions for the List abstraction, push and pop for
the Stuck abstraction, and so forth. If / has type LL (actually xt(List, LL),
we can write LLT $ head(l) to apply the proper head function. An attrac-

PEBBLE, A KERNEL LANGUAGE 299

tive sugar for this is /.head. In general, we write E.N for b1 8§ N(E) il E has
type xt(d, b). To handle additional arguments, this is extended to write
E,.N(E,) for b1 8 N(E,, E,), for example, s.push(3) il s is a Stack with
the obvious push: (1 xint -). The programmer can think of push as an
operation on s without worrying about just which abstraction is supplying
it. The power of this notation has been demonstrated by Simula and
Smalltalk.
We can now write a final reverse’ using the dot notation

REC reverse’ (L: List xxI: L —» L) :~
IF I=L1 $empty THEN [ELSE append(reverse |.tail, L [I.head])

Now we have a neat function which works for any representation of lists.

2.8. Type-Checking

Given an expression in Pebble, we first type-check it and then evaluate
it. However, the type-checking will involve some evaluation; for example,
we will have to evaluate subcxpressions which denote types and those
which make bindings to type variables. Thus there are two distinct phases
of evaluation: evaluation during type-checking and evaluation proper to
get the result value. These both follow the same rules, but evaluation dur-
ing type-checking may make use of symbolic values at times when the
actual values are not available; this happens when we type-check a lambda
expression.

For each form of expression we nced

(i) a type-checking rule with a conclusion of the form: E has type .
(ii) an evaluation rule with a conclusion of the form: E has value e,

The type-checking rule may evoke the evaluation rules on subexpressions,
but the evaluation rule should not need to invoke type-checking rules.
For example, an expression of the form LET...IN... is type-checked
using the following rules.
The type of LET B IN E is found thus:

If the type of B is void then it is just the type of L.

If the type of B is N: t, then it is the type of E in a new environment
computed thus: evaluate B and let e, be the right hand side of its value; the
new environment is the old one with N taking type ¢, and value e,.

If the type of B is d, x d, then evaluate B and let b, be the second of
its value; now the result is the type of LET fst B IN LET &, IN E.

If the type of B is a dependent type of the form d, © f then this must
be reduced to the previous d, x d, case by applying f to the binding fst B to
get d,.

643/76 2.1.14

300 LAMPSON AND BURSTALL

The lype"ofa binding of the form D ~ E is the value of D il it is void and
E has type void, or if it is N: r and E has type ¢, or il it is d, x d, and
[d, ~ st E, d, ~snd E] has type d, x d,; otherwise, if the value of D is a
dependent type of the form d, < f; then this must be reduced to the d, x d,
case by applying f to the binding (d, ~ [st E) to get d,.

Note that when we write d, ~fst £ we mean strictly the expression
corresponding to d, rather than the value d,.

The type of a recursive binding REC D~ E is just the value of D,
provided that a check on the type of E succeeds.

The type of a binding which is a pair is calculated as usual for a pair of
expressions.

The value of a binding of the form D~ E is as follows:

Il the value of D is void then nil.
If the value of D is N: 1 then N ~e where e is the value of E.
If the value of D is d, x d, then the value of (d, ~fst E, d, ~snd E).

IT the value of D is a dependent type then we need to reduce it to the
previous case (as before).

A couple of examples may make this clearer. We give them as informal
proofs. The proofs are not taken down to the lowest level of detail, but
display the action of the rules just given.

EXAMPLE.
LET x: (intxint)~[1+1,0] IN fst x

has type int (and value 2). To show this, we first compute the type of the
binding: x: (intxint)~[1+1,0] has type x: (intxint) because x:
(int xint) has type type and x: (intxint) has value x: (intxint) and
[1+1,0] has type int x int.

This is of the form N: (, so we evaluate the binding,

x: (int xint)~ [1 4+ 1, 0] has value x~[2, 0].
We type-check fst x in the new environment formed by adding
[x: (intxint)] and [x~[2,0]].

In this environment fst x has type int. This is the type of the whole
expression.

Here is a second rather similar example, in which LET introduces a type
name, it shows why it is necessary to evaluate the binding after the LET,
not just type-check it. We need the appropriate binding for any type names

PEBBLE, A KERNEL LANGUAGE 301

which may appear in the expression after IN. Here ¢ in 1: type ~ int is such
a name, and we need its binding to evaluate the rest of the expression,

EXAMPLE.

LET 1 type ~int IN
LET x: 1~ 1IN x+1

has type int (and incidentally value 2). We first type-check the binding of
the first LET,

t: type ~ int has type #: type and value ¢ ~int

In the new environment formed by adding [: type] and [r~int] we must
type-check LET x: 1~ 1 IN x+ 1. This has type int because

x: 1~ 1 has type x: int and
x: {~ | has value x~ 1 and

in the ncw environment formed by adding [x: int] and [x~1], x+1
has type int.

What about type-checking lambda expressions? For expressions such as
ix:int > int IN x+1

this is straightforward. We can simply type-check x+ 1 in an environment
enriched by [x: int]. But we must also consider polymorphic functions
such as

Atype » (1= t) INAxit—>t IN E

We would like to know the type of x when type-checking the body E, but
this depends on the argument supplied for 1. However, we want the lambda
expression to type-check no matter what argument is supplied, since we
want it to be universally polymorphic. Otherwise we would have to type-
check it anew each time it is given an argument, and this would be
dynamic rather than static type-checking. So we supply a dummy, symbolic
value for ¢ and use this while type-checking the rest of the expression. That
is, we type-check

Axtt—>tINE
in an environment enriched by [#: type] and [~ newconstant], where

newconstant is a symbolic value of type type, distinct from all other
symbolic values which may occur in this environment. This distinctness is

302 LAMPSON AND BURSTALL

o
ensured by keeping a depth counter in the environment and using it to
construct newconstant. Under this regime a function such as

At type = (t—= 1) IN (Ax: 1> 1 IN x)
will type-check (it has type denoted by ¢: type —» (1 = 1)) but

Atz type = (1= 1) IN (Ax: t >t IN x+ 1)

will fail to type-check because it makes sense only if ¢ is int.

Thus it is necessary that at type-checking time cvaluation can give a
symbolic result, since we may come across newconstant. How do we apply
a function to such a value? We introduce a value constructing operator ! to
permit the application of a function to a symbolic argument. So if e is sym-
bolic the result of applying f to e is just f!e. Similarly, if /' is symbolic the
result of applying f to ¢ is just f1e. This enables us to do symbolic
evaluation at compile time and to compare types as symbolic values.

There are no operations on types except the constructors and their inver-
ses. Thus there is no way to compute an integer, say, from a type. Assum-
ing that the result of a run-time computation is an integer or boolcan, or
structure thereof, rather than a type, there is no need to carry types around
at run time, and, for example, the pair [int, 3] can be represented at run
time simply by 3. (An exceplion is “extended types” (Section 2.6) which are
bindings acting as types.) Thus in Pebble, types act as valucs at compile
time, but although we may formally think of them as values at run time
they play no computational role.

Since our language has dependent types, an expression can have more
than one type. For example (r:~int, 3) has type #: type xinl, but it also
has the dependent type r: typexxt. The former, called the “principal
type,” is calculated by the type-checking algorithm. To type-check
(A(r:type xx 1) —» ... IN...)(t :~int, 3) we need an algorithm to verily that
(1:~int, 3) has type r: type xx 1.

We must admit that, although our type-checker is precisely defined by
our operational semantics, we have no good mathematical characterisation
of when it will succced. We could have made it weaker and probably easier
to characterisc, by restricting the amount of symbolic evaluation carried
out at compile time, but this would not necessarily help the programmer.
We would welcome suggestions for characterisation.

3. APPLICATIONS

This section presents a number of applications of Pebble, mainly to
programming in the large: interfaces and implementations, and abstract
data types. We also give treatments of generic types, union types, recursive
types such as list. and assignment. The point is to sec how all these facilities
can be provided simply in Pebble.

PEBBLE, A KERNEL LANGUAGE 303

3.1. Interfaces and Implementations

The most important recent development in programming languages is
the introduction of an explicit notion- of interface to stand between the
implementation of an abstraction and its clients. To paraphrase Parnas:

- An interface is the set of assumptions that a programmer neceds to
make about another program in order to show the correctness of his
program.

Sometimes an interface is called a specification (e.g., in Ada, where the
term is package specification). We will call the other program an implemen-
tation of the interface, and the program which depends on the interface the
client.

In a practical present day language, it is not possible to check
automatically that the interface assumptions are strong enough to make
the client program correct, or that an implementation actually satisfies the
assumptions. In fact, existing languages cannot even cxpress all the
assumptions that may be needed. They are confined to specifying the
names and types of the procedures and other values in the interface.

This is exactly the function of a definition module in Mesa or Modula2,
a package specification in Ada, or a module type in Euclid. These names
and types are the assumplions which the client may make, and which the
implementation must satisfy by providing values of the proper types. In
one of these languages we might define an interface for a real number
abstraction as follows:

interface Real,
type real,
function plus(x: real; y: real): real,

end

and an implementation of this interface, using an existing type float, might
look like this:

implementation RealF! implements Real;
type real = float;
function plus(x: real; y: real): real;

begin
if ... then ... else... end;
return...;
end;
end

In Pebble an interface such as Real is simply a declaration for a type

304 LAMPSON AND BURSTALL

Real $ real'and various functions such as plus; an implementation of Real is
a binding whose type is Real. Here is the interface:
Real: type ~ (real: type xx

plus: ~ (real x real — real) x ...);

Note that this is a dependent type: the type of Real § plus depends on the
value of Real $ real.

Now for the implementation, a binding with type Real. It gives real the
value float, which must dcnote some already-existing type, and it has an
explicit A-expression for plus.

RealFl: Real ~ [real .~ float;
plus :~ Ax:real x y:real — real IN
(IF... THEN...ELSE ...),...]

On this foundation we can define another interface Complex, with a
declaration for a mod function which takes a Complex § complex to a
RealF1 § real,

Complex: type ~ (complex: type xx
nmod: complex — RealFl $ real x ...)

If we do not wish to commit ourselves to the RealFl implementation, we
can define a parameterised interface MakeComplex, which takes a Real
parameler:

MakeComplex(R: Real — type) :~ (complex: type xx
mod: complex - R 8 realx...)

Then the previous Complex can be defined by
Complex: type~ MakeComplex(RealFl)

This illustrates the point that a module is usually a function producing
some declaration or binding (the onc it defines) from other declarations
and bindings (the interfaces and implementations it depends on).

Now the familiar cartesian and polar implementations of complex num-
bers can be defined, still with a Real parameter. This is possible because the
implementations depend on real numbers only through the elements of a
binding with type Real: the real type, the plus function, etc.

MakeCartesian(R: Real - MakeComplex(R)) :~
[complex :~ R $real x R§ real,
mod i~ Ac: complex — R $ real
IN R $ sgre((fst ¢)? + (snd ¢)?), ...];
Make Polar(R: Real —» MakeComplex(R)) :~
[complex :~ R 3§ real x R$ real;
mod :~ Ac: complex —+ R $ real IN fst ¢,...];

PEBBLE, A KERNEL LANGUAGE 305

These are functions which, given an implementation of Real, will yield an
implementation of MakeComplex(Real). To get actual implementations of
Complex (which is MakeComplex(RealFl)), we apply these functions:

Cartesian: Complex ~ MakeCartesian(Real Fl)
Polar: Complex ~ MakePolar(RealFl),

Il we do not necd the flexibility of different kinds of complex number, we
can dispensc with the Make [unctions and simply write

Cartesian: Complex~ [complex :~ RxR;
mod :~ Ac: complex - R IN
RealF1$ sqri((fst c)* + (snd ¢)?), ..],

Polar: Complex ~ [complex :~ RxR;
mod :~ Ac: complex -+ RIN st c, ...]

