Specifying Distributed Systems

Butler W. Lampson
Cambridge Research Laboratory
Digital Equipment Corporation
One Kendall Square
Cambridge, MA 02139

October 1988
In Constructive Methods in Computer Science, ed. M. Broy, NATO ASI Series F: Computer

and Systems Sciences 55, Springer, 1989, pp 367-396

These notes describe a method for specifying concurrent and distributed systems, and illustrale it
with a number of examples, mostly of storage systems. The specification method is due to Lam-
port (1983, 1988), and the notation is an extension due to Nelson (1987) of Dijkstra's (1976)
guarded commands.

We begin by defining states and actions. Then we present the guarded command notation for
composing actions, give an example, and define its semantics in several ways. Next we explain
what we mean by a specification, and what it means for an implementation to satisfy a specifica-
tion. A simple example illustrates these ideas.

The rest of the notes apply these ideas to specifications and implementations for a number of
interesting concurrent systems:

Ordinary memory, with two implementations using caches;

Write buffered memory, which has a considerably weaker specification chosen to facilitate
concurrent implementations;

Transactional memory, which has a weaker specification of a different kind chosen to
facilitate fault-tolerant implementations;

Distributed memory, which has a yet weaker specification than buffered memory chosen to
facilitate highly available implementations. We give a brief account of how to use this
memory with a tree-structured address space in a highly available naming service.

Thread synchronization primitives.
States and actions

We describe a system as a state space, an initial point in the space, and a sct of atomic actions
which take a state into an outcome, either another state or the looping outcome, which we denote
1. The state space is the cartesian product of subspaces called the variables or state functions,

NATO ASI Series, Vol. F 55

Constructive Methods in Computing Scicnee
Edited by M. Broy

© Springer-Verlag Berlin Heidelberg 1989

Butler
Text Box
In Constructive Methods in Computer Science, ed. M. Broy, NATO ASI Series F: Computer and Systems Sciences 55, Springer, 1989, pp 367-396

bkt ol

depending on whether we are thinking about a program or a specification. Some of the variables
« and actions are part of the system's interface.

Each action may be more or less arbitrarily classified as part of a process. The behavior of the
system is determined by the rule that from state s the next state can be s' if there is any action that
takes s to s’ Thus the computation is an arbitrary interleaving of actions from different pro-
cesses.

Sometimes it is convenient to recognize the program counter of a process as part of the state. We
will use the state functions:

at(a) true when the PC is at the start of operation o
in{oy) true when the PC is at the start of any action in the operation
after(o) true when the PC is immediately after some action in the operation a, but not in(c).

When the actions correspond to the statements of a program, these state components are essen-
tial, since the ways in which they can change reflect the flow of control between statements. The
soda machine example below may help to clarify this point.

An atomic action can be viewed in several equivalent ways.

« A ransition of the system from one state to another; any execution sequence can be described
by an interleaving of these transitions.

« A relation between states and outcomes, i.e., a set of pairs; state, outcome. We usually define
the relation by
A so = P(s, 0)
If A contains (s, 0) and (s, 0), 0 # 0', A is non-deterministic. If therc is an s for which A
contains no (s, 0), A is partial.

s A relation on predicates, written (P} A {Q}
If As s’ then P(s) = Q(s)

* A pair of predicate transformers: wp and wlp, such that
wp(A, R) = wp(A, true) A wip(A, R)
wip(A, 7) distributes over any conjunction
wp (A, ?) distributes over any non-empty conjunction

The connection between A as a relation and A as a predicate transformer is
wp(A, R) s = every outcome of A from s satisfies R
wip(A, R) s = every proper outcome of A from s satisfies R

We abbreviate this with the single line
w(p(A, R) s = every (proper) outcome of A from s satisfies R

Of course, the looping outcome doesn't satisfy any predicate.

s

Define the guard of A by

G(A) = - wp(A, false) or G(A)s=(3 0: A s0)
G(A) is true in a state if A relates it to some outcome (which might be 1). If A is total, G(A) =
true.

We build up actions out of a few primitives, as well as an arbitrarily rich set of operators and
datatypes which we won't describe in detail. The primitives