WHERE R:~ RealFl $ real

To show how far this can be pushed, we define an interface Transform
which dcals with real numbers and two implementations of complex num-
bers. Among other things, it includes a map function which takes one of
each kind of complex into a real,

Transform(R: Real xx Cl: MakeComplex(R) x C2: MakeComplex(R) —
type) i~ (map: (C1 $ complex x C2 8 complex - R $ real) x...);

Note that this declaration requires C! and C2 to be based on the same
implementation of Real. An implementation of this interfacc would look
like

TransformCP: Transform (RealFl, Cartesian, Polar) ~
[map :~ ACI: Cartesian § complex x C2: Polar § complex ~»
RealFl § real
INIF... THEN...ELSE ..., ..];

Thus in Pcbble it is easy to obtain any desired degree of flexibility in defin-
ing interfaces and implementations. In most applications, the amount of
parameterization shown in these examples is not necessary, and definitions
like the simpler ones for Cartesian and Polar would be used.

We leave it as an exercise for the reader to recast the module facilities of
Ada, CLU, Euclid, and Mesa in the forms of Pebble.

3.2. Abstract Data Types

An abstract data type glues some operations to a type, e.g., a stack with
push, pop, top, etc. Clients of the abstraction are not allowed to depend on
the valuc of the type (e.g., whether a stack is represented as a list or an

306 LAMPSON AND BURSTALL

o
array), or on the actual implementations of the operations. In Pebble
terms, the abstract type is a declaration, and the client takes an implemen-
tation as a parameter. Thus

intStack Decl: type ~ (stk: type xx
enipty: stk x
isEmpty: (stk - bool) x
push: (int x stk — stk) x
top: (stk - int) x...)

is an abstract data type for a stack of ints. We have used a dependent xx
type to express the fact that the operations work on values of type stk
which is also part of the abstraction. We could instead have given a
parameterized declaration for the operations

intStackOpsDecl(stk: type — type) :~
(empty: stk x
iskEmpty: (stk — bool) x
push: (int x stk — stk) x
top: stk = int) x...)

Matlters are somewhat complicated by the fact that the abstraction may
itsell be parameterized. We would probably prefer a stack abstraction, for
example, that is not committed to the type of value being stacked. This
gives us still more choices about how to arrange things. To illustrate some
of the possibilities, we give definitions for the smallest reasonable pieces of
a stack abstraction, and show various of putting them together,

We begin with a function producing a declaration for the stack
operations; it has both the element type elem and the stack type stk as
parameters:
stack OpsDecl(elem: type x stk: type — type) i~

(empty: stk x

isEmpty: (stk — bool) x
push: (elem x stk — stk) x
top: (stk — elem) x...)

With this we can write the previous definition of intStackOpsDecl more
concisely as

intStackOpsDecl(stk: type — type) i~ StackOpsDecl[int, stk]

The type of a conventional stack abstraction, paramecterized by the element
type, is a function that produces a declaration for a dependent type:

Stack Decl(elem: type — type) i~ stk: type xx StackOpsDecl[elem, stk]

PEBBLE, A KERNEL LANGUAGE 307

and we can write the previous intStack Decl as
intStack Decl:type ~ Stack Decl int

Leaving the clement type unbound; we can write an implementation of
Stack Decl using lists to represent stacks,

Stack FromList(¢l: type — Stack Decl el) :~
[stk :~list el
empty i~ nil;
isEmpty(s: stk — bool) :~ s = nil;

WHERE Iist: type — type ~ ...

Here we have given the type of list but omitted the implementation,
which is likely to be primitive. Then we can apply this to int, getling

IntStack FromList: IntStack Decl ~ StackfromList int

By analogy with list, if we have only one implementation of stacks to deal
with we will probably just call it stack rather than StackFromList. In
particular, an ordinary client will probably only use one implementation,
and will be written

Client(stack: (el: type —» StackDecl el) - ...) :~
LET intStack :~ stack int IN
-Client body-

This arrangement for the implementation leaves something to be desired in
security.
Consider for simplicity the case where we use only integer lists,

LET Client(stack: IntStack Decl) :~ -Client body-
IN ... Client(IntStack FromList)... comment Main Program;

For example,

Client(stack: IntStack Decl) :~ (stack:
push2(n, s) :~
stack 8§ push(n, stack $ push(n, s)))
“ IN LET Stack2 :~ Client(IntStack FromList)
IN Stack2 $ push2(3, stack2 $ empty))

The client body is type-checked without any knowledge of the represen-
tation of stack, so replacing stack $ push by cons would cause a lype error.
But the Main Program can construct a list int and pass it off as a
stack2 § stack, so replacing stack2 $ empty by nil would not cause a type
error. Any list is an acceptable representation of stacks, but if we had
chosen an array with a counter, then passing off an array with a negative

308 LAMPSON AND BURSTALL

e : . . 3 .
counter would cause disaster. To defend itself against such forgeries, an
implementation such as StackFromList may need a way to protect the
ability to construct a stk value. To this end we introduce the primitive

AbstractType: (T type x p: password —»
AT type xx abs: (T = AT)xrep: (AT > T))~...;

This function rcturns a new type AT, together with functions abs and rep
which map back and forth between AT and the paramcter type T. Values
of type AT can be constructed only by the abs function returned by a call
of AhstractType with the same Password.

Other languages with a similar protection mechanism (for example ML)
do not use a password, but instead make AbstractType non-applicative, so
that it returns a different AT each time it is called. This is equivalent to
making up a new password automatically each time you recompile. This
ensures that no intruder can invoke AbstractType on his own and get hold
of the abs function. We have not used this approach lor two reasons. First,
a non-applicative AbstractType does not fit easily into the formal
operational semantics for Pebble. Both the intuitive notion of type-check-
ing described in Section 2 and the formal one in Section 5 depend on the
fact that identical expressions in the same environment have the same
value, i.c.. that all functions are applicative. The use of a password to make
an abstract type unique is quite compatible with this approach.

Second, in a system with persistent data, automatic password generation
on compilation does not make sense. The implementor might change the
implementation of stack to make it more efficient without changing the
representation. She would not want this to invalidate all existing stack
values. So the new version would use the old password. Instead we think of
converting a value v to an abstract value ahs(v) as a way of asserting some
invariant that involves v. The implementations of operations on abs(v)
depend on this invariant for their corrcctness. The implementer is respon-
sible for ensuring that the invariant does in fact hold for any v in an
expression abs(v); he does this by

+ checking that each application of abs in his code satisfies a suitable
pre-condition;

« preventing any use of abs outside his code, so that every
application is checked.

A natural way to identify the implementer is by his knowledge of a
suitable password. This requires no extensions to the language, and the
only assumption it requires about the programming system is that other
programmers do not have access to the password in the text of the
implementation. '

PEBBLE, A KERNEL LANGUAGE 309

Using AbstraciType we can write a secure implementation:

StackFromList(el: type — StackDecl el) :~
LET (st:~a8 AT, abs :~a$ abs, rep:~a$rep)
WHERE a :~ AbstractType(list e,
“PASSWORDXYZ”)) IN
(stk :~ st;
emply :~ abs nil;
isEmpty(s: stk = bool) :~ (rep s) = nil;

)

Herc we are also showing how to rename the values produced by
AbstractType; il the names provided by its declaration are satisfactory, we
could simply write

Stack FromList(el: type —» Stack Decl el) :~ LET Abstract Type(list e,
“PASSWORDXYZ”) IN
(sthk :~ AT,
empty ~ abs nil;
isEmpty(s: stk > bool) :~ (rep 5) = nil;

...)

The abs and rep functions are not returned from this Srack FromList, and
because of the password, there is no way to make a type equal to the AT
which is returned. Hence the program outside the implementation has no
way to forge or inspect AT values. '

Sometimes it is convenient to include the element type in the abstraction:

aStackDecl: type ~ elem: type xx
sth: type xx
StackOpsDecl[elem, stk]

This allows polymorphic stack-bashing functions to be written more neatly.
An aStackDecl value is a binding. For example, redefining intStack,

intStack: aStack Decl ~ (elem :~ int, Stack FromList int)
An example of such a polymorphic function is

Reverse(S: aStackDecl xx x: S $sth —» S $ stk) .~ LET S IN
LET rev(y: stk x z: stk — stk) :~
IF isEmpty y THEN :
ELSE rev(pop y, push(top y, z))
IN rev(x, empty)

so that Reverse(intStack, intStack $ MakeSlackLl, 2, 31 = intStack $
MuakeStack[3, 2, 1]).

310 LAMPSON AND BURSTALL

I
3.3. Generic Types
A generic type glues a value to an instance of an abstract data type.
Thus. for example, we might want a gencric type called atom, such that
each value carries with it a procedure for printing it. A typical atom value
might be

[string, string $ Print, “Hello™]
A simple way to get this effect (using { > for string concatenation) is

AtomOps(1:type — type) i~ Print: (t - list char);

atomT: type ~ {. type xx
AtomOps(1);
atom: type ~ at: atomT xx

val: at $ 1,
PrintAtom{a: atom — list char) :~a $ Print(a 8 val);
REC PrintList(/: list atom — list char) :~
IF null / THEN “[]”
ELSE “[" () PrintAtom{head 1) (> %"
) PrimtLisr(tail 1) (> “]”

With this we can write

string AtomT: atomT ~ [string, PrintString];
hello: atom ~ [string AtomT, “Hello™],
intAtomT: atomT ~ [int, Printint];

three: atom ~ [intAtomT, 3]

Then PrintAtom three="3", and PrintLisi{hello, three, nil]=
“[Hello, [3,[11}

If int and string are extended types (sce Section2.6) with Print
procedures, so that xtd '(atomT) succeeds, then we could define arom
dilferently:

atom: \ype ~ at: atomT xx val: at $ t® (xtd =" atomT)

Now we can write PrintAtom(3), and 3 will be coerced into ((1~int§1¢,
Print ~int § Print), 3) by the coercion for ® types, because shrinkF(type,
atomT)(int) evaluates to (t~int § 1, Print ~int § Print).

This is fine for dealing with an individual value which can be turned into
a atom, but suppose we want to print a list of ints. It is not attractive to
first construct a list of atoms; we would like to do this on the fly. This
observation leads to different Print functions, using the same definition of

PEBBLE, A KERNEL LANGUAGE 311

atom. The idea is to package a type ¢, and a function for turning f's into
atoms,

atomX i~ 12 type xx conv: (t — atom)
PrintAtoni(at: atomX xx v: at $ 1 - list char) :~

LET a:~at$ conv v IN a'$ Print(a $ val)
REC Printlist(at: aromX xx I list ar § ¢ — list char) :~

IF null / THEN “[1"

ELSE “[™ () PrintAtom[at, head] () "

¢ > Prindist[at, tail 1] ¢ “T"
intAsAtom: atomX ~ (t :~ int,
conv(v: t —» atom) i~
(1 :~int, Print :~ PrintInt, val :~ v))

3.4. Recursive Types

Pebble handles recursive functions in the standard operational style,
relying on the fact that a A-expression evaluates to a closure in which
evaluates of the body is deferred. The language has types which involve
closures, namely the dependent types constructed with —» and xx, and
it turns out that the operational semantics can handle recursive type
definitions involving these constructors. A simple example is

LET REC IntList: type ~ head: int xx tail: (I: IntList @ v: void)

where for simplicity we have confined ourselves to lists of integers rather
than introducing a type parameter. Although the evaluation rules for recur-
sion were not designed to handle this kind of expression, they in fact do so
quite well. Note that @ has the necessary xx built in,

3.5. Assignment

Although Pebble as we have presented it is entirely applicative, it would
be possible to introduce imperative primiiives. For example, we could add

var: type — type
Then var int is the type of a variable whose contents is an int. We also need
new: (T: type —» var T) x

MakeAssign: (T: type —» (var Tx T — void)) x
MakeDereference: (T type = (var T— T))

From MakeAssign and MakeDereference we can construct := and |
procedures for any type.

Of course, these are only declarations, and the implementation will
necessarily be by primitives. Furthermore, the semantics given in this paper -

-

312 LAMPSON AND BURSTALL

would ha;/‘c to be modified to carry around a store which := and 1 can use
to communicate.

In addition, steps would have to be taken to preserve the soundness of
the type-checking in the presence of these non-applicative functions. The
simplest way to do this is to divide the function types into pure or
applicative versus impure or imperative ones. MakeAssign and
MakeDereference return impure functions, as does any function defined by
a A-expression whose body contains an application of an impure function.
Then an impure symbolic value is one that contains an application of an
impure function. We can never infer that such a value is equal to any other
value, even one with an identical form_(at least not without a more power-
ful reasoning system than the one in the Pebble formal semantics).

4. VALUES AND SYNTAX

This section gives a formal description of the values and syntax of
Pebble. It also defines a relation “has type™ (written :::) between values
and types; in other words, it specifies the set of values corresponding to
cach type. Note that these sets arc not disjoint. Section 5 gives a formal
description of the semantics of Pebble, and defines a relation “has type”
(written ::) between expressions and types.

4.1. Values

We start our description of Pebble with a definition of the space of
values. These may be partitioned into subsets, such as function values,
pairs, and types. Some of these may be further partitioned into more
refined subsets, such as cross types and arrow types. Our values are the
kind of values which would be handled by a compiler or an interpreter,
rather than the ones which would be used in giving a traditional
denotational semantics for our language. The main difference is that we
represent functions by closures instead of by the partial functions and
functionalis of denotational semantics. Tablc Il gives a complete breakdown
of the sct of values.

All these value constructors except “,” “I” “:", closure and fix could be
replaced by constants using “!” and *,”. Thus, for example, x 1 could
become x! (i, 1).

Each set of values, denoted by a lowercase letter, is composed of the sets
written immediately to the right of it, e.g.,

e=eyufunilu(e,e)ubutu(fle)

where by (e, ¢) we mean the set of all values (v, v,) such that v, ee and
v, € e. Similarly nil means {nil}, (/!e¢) means {(v,!v,)|v, € f, v, €€}, and

PEBBLE, A KERNEL LANGUAGE 313

so on for cach value constructing operator. The primitive constants of the
value space and constructors such as closure arc written in this font
throughout this section. Meta-variables which denote values or sets of
values, possibly of a given kind, are single lowercase letters in this fon,
possibly subscripted.

We now examine each kind of value in turn, giving a brief informal
explanation. Indented paragraphs describe how a set of values may be
partitioned into disjoint subsels.

- e is the set of all values, everything which may be denoted by an
expression.

- €, consists of the primitive values true, false, 0, 1, ..., all except the
functions and types.

— [consists of the values which are functions, as follows,

+ The values in f, which are primitives such as addition or mul-
tiplication of integers. They include the functions x, -, typeOf on types;
the inverse functions x =', — =" =1 0 =! > -!' ® ' and the functions
if, [st, snd, rhs on values. Notc that there are no other operations on types,

TABLE 11
Values
I'4 ¢y viz true, false, 0, 1, 2, ., etc.
Ia foviz.+, x,etc.

closure(p, d, E)
nil

[_('v (’]
b n~e
nil
[, 6]
fix(f./)
1 t, viz, bool, int, etc.
void
xt
tof
1t
at f
1Qf
d n:t
: void
dxd
dof
de/

314 LAMPSON AND BURSTALL

o .y . . . L
declarations, or bindings. In particular, there is no equality. This is impor-
tant if we wish to avoid the nced for run-time representations of these
things.

* closure values, the results of evaluating A-expressions. A closure is
composed of:

. an environment p, which associates a type and a valuc with
cach name;

2. a declaration value, which gives the bound variables of the
A-cxpresssion;

3. a body expression, which is the expression following IN in the
A-expression (expressions are defined in Section 4.2).

- nil, the O-tuple.
- [e, e], the 2-tuples (ordered pairs) of values. The pair forming

operation is “,”. In general we use brackets for pairs, as in [I, [2, [3,
nil]]}; formally, brackets are just a syntactic variant of parentheses. Since

wn

,” associates to the right, we can also write [1, 2, 3, nil].

~ binding values, which associate names with values. For example,
evaluating LET x: int~ 142 IN ... will produce a binding x~3 which
associales x with 3. Strictly we should discriminate between “binding
expressions” and “binding values,” but mostly we will be sloppy and say
“binding” for either. Bindings are either elementary or tuples, thus:

*+ N~ e, which binds a single name N to a value e.

+ nil. The O-tuple is also a binding,

* [h, b], which is a pair of bindings, is also a binding. The binding
[h,, b,] binds the variables of &, and those of b,. This is a special case of
[e,] above, since b is a subset of e.

* fix values, which result from the evaluation of recursive bindings.

A fix value contains the function which represents one step of the recursive

definition (roughly, the functional whose fixed point is being computed).
Details are given in Section 5.2.5.
- type values, consisting of:

* 1y, some built-in types such as booleans (bool) and integers (int).
They include the type type which is the type of all type expressions.

+ void, the type of nil.

* tx 1, which is the type of pairs. If expression £, has type 1, and
expression £, has type t,, then the pair [E,, E,] has type 1, x 1,.

* 1 O f, a dependent version of ¢ x t, This is explained in Section 2.5.
* { — 1, which is the type of functions.

PEBBLE, A KERNEL LANGUAGE 315

+ d> f, a dependent version of r—¢ This is explained in
Section 2.4.
* 1® /, the inferred product type. This is explained in Section 2.6,

* d, declarations. These are the type of bindings; for example, the
type of x: int~1+2 is x: int. They give types for the three kinds of
bindings above.

- N: t, a basic declaration, which associates name N with type ¢,
e.g., x:int.
void, the type of the nil binding.
dx d, the type of a pair of bindings (a special case of #x).
d © f, a dependent version of d x d.
d® f, the inferred product type.

JS'e is the application of the primitive function or symbolic value f
to the value e. Such applications are values which may be simplified.

|

|

To formulate a soundness theorem we may define a relation ::: between
values and types, analogous to the : (“has type”) relation between
expressions and types defined in Section S. Unlike the latter, it is indepen-
dent of any environment, We could define it by operational semantic rules,
but it is shorter to give the following informal inductive definition. In one
or two places we need the = (“has value”) relation between expressions
and values defined in Section 5. We first define a subsidiary function typeOf
from declaration values to type values; for example, typeOf(x: int)= int
and typeOf(x: int x p: bool) = int x bool,

typeOl(void) = void
typeOf(N : t) =1t
typeOIf(d, x d,) = typeOf(d,) x typeOl{d,).

(The cases for © and ® are given in Table VI.)

We also need a notion of applying a funcion value f to an argument
value ¢, to obtain a result value ¢; this is written f! e, ~» e and is defined
precisely in Section 5. For example, +!(3,4)~» 7.

Now for the definition of ::: which relates values and types,

— true ::: bool, false ::: bool, 0 ::int, 1::int, and so on.
not ::: bool — bool, and so on for other operators.
X i type x type — type,
— 1l type x type — type.

12762018

316 LAMPSON AND BURSTALL

closﬁ‘re(p, d, E)::t, > 1,if 1, =ypeOf d and for all bindings b such

that b :::d we have p[d~b]+— E::t,.
— nil 222 void.

e, e ity xty il ey iryand ey ity

- N~e::N:tile:t
fix(f; [)udilfuid—d

|

1, x 15 type if £, type and 1, = type.

N :tuitype il ¢ type.
d < futype il f i d - type.
d D> fotype if f:nd - type.

1, =ty type if ¢, o type and ¢, o type.
flet,ilexit,and fuie, - t,.

bool ::: type, int ::: type, type ::: type, void ::: type.

— e, eyt O f il there is some ¢, such that fle, ~»t, and

(e,,ey) 1y X1,
et®fifet

fy uid D> [l for all e, such that e, ::: d, there is some ¢, such that

fley~»1t,and fileg~>e and e i 1.

Now if E=¢, we would like to have e ::: 1 if E:: t (soundness); we hope

TABLE 1l
Syntax
Type Introduclion Elimination
T bool IF ETHEN E, ELSEE,
7' xT, E\ E, st Esnd E
E,ASE,
7T, F ATINE FE
D—>T, Primitives
D N:T B D~F LETBINE
D, xD, RECD~E,..D~E IMPORTBINE
D, xx D, 8,. B,
F®D B, B,
N:~FE
N(Ty~E
type all types in the left column typeOf D
N

Note. Either round or square brackets may be used for grouping. All the operators associate

to the right. Precedence is: lowest IN, then *,” «;"

] v

highest application.

then ~, then -+ —», then x xx, then:

PEBBLE, A KERNEL LANGUAGE 317

this is provable. But our type-checking rules, which use symbolic
evaluation, cannot always achieve E:: 1 if e 2t (completeness). A closure
may have a certain type for all bindings, but symbolic evaluation may fail
to show this. Consider for example

(Ax: int = (IF x<x+ 1 THEN int ELSE bool) IN x) ::int — int

This is not derivable from our type-checking rules because symbolic
evaluation cannot show that x<x+ 1 for an arbitrary integer x. But the
latter is true, so il f is the value of the lambda expression we do get
f urint = int by the definition above for closures. This limitation does not
seem to present a major practical obstacle, but the matter would repay
further study.

4.2, Syntax

We can give the syntax of Pebble in traditional BNF form, but there will
be only threc syntax classes: name (N), number (/), and expression (E),

N = letter(letter | digit)*
[::= digit digit*
E:=E-» E|N:EVExxE|[E, E]|
AEIN E|N(E):~E|FIX E|REC E~E|N :~ E|
E.E|E$ N| E.N|N|IMPORT EIN E
|IF ETHEN EELSE E| EAS E|EE|LET EIN E|(E)| [E].

It is more helpful to divide the expressions up according to the type of
value they produce. We distinguish subsets of the set E of all expressions
thus: T for types, D for declarations, B for bindings, and F for functions.
These cannot be distinguished syntactically since an operator/operand
expression of the form E E could denote any of these, as could a name used
as a variable. However, it makes more sense if we write, for example, LET
B IN E instead of LET E IN E, showing that LET requires an expression
whose value is a binding.

TABLE IV

Summary of Abbreviations

Non-terminal Must evaluate to Example
N Name i
E Expression ged(i, 3)+ 1
T Type E int
D Declaration izint
B Binding iint~3
F Function Airint = bool INi>3

All the non-terminals except N are syntactically equivalent to E.

..

LAMPSON AND BURSTALL

318

Yourg :8 219ym (¢)ysnd's

¥opi8 *s a13ym dod-s
4873 I NTFHL0=? 4]
~ut«qui 7)1/ 339

(7<:7 papinoad)(*7 “'F)N § (1 .73 pus)
(1<:7 papiaoad) (F)N § L (7 ,_1x pus)

THFNILY~'LN DTN
("7~ NI.gLIINI"G x -~ x 'g.g7)
T ~'aGNLE LATNLYG * - x '@ Lg v)IXId

2T
N'F

=g ~(U)'N O3y

“F~'qg T ~'a o3y

[e31 ISTH W NJHL 9 4] X% 1009 :q (LNI.gLITINIdO—qg7)oa Ixxd
(1e=1) «—adfy s (LNI1.g1ITINI2dO—qgg7) <a l-a
£~ IYIHM 1 +! I NIg 131 g 39aHM T
g=1glp~g~) N N1g L3OdNI Nsd
THI~Ag~ ‘g NI1'g 137189 ‘grlg
(7 ur yeadde 1,usaop amau pue 7<:3 N *omau | 7 papiaoid)
=P NJwtiyy ANII—Qavy ANIdY
1% ~:(U1 « U :7)bs INILY~N I~(LIN
($g)~:L9) ((F pus~:("N " **N)F I}~ 'N) F~N TN
g~ (1 <:7 papiaoad} 7 ~ 11N I~N
ajdwexy 104 UM
le3ng
A 378VL

PEBBLE, A KERNEL LANGUAGE 319

It is also helpful to organise the syntax according to types and to the
introduction and climination rules for expressions of each type. This is a
common format in recent work on logic. For example, a value of type
T, x T, is introduced by an expression of the form E,, E; it is eliminated
by expressions of the form fst E or snd E.

The syntax presented in this way is shown in Table lII; a list of the
notations used is given in Table IV. Table V shows some abbreviations
which make Pebble more readable, for example eliminating the 1 notation
for function definitions in traditional style.

5. OPERATIONAL SEMANTICS

We have a precise operational semantics for Pebble, in the form of the
set of inference rules in Table VI. This section gives the notation for the
inference rules, explains why they yield at most one value for an expression,
and discusses the way in which values can be converted into expressions
and fed back through the inference system. Then we explain in dctail how
each rule works.

TABLE Vla

Inference Rules for =: Introduction

Rule Type Introduction
x1 void (N | N P SR Y
T\ xT,
(0) [£), E)]:> tyxty=[ey,e,]
-1 Tw-T (1) {T,=n,tixd=lypcOfd =14, g2 t=1,
DT (2) orTy=1,,t,xd D [finewe(n+ 1)~ 1},
d = parameter decl (3) p(depth)=n, p[depth=n+1]=p’
1, = parameter type (4) p'—LETnewc(n+1),,INE ¢
t =result type
t, = type of A-exp (0) (AT,INE):> t,=closure(p’, d, E)
:d N:T (1) Fofixtype(t) w1, ' xd—-d
Dyx D,
D, xxD, 0) FIX F:d=fix([,{)
typel type (n T: type

(0) N:T:>type =N:t

NI Names (1) p(N)xit~eg,eq ~»e

0) Ni>t=e

LAMPSON AND BURSTALL

320

<=1 (1 '7)901900 (0)
2er2i]f e (30 F201900 g asp (7)
Pe=g9:9 (1) adfy Fadhy
1-pisy (09) 2<=1<:7 NI§ LIOdNI {o®)
1e~pj03dhr (19) 2=1:aNI"Q1aT—[]1'9=p=da (1¥)
=1 <IFNIFIIT (0)
2=1<:aANI®*"*q1aT e (g 19 P Y o P 0 (p) dgxx'q
21 <:g NI'P**q LA NI €9 131 “ge=gopus‘ipxipiglo (g) gx'‘a
=1 <ig— [~ =N]d Cre=gsyr(%7:N)g10 () I:N
a=1<ig ‘poag (1) ES
=) <% (0) adfyymsar =
anjea juawndie =02
{a=0jespaO2ij} (£) ad4) 1ajowresed = 07
{02 =(CT ~ Pyt = ("g~ PPy qpn g0 (7) 1«aq
05 <= 0711 (07407)201000 T 972 3} (1) 1<%z e
se=1<iizgy 'y (09)
{a=(Ya p)jonnyiaila=< 2102= Uaenn= 9} ‘2a=tg="g915 (79)
Mo='gpusu=(fg~py* Ty opu'a (19)
1—(x')zpus (09) 1 ('1x1)18 (Qe) yxly
— _ ploA 3 x
9<=1<:T738Td'F NIHL 7 dI (0
{a=(%a'a %)jj1 052 2 =17 ‘as[g}<=0F 10 2 ='7 ‘onny =7} (T) i
aufganigtooqoy (1) |o0q glooq
uoneunwiy adA] any

UONBUIWILY <= 10) S3[NY DUAIJU]

qIA J79VL

321

PEBBLE, A KERNEL LANGUAGE

3<=23dA) <:2 (ps) a=1<:'""2 (0)

_ : #
g (0
{((ga~N) Prix=zr10((g9~N) Pliix= 2} "y g a0 (p)
ArqY®@r=110/@1::330 (£)
Qe fonhngUxyxioixhugyo uxitie (7)
1<:3 (1

Iany

SISYI0 (<= 0] SINY 2dUdIJU]

A JT8VL

LAMPSON AND BURSTALL

322

g9=[*q‘'q] *qeTa~ip'igemTa~lp
Hla=ojpus‘ta=opsjesp [o] za} {ipela(fYf o lpxproipxip=p} 10
g={o~N)'"NxPpI0O
4=[u’pios=p

14~ pijORdA)

A=3@N T = (NPT sya Ny adhy NY) — 0
SO Mpxip e Tpjoedf1 Y@ 'pxpao
=53¢ "1 e (P plidyunys
=80T PR oA NI P L gY) — 00 1 e Tpjj0edhl (Y o P p o
1=T1x 11T e TpjJOadAl 17 e tpyOadhl ‘ip x ipx p a0
LN = plo
1 =pIoA ‘PICA = P

P03 i(7 'p ¢, d)a1nsop

2= NI'"*%~pL3T1— 0"« pjjOdi1

34~ 2jSYd

a=[%213] *Ta «~ Lojsys “'a e lojsyr [1a]) = 2 20
I~N 210
=pupu=2

sem[2412)ipus (0Q) aes['2721i15/ (gR) 2 02 10

of aanunad yoea ut ared
{ynsa1 *d1e) yoea 10

€))
(
(an

(02)

(1p)
(00)
(£2)

(2)
{12)

(0}

<o~ DUB e J0OJ SI[NY 30UII)U]

PIA H78V1

323

PEBBLE, A KERNEL LANGUAGE

,Q e I

{24~ ,3im *,2 e~ (])XY},) (¥)21ns0[= ,) 30
2=000)%XY S Jim] (S XMz 10

e TYM IO 2 o TDIM) T T2t im0
” 1 . [})

Jo (P p)idyuLiys

S=(g (g™ '** T p)junys @) NI1.9('p ,p)dyunys ~: g LITINI.p: gr— o 'p=pio
S=(49 ¢pp)Ddiunys ‘g ('p * PIIAuLYS) NI ,p:, gy — 0 px'pxpio
JS=(N$S.8)~PNI p:gY—""7: N=PIo

S<=1uN],p:gr— ‘ploaz=p

Je~(1,1); 3991300

JS<=(,N pus ,N 15)) NI,N 15 sys ~ad£1: 1 197 NI 2dK1— 31 Ny —0d ‘adi=110 .

J=0")qjuuys 10
S=((N """ "9))221200 NJ 31 ,NY — %0 Vo 1T = 1ng ‘Y@ U= 20
JS=.NSUi~IN]: NY— 01 Nyx130
S=((,N~"p)y* =~ 'P*14((1p j0odh1 ,N)301300),N }201900 NI 'PJO2dAI : LNV NI V2 NY — %0 5/ qlp= 1Y < 'p=1a0
F=(14(("1¢,N)31200),N 301900 NI 11 ,NY NI 3 .NY —%0 U=tz 10— l1z100
S=((IN 9= 7« N pus)a01200 “\N) NI (*1°,N 19/)393900 ~2 IN LT NI 30 NY—°0 Y o '1=110
S<=({%1*,N Pus)a2120d (11 *,N 15})321303) NI ,3: ,NY — 0“1 x 1=

P P e~ ()adhixy

P= px!pipe—per(T)odfaxy ‘\p —p e~ (M)adhixy T x T 10
PPz

qQe~3~p

gera~1pY@pxplo
t

(o)

(€)
(@)
(1)

(o

(vt
(£
(T
(m

(ou)

(3y)
(Lq)
(oy)
(s4)
(+9)
(£9)
(za)
(19)

(03)

{3)
(18)

(on

(+1)

324 LAMPSON AND BURSTALL

5.1. Inference Rule Semantics

The basic idea, which we derive from Plotkin, is to specify an
operational semantics by means of a set of inference rules. The operations
of evaluation are the steps in a proof that uses the rules. The advantage of
this approach is that the control mechanism of the evaluator does not need
to be written down, since it is implicit in the well-known algorithm for
deriving a prool. Indeed, our rules can be trivially translated into Prolog,
and then can be run to give a working evaluator. This has been done by
Glen Stone, a student at Manchester University, for a slightly different
version of the rules.

In general, of course, this will lead to a non-deterministic and inefficient
evaluator; the particular rules we use, however, allow an efficient deter-
ministic evaluator to be easily derived.

5.1.1. Notation. Each rule has a set of premises assertion, ..., assertion,,
and a conclusion assertion,,, written thus:

assertion,, ..., assertion,,
asserlion,)

As usual, the meaning is that if each of the premises is established, then
the conclusion is also established. We write

assertion,,, .., assertion,,, or assertion,, ..., assertion,,,

assertiong

as an abbreviation for the two rules

assertion,, ..., assertion,, assertiony,, ..., assertion,,,
assertion, assertion, ’

Note that or has lower precedence than “,”. Sometimes or is more deeply
nested, in which case the meaning is to convert the premises to disjunctive
normal form, and then apply this expansion.

An assertion is

environment +— simple assertion.

An environment is a function mapping a hame to a type and a value. The
environment for the conclusion is always denoted by p, and is not written
explicitly. If the environment for a premise is also p (as it nearly always is),
it is also omitted.

"o

PEBBLE, A KERNEL LANGUAGE 325

A simple assertion is one of the following.

(la) E:: tasserts that E has type ¢ in the given environment.

(1b) E:> rasserts that E has principal type ¢ in the given environ-
ment.

(2) E=>e asserts that E has value e in the given environment,

(3) e=jformar asserts that e is of the form given by format, i.e., that
after each variable in format is replaced by some sequence of symbols, the
resulting sequence of symbols is identical to e. Every occurrence of a
variable in a rule must be instantiated in the same way. For example,
ex 1, —1,; here t, =1, is a format, with variables (, and ,. If ¢ is
int = bool, this assertion succeeds with ¢, =int and 1, = bool.

There are four forms of simple assertion which are convenient
abbreviations:

(4a) E:t=>e combines (la) and (2a)

(4b) E:> t=¢ combines (I1b) and (2)

(5) E:jformat combines (la) and (3); it is short for E::y¢,
t = format.

(6) e, =e, asserts that e, is equal to e,; this is a special case of (3).

Finally, there are two forms of simple assertion which correspond to
introducing auxiliary functions into the evaluator:

(7) e, ~ e, asserts that e, simplifies to e,, using the simplification
rules which tell how to evaluate primitives. See Section 5.2.2.

(8) e, ~» e, asserts that e, unrolls to e,, using the rule for unrol-
ling fix. See Section 5.2.5.

By convention we write a lowercase e for the value of the expression E,
and likewise for any other capital letter that stands for an expression. If a
lowercase letter x appears in an assertion, X appears on the left hand side
in the conclusion, and no premise has the form ...= x or .. = x, then the
premise X = x is implied.

A reminder of our typographic conventions: We use capital letters for
meta-variables denoting expressions, and lowercase letters for meta-
variables denoting values; both may be subscripted. Thus expressions
appear on the left of ::, :>, and = in assertions, and values everywhere
clse.

The value constructors that are not symbols are closure and fix.

An italicized meta-variable indicates where that variable will be bound
by a deterministic evaluator, as explained in the next section.

5.1.2. Determinism. In order to find the principal type of an expression
E, we try to prove E:>t, where 1 is a new meta-variable. If a proof is

326 LAMPSON ANI> BURSTALL

possible, it yields a value for t as well. Similarly. we can use the inference
rules to find the value of E by trying to prove E=¢. We would like to be
sure that an expression has only one value (ie., that E=¢, and E=¢,
implics e, = ¢,). This is guaranteed by the fact that the inference rules for
evaluation are deferministic: at most one rule can be applied to evaluate
any cxpression, because there is only one conclusion for each syntactic
form. When there are multiple rules abbreviated with or, the first premise
of each rule excludes all the others. In a few places we write

Apyy e Ay OF Ay, ey Ay OF o OF Qs oy Ay, else ay, ..., a

as an abbreviation for

A1yy e Apyy OF gy, ey A3y OF oo OF Qpy,y e Gy,

or not a,,, not a,,, .., not a,,, a,, ... a,.

The fact that the rules are deterministic is important for another reason:

they define a reasonably efficient deterministic program for evaluating
expressions.
" Not only has an expression just one value, but it also has just one prin-
cipal type (defined by the :> relation). It is not true, however, that an
expression has only one type. In particular, the auxiliary rule :: may allow
types to be inferred for an expression in addition to the principal type. We
say more about what this means for deterministic evaluation in
Section 5.2.6,

In each rule one occurrence of each meta-variable is italicized. This is the
one which the deterministic evaluator will use to bind the meta-variable.
For example, in x1I, ¢, and 1, are bound to the types of E, and E,,
respectively; they are used in x 10 to compute 1, x 1, the type of [E,, E,].
The italic occurrence of e may be omitted il it is £=> ¢, as explained earlier.
Thus the ¢, and ¢, in x10 are bound by omitted premises E, =>¢, and
E,=>e,. The italics are not part of the inference rules, but are just a com-
ment which is relevant for deterministic evaluation, and may be a help to
the reader as well.

It may also be helpful to know theat the premises are written in the
order that a deterministic evaluator would use. In particular, each meta-
variable is bound before it is used. In this ordering, the expression in the
conclusion should be read first, then the premises, and then the rest of the
conclusion.

n

5.1.3. Feedback. An important device for keeping the inference rules
compact is that a value with a known type can be converted into an
expression, which can then be embedded in a more complex expression
whose type and value can be inferred using the entire set of rules. This
Sfeedback from the value space to the expression space is enabled by the
syntax e # 1.

This is an expression which has value e and type t. This form of

PEBBLE, A KERNEL LANGUAGE 327

expression is ot part of the language, but is purely internal to the inference
rules. Usually the type is not interesting, although it must be there for the
feedback to be possible, so we write such an expression with the type in a
small font, ¢,,, to make it easier for the reader to concentrate on the
values. If 7 is omitted, it is assumed to be type. In addition, we often drop
the #1 entircly in the text of the paper, where no confusion is possible.

5.1.4. Initial environment. The expression which constitutes the entire
program is evaluated in the initial environment p, given in Table VII. This
provides meaning for standard constants such as true and type, and for
standard operators such as x and typeOl.

5.2. The Rules

The inference rules in Table VI are organized like the syntax in Table 111,
according to the expression forms for introducing and eliminating values of
a particular type. A particular rule is named by the constructor for the
type, followed by I for introduction or E for elimination; thus -1 is the
rule for 1-expressions, which introduce function values with types of the
form 1, — 1. Each line is numbered at the left, so that, for example, the con-
clusion of the rule for A-expressions can be named by —10. If there is more
than one rule in a part of the table labelled by the same name, the less
important ones are distinguished by letters a, b, ...; thus x Ec is the rule for
AS. Auxiliary rules, with conclusions which are not part of the syntax,
appear overleal. Most of these define the ~» function for simplifying
values.

5.2.1. Booleans, pairs, and names. The inference rules for booleans are
extremely simple, ‘

boolE (1) E:xboolE,:t,E;:t,

(2) {Ep=true, E,=eor E,=false, E, > e else ifl(ey, €, €,) }
(0) ITE, THENE,ELSEE,:>t=¢

The boolE rule says that the expression
IF E, THEN E, ELSE E,

*type-checks and has type t if E, has type bool, and E, and E, both have
type t for some t. The value of the IF is the value of E, if the value of E, is
true, the value of E, if the value of E, is false. If the value of E, is not
known, the IF evaluates to a symbolic value (unless of course it fails to
terminate). Thus
(A)IF true THEN 3 ELSE 5

has type int and value 3. The types and values for the constants true, 3, and
5 come from p,.

641:76/2-3.16

328 LAMPSON AND BURSTALL

TABLE VII

Initial Environment p,

Name Type Value

true bool true

false bool false

0.1, .. inl 0, 1,..

4, —. int x int — int 4+, —, %

void type void

nil void nil

X, = type x type —» type X,

typeOf type — type typeOf

~ d:type xx typeOl d — d

[, ¢ t:lype xx (1 — type) >, o

® 1:1ype xx (lype = [stL £) — type ®

fstt lype — type At:type IN[st x 't
sndl type — type At :type INsnd x ~ ¢
x L=t type — type x lype x 1!

- o-! type — 1 : type x x ({ = type) >-Loo!

® ' type — 1 : type x x (type — fstt 1) ®!

shrinkF type x type — type shrink F

coerceF type x type — lype coerceF

xt d:tlype xx d — type xt (must be declaration)
xt ! 1: lype = lypeOl(d : type xx b : d) xt~!

xtd ! d:type = (1 : lype = d) Ad:type IN A¢:type IN

LET(d' bh): ~xt "t
IN shrinkF(d', d) b

Note. The following primitives are not in the initial environment, but are generated by the

inference ruies:
iM(cy. €y, 05) ~r e, il eg=true, e, if ¢ = false

iftrue!(ey, e,) -» e, il e = true, undefined if e, = false
fst,snd,rhs with meanings given by the -~ rulesin §.
py maps each name to type ~ value. It also maps the symbol depth to 0.

We can display this argument more formally as an upside-down proof, in
which each step is explicitly justified by some combination of already
justified steps, denoted by numbers, and inference rules, denoted by their
names (together with some meta-rules which are not mentioned explicitly,

such as substitution of equals for equals).

(A1) IF true THEN 3 ELSE 5 ::int =3
(A2) true :: bool = true

(A3) 3uint=3

(Ad4) 5:int

In this display we show the conclusion

2,3,4, boolE
NI
NI
NI

at the top, and successively less

PEBBLE, A KERNEL LANGUAGE 329

difficult propositions below it. Viewing the inference rules as a (deter-

ministic) evaluation mechanism, each line shows the evaluation of an

expression from the values of its subexpressions, which are calculated on

later lines. Control flows down the table as the interpreter is called recur-

sively to evaluate sub-expressions, and then back up as the recursive calls

return results that are used to compute the values of larger expressions,
The rules for pairs are equally simple. ‘

(1) E; it Byt
(0) [E), E;]:> 1, x1,=>[e), €,]
x E (a0) Isti(rx t,) -t (bO)snd:i:(1, x 1) > t.

x 1

x | says that the type of [E,, E,] is t, %, il t; is the type of E,, and its
value is [e,, e;]. x E gives the (highly polymorphic) types of the primitives
fst and snd that decompose pairs.

The rule for names is also straightforward, except for the ~» clause
which is treated in Section 5.2.5 since it is needed only for recursion.

(1) p(N)=1~e
(0) N:i>t=e

We can use NI to show
[i=int~3])+—1F true THEN i ELSE 0 :int=13
following the proof of (A) above, but replacing (A3) with

NI

(A3) [i=int~3]—izint=3. NI

5.2.2. Functions. The pivotal inference rules are —I (for delining a
function by a A-expression) and —E (for applying a function). The —1 rule
is concerned almost entirely with type-checking. If the type-checks succeed,
it returns a closure which contains the current environment p, the
declaration d for the parameters, and the unevaluated expression £ which
is the body of the 1-expression. A later application of this closure to an
argument E, is evaluated (using —E) by evaluating the expression

LETd~E,INE (1)

in the environment p which was saved in the closure,
We begin with the basic rule for A, omitting line 2, which deals with
dependent function types:
(1) T,=10,tixd—-t,typeOfd =15, ty ot =1,
(3) p(depth)=n, p[depth=n+1]=p’
(4) p'— LET newe(n+ 1), 4 INE ::t

(0) (AT, IN E):> t, =closure(p’, d, E).

330 LAMPSON AND BURSTALL

d is the parameter declaration, tq is the parameter type, ¢, is the argument
value, t is the result type, and ¢, is the type of A-exp.

The expression T in the A roughly gives the type of the entire A-expression.
Thus

(B) Aiint > int INi+1

has T, = (i:int — int), and its type (called ¢,) is int — int. The value of T', is
called 1}; it differs from ¢, in that the declaration i: int has been reduced to
its type int. This is done by (—11), which accepts a T, which evaluates to
something of the form d — i, and computes first ¢, as typeOf d (using ~» e
to evaluate typeOf), and then ¢, as t,— . The ~»e rule for typeOf just
decomposes the declaration to the primitive form N: ¢, and then strips off
the N to return t. The cases for dependent and inferred products (lines 2
and 5) are discussed later.

The idea of (—14) is that il we can show that (1) type-checks without
any knowledge of the argument values, depending only on their types, then
whenever the closure is applied to an expression with type 1, the resulting
(1) will surely type-check. This is the essence of static type-checking: the
definition of a function can be checked independently of any application,
and then only the argument type need be checked on each application.
(—14) is true if we can show that

LET newc(n+1),,INE (2)

has the result typet, where newc(n+ 1) is a constant, about which we
know nothing except that its type is d. In other words, newc(n+1) is a
binding for the namecs in d, in which each name has the type assigned to it
by d. Here n is the depth of nesting of A-expressions. It is straightforward to
show that newc(n + 1) does not appear in p, and therefore does not appear
in ¢ either. This ensures that the proof that (2) has type ¢ does not depend
on the values of the arguments.
For our example (B), we have

LET newc(!) ,;.in INi+ 1 (3)

which must have type int. To show this we need the base case of :E, the
rule for LET,

(3) B (Nitg),ths B=>eg, p[N=ty~eo]—E:>r=¢

:E
(0) LETBINE: >t=¢

PEBBLE, A KERNEL LANGUAGE 331

Using this, (3) has type int if
pli=int~rhs!newc(l)]—i+1
has type int. Since i + | is sugar for plus[i, 1], its type is given by the result

type of plus (according to —El), provided that [i, 1] has the argument
type of plus. Since

plus :: int x int — int

we have the desired result if [, 1] :zint xint. Using x I this is true if i :: int
and | ::int. According to NE, the former is true if p(i)=int~e,. But in
fact p(i)=int~ rhs!newc(l), so this is established. Similarly, the initial
environment tells us that p(1)=int~1,

We can write this argument more formally as follows:

(B1) p— LET newc(1),;:int INi+ 1 ::int 2,:E
(B2) p,—i+1:int, 3, E
where p, = p[i =int ~ rhs!newc(1)]

(B3) p,v.—plus sr—int, [0, 1] 0t 45
(B4) p, — plus int x int — int 7, NE
(BS) p,—[i,1]:intxint 5, xE
(B6) p,—i:int, 1 :int 7, NE

(B7) p,(i)xint~e,, p,(1)=xint~ |,
pi(plus) xint x int—int ~ primitive(plus) inspection.

We now consider the non-dependent case ol application, and return to
A-expressions with dependent types in the next section,

—E (1) F:to—t, coerce(Eg, to) iito=>€q

(3) {fleg~reelsefle,=¢}
(0) FEg>t=c¢

The type-checking is done by —El, which simply checks that the
argument E, can be coerced to the parameter type t, of the function. The
coercion is done by typeE; line (1) of this rule says that if £ has type 1, then
it can be coerced to type ¢ simply by evaluating it. Line (2) says that if E
has type t’, and there is a coercion function coerceF(t',r), then E can be
coerced to ¢ by applying the function. The coercion function is computed
by ~»h, which has two parts. Lines (1-5) compute coercions for construc-
ted types from those for simpler types: a product can be coerced by coerc-
ing its first and second parts, a function by composing it with a coercion
from the desired argument type and a coercion to the desired result type,
and a declaration by coercing the value part. Lines (6-8) give coercion

332 LAMPSON AND BURSTALL

rules for paﬁicular types, which are discussed in connection with these
types: inferred products, bindings, and extended types. Coercions are not a
fundamental part of the language, but they are a great convenience to the
programmer in handling the inheritance relations among abstract types.

— E3 tries to use the ~» rules for evaluating applications to obtain the
value of f when applied to the argument value e,. If no ~» rule is
applicable, the value is just fle,, i.e., a more complex symbolic value. The
~» rules have two main cases, depending on whether fis a primitive or a
closure. For f an arbitrary primitive f; we use the main ~» rule,

for cach (arg, result) pair in each primitive f,
(0) foley~e

Because of the type-check, this will succeed for a properly constructed
primitive unless ¢, is a symbolic value, i.e., contains a newc constant or a
fix.

Thus the ~» rules can be thought of as an evaluation mechanism for
primitives which is programmed entirely outside the language, as is
appropriate for functions which are primitive in the language. In its sim-
plest form, as suggested by the - rule above, there is one rule for cach
primitive and each argument value, which gives the result of applying that
primitive to that value. More compact and powerful rules are also possible,
however, as ~» a — ¢ illustrate.

Note that the soundness of the type system depends on consistency
between the types of a primitive (as expressed in rules like x Ea—b), and
the ~ rules for that primitive (-~ @ — b for fst and snd). For each primitive,
a proof is required that the -~ rules give a result for every argument of the
proper type, and that the result is of the proper type.

If fis closure(py, d, E), ~~d first computes typeOf d, which is the type
that the argument ¢, must have. Then it evaluates the closure body E in the
closure environment p,, augmented by the binding d ~ ¢,. Note the parallel
with — 14, which is identical except that the unknown argument binding
newc ,, replaces the actual argument binding d~e,. The success of the
type-check made by —14 when f was constructed ensurcs that the LET
in ~+d will type-check.

The remaining ~» rules evaluate the primitives typeOf (discussed above),
~ (Section 5.2.4), fixtype (Section 5.2.5), coerceF (discussed above),
shrinkF (Section 5.2.4), and xtd ~' (Section 5.2.4),

If f is neither a primitive nor a closure, it must be a symbolic value. In
this case there is not enough information to evaluate the application, and
—E3 leaves it in the form fe,. There is no hope for simplifying this in any
larger context.

PEBBLE, A KERNEL LANGUAGE 333

5.2.3. Dependent functions. We now return to the function rule, and
consider the casc in which the A-expression has a dependent type,
(2) T,=1t,.t,~dD f, flnewc(n+ 1)~ 1,
(3) p(depth)=n, p[depth=n+1]=p’
(4) p'—LET newc{n+1),,INE ¢t
(0) (AT, INE):> t,=closure(p’, d, E)

The only difference is that —12 applies instead of —11; it deals with a
function whose result type depends on the argument value, such as the
swap function defined earlier by

(C) swap:~ A1 type x 1,1 type) —» (1, X 1,1, x1,) IN
Ax ity xxyit,) >t x 1IN [x,, x,]

The type expression for the type of swap (following the first) is sugar
for
(1y: type x ty: type) B> (4 B': (1,: type x t,: type) — type
INLET B'IN (1, xt,~+1,%x1,))
The operator [> is very much like —, but where — has the simple type

type x type—type
> has the more complex type

d:type xx f:(d-type)—type
Thus the type of swap is

(1, type x t,: type) D> (4)
closure(p, B': (t,: type x t,: type), LET B' IN 1, x 1, = 1, x1,).

In this case the parameter type of swap is just (1,: type x {,: type); we do
not use typeOf to replace it with type x type. This would be pointless, since
the names r, and 1, would remain buried in the closure, and to define
equality of closures by the a-conversion rule of the A-calculus would take
us afield to no good purpose. Furthermore, il elsewhere in the program
there is another type expression which is supposed to denote the type of
swap, it must also have —» as its main operator, and a declaration with
names corresponding to 7, and t,. This is in contrast with the situation for
a non-dependent functon type, which can be written without any names.
The effect of leaving the names in, and not providing a-conversion between
closures, is that two dependent function types must use the same names for
the parameters il they are to be equal. (Note, in a more recent version of
Pebble, incorporating many changes, we provide an equality for closures
which is true when they are a-convertible.)

334 LAMPSON AND BURSTALL

We do, however, need to compute an intended result type against which
to compare the type of (1). This is done by applying the closure in (4) to
newc(1); note that this new constant is the same here and in the instan-
tiation of —14. In this example, this application yields

rhs!fst!newc(1) x rhs!snd!newc(1)—rhs!snd!newc(1) x rhs!fst!newc(1))

which we call 1.
The body is typechecked as before using —14. It goes like this

(C1) p+—LET newc(1) 4 ,.1ype x rptype IN

Axptyxxpty = tyx it IN x5, 0,] 2,:E
rhs!fst!newc(1)xrhs!snd!newc(1)—rhs!snd!newc(1)xrhs!fst!newc(1))
(C2) pr—Alxityxxity) = tyxt IN[xy, x,] o equality, 3, -1

rhs!fst!newc(1)xrhs!snd!newc(1)—rhslsnd!newc(1)xrhs!fst!newc(1)),
where p, = p[t, = type ~rhs!fst!newc(1), t,=type~rhslsnd!newc(1)],

((‘3) pl — LET “CWC(z) # xq: rhs!fstinewce(1) x xp: rhstsndnewe(l) IN [XZ) X|] I 4' :E'
rhs!'snd!newc(!) x rhs!fstInewc(1))
(C4) py+—[x,, x,] zrhslsnd!newc(1) x rhs!fst!newc(1)), 5, xE

where p, = p,[x, =rhs!fstinewc(1)~rhs!fst!newc(2),
xy.rhslsnd!newc(1)~rhs!snd!newc(2))],

(C5) py+— x, :thstsndinewc(l), p,+—x; urhs!fstinewc(1) 6, NE

(C6) p,(x,)=~rhslsndinewc(l)~ey,, p,(x,)=rhs!fstinewc(1)~ey,
inspection.

Observe that we carry symbolic forms (e.g., rhslsnd!newc(l)) of the
values of the arguments for functions whose bodies are being type-checked.
In simple examples such as (A) and (B), these values are never needed, but
in a polymorphic function like swap they appear as the types of inner
functions. Validity of the proof rests on the fact that two identical symbolic
values always denote the same value. This in turn is maintained by the
applicative nature of our system; the fact that we generate a different
newc(n) constant for each nested 1-expression where n is the depth of
nesting maintained by the depth component of p, and the fact that if
p(depth) = n, newc(n’) with n' > n never appears in p.

A function with a dependent type d I> f is applied very much like an
ordinary function,

’E (2) F ::dD/},rl#d,wpe(d"’Eu)a’, r}]S(d~E0)=>(’n

(3) {MNey,~eelsefle=e¢}
(0) FEy>t=>c¢

PEBBLE, A KERNEL LANGUAGE 335

The only difference is that —E2 is used for the type computation instcad
of »El: This line computes the result type of the application by applying
/i to the argument binding d ~ E,; in evaluating this binding E, is coerced
to the argument type typeOf d, which we call 1,. It is exactly parallel to
—12, which computes the (symbolic) result type of applying the function to
the unknown argument binding newc , ;. We apply f, to d ~ E, rather than
to E, because typela, which constructs d[> f, expects a binding as the
argument of f,. The reason for this is that in »E2 we do not have an
expected type for E,, but we do have a declaration d to which it can be
bound. It is the evaluation of the binding d~ E, that coerces the argument;
there is no need for the explicit coercion of —El.

5.2.4. Bindings and declarations. The main rule for binding shows how
to use a binding in a LET to modify the environment in which a sub-
expression is evaluated (:E). A binding is constructed by the primitive
function ~, defined by /. The tricky case of recursive bindings (:la and
NI12) is discussed in Section 5.2.5.

The type of ~ is given in Table VII; it is the value of

d: type xx typeOf d — d.

Thus it takes a declaration d, and a value whose type is typeOf d, and
produces a binding of type d. It is defined by ~~f, which has four cases,
depending on the form of the declaration value.

In evaluating D ~ E, if the declaration is void, typeOf D is void so that E
must have type void also, and the result is nil. If D is N:t, it must be
possible to coerce E to type typeOf D, which is 1. If this yields e, the result
is the binding value N ~ ¢; see Section 5.2.2 for a discussion of coercion.
These are the base cases. If the declaration is d, x d,, E must have type
typeOf d, x typeOf d,, and the result is the value of [d, ~fst E, d,~ snd
E]. Thus
irint x x: real ~ [3, 3.14]
evaluates just like
[irint~fst[3, 3.14], x: real ~snd[3, 3.14]]
namely to [i~3, x~3.14]. All three of these cases yield d as the type of

“-the binding,.

The rule for a dependent declaration is more complicated. It is based on
the idea that in the context of a binding, dy=d, © f, can be converted to
d, x d, by applying f; to fst E to obtain d,. The binding then has the type
and value of d, xd, ~ E. Thus
I type xx x:t~ [int, 3]
has type t: type x x: int and evaluates to [f~int, x~3]. In this case the
type of the binding is not d,. but the simpler cross type d=d, x d,.

336 LAMPSON AND BURSTALL

This idea is implemented by ~ved4 and ~~{3. The former computes
typeOf d, © f; as 1, O f, where t, is typeOf d,, just as for an ordinary
product, and f5 is the composition f, o typeOl. In the rule, the com-
position is written out as a A-expression. The shrinkF clause checks that D
is really a declaration. To evaluate a binding to d, ¢ f,, ~»[3 applies f, to
fst E to compute d,, and then proceeds as for d, x d,.

For an inferred product d,®/f,, ~»e5 computes typeOl D as 1, ®f5,
where 1, is typeOf d, as before, and f% is f; o rhs, since f; infers a binding (of
type fstt dy) and f% should infer the rhs of that binding (of type [stt typeOf
d,). To evaluate a binding to d, ®f,, just evaluate a binding to d,; the
argument has already been coerced to have the proper form.

The rule for LET B IN E has exactly the same cases,

:E (1) B:void, E:>t=e¢
(2)or B (N: t,), ths B=¢,, p[N=to~e,]J—E:>t=¢
(3)orB::d, xdy,snd B=b,, LET st BIN LET b, ,4,INE:> t=¢

(4)or Biid, O fil 4 . iypelst B)=>dy, LET b,y 0, INE:> 1=
(O)LETBINE:> t=c

If B has type void, the result is E in the current environment. Il B has
type N: t,, the result is E in an environment modified so that N has type 1,
and value obtained by evaluating rhs B. Thus '

LET i int~3 INi+4
has the same type and value that i+4 has in an environment where i:
int ~ 3, namely type int and value 7.

If B has a cross type, the result is the same as that of a nested LET

which first adds st B to the environment and then adds snd B. The rule
evaluates snd B separately; if it said

LET fst BIN LET snd B IN E

the value of snd B would be aflected by the bindings in [st B.

Finally, if B has a dependent type, that type is reduced to an ordinary
cross type d, xd,, and the result is the same as LET B IN E, where
B’ =b , 4 a4 has thec same value as B, but an ordinary cross type. The last
case will never arise in a LET with an explicit binding expression for B,
since :I will always compute a cross type for such a B. However, when
type-checking a function such as

At:typexx x: t —int IN E
—14 requires a prool of

LET newc , 4 0,IN E :int

PEBBLE, A KERNEL LANGUAGE 337

where d, © fis the value of r: type xx x: 1. :E4 reduces this to
LET newc, ;. \ypex v tsumewe IN E 22 int

(al)B:d=b[J>LETb,4INE:t=e¢
(a0) IMPORT BIN E:>t=¢)

:Ea

The IMPORT construct has a very simple rule, :Ea. This says that to
evaluate IMPORT B IN E, evaluate £ in an environment which contains
only the binding of B.

There is a special coercion rule ~»/7 for bindings, which says that a
binding B can be shrunk to a binding of type d. Shrinking is defined by i,
which calculates a function f that shrinks d' to d. It succeeds if for every
simple declaration N:t of which d is composed, BSN has type r. The
shrinking works by using N:t~ BSN as the value corresponding to N:
and putting these simple bindings together according to the structure of d.
The motivation for shrinking is to allow extra elements to be dropped from
a binding; sce Section 2.3 for examples.

5.2.5. Recursion. Recursion is handled by a fixed point constructor. If F
is an n-tuple of functions F; with types d »d;, and d, x --- xd,=d, then
FIX F has type d and is the fixed point of F;i.e., F(FIX F)=(FIX F). The
novelty is in the treatment of mutual recursion: d may declare any number
of names, and correspondingly FIX F binds all these names. The following
sugar is convenient for constructing F:

RECD,~E,....D,~E, for FIX(AB:D,x---xD,INLET B'IN D, ~E,

AB:D;x---xD,INLETB' IND, ~ E,)).
For example,

REC
g:(int »>int)~ A x:int > int IN IF x=0 THEN | ELSE x * /i(x/2).
h: (int > int)~ A p:int > int IN IF y <2 THEN 0 ELSE g(y—2)

has type
g: (int = int) x i (int - int).

Its value is a binding for g and / in which their values are the closures
we would expect, with an environment p,, that contains suitable recursive
bindings for g and h. We shall soon see how this value is obtained, but for
the moment let us just look at it:

[g ~closure(p,,, x:int, IF x =0 THEN | ELSE x » /i(x/2)).
h~ closure(p,,, y:int, IF y <2 THEN O ELSE g(y — 2)}]

338 LAMPSON AND BURSTALL

Y]

where
Pen=pLg: (int = int) ~ rhs!fst!fix(f, £), h: (int — int) ~ rhs!snd!fix(f, /)],

where

J=[closure(p, B': d, LET B’ IN g: (int = int)~ 1 x:int » int IN
IF x=0 THEN 1 ELSE x+h(x/2),
closure(p, B':d, LET B’ IN h: (int > int)~ 1 y:int —int IN
IF y<2 THEN 0 ELSE g(y—2)],

where

d=g: (int - int) x h: (int — int)

The fix values inside p,, are what capture the infinite value of this recur-
sive binding in our operational semantics. Of course, il g is looked up in
P (as it will be, for example, when we compute /(3)), we do not want to
obtain rhs!fst!fix(f, /) as its value; rather, we want closure(p,,, x:int, ...).
To get this we wunroll the fix value; that is, we replace fix(f",f) by
S'(ix(f", f)), which evaluates to a closure. This unrolling is done by the
~» rule, which also deals with the possibility that there may be an
operator such as rhs outside,

3> (1) exwle, e, ~»e,, {wle, ~» e orwle,~ e’}

(2) orex wifix(f", [), {W!' /", fix([",[)=¢'

(3) or [= closure(x), f'Ifix(f",f) - ", wle” ~r e}
(0) e ~»e’

This rule unrolls rhs!fst!fix(/, /) by first computing
fsUGx(f, f) ~» fix(f", f),

where f” is the value of fst!f (the functional for g), using ~» 2, and then
fix(f*,f) ~» g~ closure(p,,, x:int, ...)

using ~» 3 and —E, and finally simplifying rhs!fix(/’, /) to closure(p,,
x:int, ..) using ~» | and ~»c. Thus, each time g or & is looked up in p,,,
the NI and ~» rules unroll the fix once, which is just enough to keep the
computation going.

For the persistent reader, we now present in detail the evaluation of a
simple recursive binding with one identificr, and an application of the
resulting function. Since some of the expressions and values are rather long,
we introduce names for them as we go. First the recursive binding:

(D) REC P: (int = int)~ A n:int = int IN
IFn<2 THEN n ELSE P(n—2)

PEBBLE, A KERNEL LANGUAGE

We can write this more compactly as
RECDP~L
where
DP = P: (int — int),
L=2An:int - int IN EXP,
EXP = (IF n <2 THEN n ELSE P(n —2)).

The table below is a proof that the value of (D) is
P: (int - int)~ closure(pg,, n:int, EXP)

339

It has been abbreviated by omitting the # types on values which are
used as expressions. The evaluation goes like this. First we construct the
A-expression for the functional whose fixed point f we need (D3) and
evaluate it to obtain a closure (D4). Then, according to :1a2, we embed fin
fix(/, /) and unroll it. This requires applying f to the fix (D5), which gives
risc to a double LET (D6), one from the application and the other from
the definition of the functional. After both LETs have their effect on the
environment, we have p,,, which contains the necessary fix value for P
((D7)-(D10)). Now evaluating the 1 to obtain a closure value for P that

contains p,, is easy (D12)-(D13),

(D1) p+—RECDP~L:dp=hp

(Dla) p—DP=dp

(D2) p+—Piint—>int=dp

(D3) p+—(AB:DP-DPINLET B INdp~L)=f

(D4) closure(p, B': dp, LET B’ IN dp ~ L)y=f

(D5) p—/(lix(£, 1)) =bp

(D6) p+—B:dp~Tix(f,f) = bf,
p—LEThfINLET B'INdp~ L= bp

(D7) B:dp~Tfix(f;) =bf

(D8) p,+—LET B' INdp~ L= bp,

where p,=p[B": dp ~fix(/, f)],

*e

(D9) p,—rhs B'=rhs!fix(f, /)
(D10) pj—dp~L=bp,

where p,, = p [P: (int - int) ~ rhs!fix(f, /)],

(D) pp—L= closure(p,, n: int, EXP)
(D12) P ~closure(pg,, n: int, EXP) = bp

A, 1a,3,5
typelc, 2
definition
-14
definition
—-E 6
#,~/,1,:E, 8

definition

:E, 9,10

- E, NI
~ [11,12

—+1

definition.

Note that this evaluation does not depend on having A-expressions for

340 LAMPSON AND BURSTALL

the values of the recursively bound names. It will work fine for ordinary
cxpressions, such as

RECi:int~j+ 1, jint~0

which binds i: ~ | and j: ~0. However, it may not terminate. For instance,
consider

REC (i:intxj:int)~ [j+ 1,].
In fact,
REC (izint xj:int)~[j+1,0]

will also fail to terminate, because the rules insist on evaluating [j+1,0]
in order to obtain the 0 which is the value of j. REC also fails if type-check-
ing requires the values of any of the recursively defined names, as in

REC r: type ~int, g:int > int~ Az int = int IN LET x:¢~i+ 1 INx* x

because in type-checking the f function we only have a newc value for ¢,
not its actual value int.

Now we look at an application of P:
(E) LET (REC P: (int — int) ~ A nzint - int IN
IF n<2 THEN n ELSE P(n—2))
IN P(3)

This has type int and value 1, as we see in the proof which follows. First we
get organized to do the application with the proper recursive value for P
(E1)-(E2). The application becomes a LET after P and 3 arc evaluated
(E3)—(ES5). This results in an environment p,; in which n~ 3, so we need to
evaluate P(n—2) (E6)-(E7). Looking up P we find a value which can be
unrolled (E8)-(F9) to obtain the recursive value closure(p,,, n: int, EXP)
again (E10)-(E11). Since n—2=1 (E12), we get the answer without any
more recursion (E13)-(E15).

(E1) p+—LETRECDP~LINP(3):int=>1 ‘E, D, 2
(E2) p,—P(3):int=1, —E 3,45

Ty

where p, = p[P = (int — int) ~ closure(p,, n: int, EXP)],

(E3) p,+— P:(int = int) = closurc(py,, n: int, EXP) NI
(E4) p,—nint~3=n~3 ~ [, int]
(ES) pp—LETn~3INEXP:int=1 :E, 6

(E6) ps+—1Fn<2THENnELSE P(n—2):int=1 booiE: 7

PEBBLE, A KERNEL LANGUAGE 341

where p 3 =p,[n=int~3]

(E7) pa—Pn—=2):int=1 -E 812,13
(E8) p,y+—P:: (int = int) = closure(p,, n: int, EXP) NI, 9
(E9) rhs!fix(f, f) ~» closure(p,, n: int, EXP) w11
(E11) rhs!hp ~ closure(p,, n: int, EXP) ~ b
(E12) pa—n—=2:int=1 NI, = E, ~»
(E13) p;—LETn~1INEXP:int= 1| E, 14
(E14) p,,—IF n<2THEN n ELSE P(n—2) ::int= 1, boolE, 15
where p, = p,[n=int~1], .
(E15) p,—n:int=1. NL

It should be clear to anyone who has followed us this far that we have
given a standard operational treatment of recursion. There is some
technical interest in the way the fix is unrolled, and in the handling of
mutual recursion.

5.2.6. Inferring types. The inference rules give a way of computing a
type for any expression. In some cases, however, an expression may have
additional types. In particular, this happens with types of the form d of
and typeOf(d O f), because pairs with these dependent types also have
ordinary cross types, which are the ones computed by the inference rules.
To express this fact, there is an additional inference rule :: which tells how
to infer types that are not computed by the rest of the rules,

(1) E:>t

(2) or {tx=t, O ffExt,xty0rtx1,x1,,E 1, o[},
Mgt~ 1ypel[SLE) =1,

(3)orExt@fort=t'®f,E:t

(4) or Ex: o', {U=xt!(d, (N~t, b)) or txxtl(d, N~t, b))}
(O

i1 says that the principal type of E is one of its types. ::2 turns d O finto
dxt by applying f to fst E to compute ¢; then it checks that E has type
dx 1. This is a reflection of the fact already discussed, that a pair may have
many dependent types, as well as its “basic” cross type. This inference can
go in either direction. ::3 says that if E has type r®}/; then it has type .
This follows from ~»gb which gives the only way of introducing a value
with ® type. This inference can also go in either direction. ::4 says that if E
has an extended type xt(d, b), it also has the base type rhs fst b, and vice
versa. This rule reflects the idea that extended types are a packaging
mechanism for asociating a set of named functions and other values with a

342 : LAMPSON AND BURSTALL

type so that the whole package can be handled as a unit, but they do not
introduce any new kinds of valucs, or provide any protection. The rule is
sound because it is the only rule that applies to expressions with extended

types.

5.3. Execution

The inference rules in Table VI tell us how to simultancously type-check
and evaluate a Pebble expression. With a few changes, however, we can
turn them into rules which type-check an expression and produce code
which can be executed to yield a value; these can reasonably be regarded as
rules for a compiler. The code takes the form of a symbolic value consisting
of the primitives of Table VII and newc(n), combined recursively using one
of the forms

(¢r,e5),ele;, Nie, N~e, cl([], e, n),

where N is a name and »n is a natural number. The cl form is the result of
evaluating a A-expression; its intuitive meaning is that if values are supplied
for newc(l), ..., newc(n), then ¢ can be evaluated to yield a value without
any newc's.

Two changes are required. The last two lines of the A rule, —»1, become

(4) p'—LET newc(n+1),4INE:t=e¢
(0) (AT, INE):>t=cl([J.e,n+1)

The ~»d rule for applying a closure is replaced by a rule for applying a cl:

(dl)s+(n~ey)—ere’
(d0) cl(5, e, m)! g €

This rule makes use of a new function for exccuting a code expression ¢ in
the run-time environment s. We write s+— e~ ¢’, meaning execute e in
run-time environment s to yield e’. The rule above says that to apply a cl to
ey, add e, to the existing run-time environment and then execute e.

An s has the form n,~e +---+n,~e.; it supplies values for the
arguments of procedures at levels n, .., n, which were referred to
symbolically as newc(n,), ..., newc(n,) in e. Two such objects which define
disjoint sets of n; can be combined in the obvious way to yield an s which
defines the union of the sets.

The execution function is defined by the + rule in Table VIII. Most of
the lines just apply the rule recursively. Line (2) uses the-»rules to
evaluate an application of a primitive or a cl. Line (7) cvaluates newc(n) by
looking up » in the environment s; if 5 is not rich enough, it leaves the
newc(n) alone.

PEBBLE, A KERNEL LANGUAGE 343

TABLE VIl

Run-Time Execution

n ex(e,,), 5—¢€, e, s—e e, (€], e)=¢
(2) orexe,le,, s—e e, s—Cyi ey, eiley e’
(3) orexlel(h, e, n),s—brb,s+(n~b)r—e,—e
(4) orexN:t,s—I1=1" Nit'=¢

(5) orcxN~e,s—e;e),Nnej=¢

(6) orexcl(s’, e;,n), eqS(s +5', 5, + 5;), 5, —¢€, €}, cl(sy, e}, n)=¢
(7 or e = newc(n), {s(n)=e"elsec=e'}

(8) elsee=¢

(0) s—e—e

(n s'=n~e, lookup(s, n, e)

(2) or "= 5| + &3, includes(s, s}), includes(s, s3)

(0) includes(s, s°)

(1 s=n~¢

(2) or s =5, +5,, {lookup(s,, n, e) or lookup(s,, n,)}
(0) lookup(s, n, e)

(1 includes(s, s'), includes(s’, s)

(0) eqS(s, 5°)

Line (6) evaluates a cl in two steps. First, it augments the cl's saved
environment by adding in the current environment. Then it non-deter-
ministically splits the resulting s into two parts 5, and s5,, and executes e, in
5,5 this will supply values for some of the newc's in e,, and do any
applications which knowing these values allows. The result is a new piece
of code ¢, which still needs the values in s5,, as well as a value for its
argument newc(n), to be completely evaluated. We therefore bundle it back
up into cl(s,, €}, n). Il 5, is (n~ e), this corresponds to one step of ff reduc-
tion in which e is substituted for newc(n). The non-determinism reflects the
freedom of the implementation to do the substitution and partial
evaluations in any order. We should prove, as a theorem, that the result of
applying the closure does not depend on how these choices are made.

Note that during this execution types play no role; the type-checking is
all done during the process of constructing the code. The converse is not
true, however: during type-checking, when a type-returning function is
applied, it may be necessary to execute the application in order to obtain a
sulliciently reduced value. For example, consider

LET id(t: type = (1 > 1)):~ (4 x: t IN x) IN id(int)(3) + 1

344 LAMPSON AND BURSTALL

The type of id is
r: type Dcl([], — !(rhs!newc(n), rhslnewc(n)), n)

and the result type of id(int) will be cl(---)!(s ~int). In order to type-check
the “+", this must be reduced to int by the ~» and - rules.

In general, however, it is not necessary or appropriate to apply a cl
whenever the function part becomes known. Doing this is doing inline
expansion of applications whenever possible, and leads to bulky, perhaps
even infinite code. It is therefore appropriate to modify the uses of + 2 by
using some heuristics to decide whether a cl should be applied. I e is a top-
level symbolic value ele,, and e, > cl(---), it should definitely be
applicd; this rule ensures that any cl application not nested insidc another
¢l will be done. Otherwise the cl probably should not be applied, unless the
body is fairly short, or this is the only application.

A related issue is the treatment of LET B IN E. The evaluation rules in
Table VI always substitute for the names in the B wherever these names
appear in E. This also is likely to increase the size of the result. An alter-
native is to treat LET more like 1, by changing :E2 to

or B::(N:ty), {ths B=¢y, p[N=to~coJ—E1=e¢
or (AN:t, IN E) ity t=cl([], e, 1), let(b, e, n) =e}

Later —3 will evaluate the let, using the same heuristics as those for cl.
The or in this rule allows a non-deterministic choice about expanding the
LET. unless the second choice fails to type-check because the type-
correctness of E depends on the value bound to N by B; this is likely to be
true if t, is type, and may be true in other cases as well.

5.4. Deterministic Evaluation

As we mentioned in Section 5.1.2, it is possible to construct a deter-
ministic evaluator from the inference rules. An experimental implemen-
tation of Pebble, without a parser, was made in Prolog by Glen Stone at
Manchester University. A later one in ML, with a parser, was made at
Edinburgh by Hugh Stabler, implementing this paper except for inferred
types and extended types. Neither of these had pretensions to efficiency, but
they checked out the semantics and uncovered one or two bugs.

6. CONCLUSION

We have presented both an informal and a formal treatment of the
Pebble language, which adds to the type lambda calculus a systematic
treatment of sets of labelled values, and an explicit form of polymorphism.
Pebble can give a simple account of many constructs for programming in

PEBBLE, A KERNEL LANGUAGE 345

the large, and we have demonstrated this with a number of examples. The
language derives its power [rom its ability to maniplate large, structured
objects without delving into their contents, and from the uniform use of A
abstraction for all its entities.
A number of arcas are open for further work:

- Assignment, discussed briefly in Section 3.5.

- Exception-handling, as an abbreviation for returning a union result
and testing for some of the cases,

- Concurrency. We do not have any ideas about how this is related to
the rest of Pebble.

- A more mathematical semantics for the language (cf. Cardelli, 1986).

- Proofl of the soundness of the type-checking, and an exploration of
its limitations.

ACKNOWLEDGMENTS

We thank o number of people for helplul discussions over an extended period, particularly
Luca Cardelli, Joseph Goguen, David MacQueen, Gordon Plotkin, Ed Satterthwaite, and Eric
Schmidt. Valuable feedback on the ideas and their presentation was obtained from members
of the IFIP Working Group 2.3. We are grateful to the referees for corrections and
suggestions. Much of our work was supported by the Xerox Palo Alto Rescarch Center.
Rod Burstall also had support from the Science and Engineering Research Council, and he
was enabled to complete this work by a British Petroleum Venture Research Fellowship and a
SERC Senior Fellowship. We thank Elcanor Kerse for kindly typing the manuscript in Scribe
format through several revisions and Oliver Schoett for Scribing the inference rules

RECEIVED October 16, 1985; AccErTED October 27, 1988

REFERENCES

AMAaDI0, R., AND LoNGO, G. (1986), Type-free compiling of parametric types, in “IFIP
Conference on Formal Description of Programming Languages, Ebberup, DK.”

BAuer, F. L. er al. (1978), Towards a wide spectrum language to support program
specification and program development, SIGPLAN Notices 13, 15-24.

BurstaLL, R. (1984), Programming with modules as typed functional programming, in “Proc.
International Conference on Fifth Generation Computing Systems, ICOT, Tokyo.”

BurstaLL, R., AND GOGUEN, J. (1977), Putting theories together to make specifications,
in “Sth Joint International Conference on Artificial Intelligence, Combridge, MA,”
pp. 1045-1058.

CarpELLL, L. (1984), A semantics of mulliple inheritance, “Lecture Notes in Computer
Science Vol. 173," pp. 51-68, Springer-Verlag, Berlin/New York.

CarbELLI, L. (1986), “A Polymorphic Lambda Calculus with Type: Type,” Report 10, Digital
Equipment Corp. Systems Research Center, Palo Alto, CA.

Demers, A., AND DONAHUE, J. (1980), Datatypes, parameters and type-checking, in “7th
ACM Symposium on Principles of Programming Languages, Las Vegas,” pp. 12-23.

346 LAMPSON AND BURSTALL

GirRARD, J-Y. (1972), “Interpretation Fonctionelle et Elimination des Coupures dans
I'Arithmetique d’Ordre Superieur,” These de Doctorat d'etat, University of Paris.

GORDON, M.. MILNER, R., AND WADSWoRTH, C. (1979), Edinburgh LCF, “Lecture Notes in
Computer Science Vol. 78,” Springer-Verlag, Berlin/New York.

Harrer, R., MACQuUiEEN, D., AND MiLNer, R. L (1986), Standard ML, Computer Science
Department, Edinburgh University, Report ECS-LFCS-86-2.

LAMPSON, B., AND SchmibT, E. (1983), Practical use of a polymorphic applicative language, in
“10th ACM Symposium on Principles of Programming Languages, Austin.”

LaMpsoN. B. W. (1983), “A Description of the Cedar Language,” Report CSL-83-15, Xerox
Palo Alto Research Center.

LANDIN, P. (1964), The next 700 programming languages, Comm. ACM 9, 157-166.

MaAcQuieN, D., anp S, R. (1982), A higher order polymorphic type system for
applicative languages, in “Symposium on Lisp and Functional Programming, Pittsburgh,
PA." pp. 243-252.

MacQueen, D., ProtkiNn. G., AND Sethi, R. (1984), An ideal model for recursive
polymorphic types, in “11th ACM Symposium on Principles of Programming Languages,
Salt Lake City.”

MacQueen, D. (1984), “Modules for Standard ML (Draft),” Computer Science Department,
Edinburgh University.

MARTIN-LoE, P. (1973), An intuitionistic theory of types: Predicative part, in “Logic
Collog. '73" (H.E.Rose and J.C.Shepherdson, Eds.), pp.73-118, North-Holland,
Amsterdam/New York.

McCRrACKEN, N, (1979), “An Investigation of a Programming Language with a Polymorphic
Type Structure,” Ph. D. thesis, Computer and Information Science, Syracuse University.
MiLner, R. (1978), A theory of type polymorphism in programming, J. Comput. System Sci,

17(3), 348-375.

MiTcHELL,)., MAYBury, W.. aAND SweeTr, R. (1979), “Mesa Language Manual,” Report
CSL-79-3, Xerox Palo Alto Research Center.

Perrrr, P. (1979), “A study on Transformational Semantics,” Dissertation, Fachbercich
Mathematik, Technische Universitit Munchen.

PrLoTkiN, G. (1981), “A Structural Approach to Operational Semantics,” Computer Science
Department Report, Aarhus University.

Protkin. G.. AND MiTCHELL, J. (1985), Abstract Types have Existential Type in “Twelfth
International Conference on Principles of Programming Languages, New Orleans.”
Reynotns, J. (1974), Towards a theory of type structure, “Lecture Notes in Computer Science

Vol. 19," pp. 408-425, Springer-Verlag, Berlin/New York.

ReyNoLps, J. (1983), Types, abstraction and parametric polymorphism, in Inform. Process.,
83.

Scumior, E. (1982), “Controlling Large Software Development in a Distributed Environ-
ment,” Report CSL-82-7, Xcrox Palo Alto Research Center.

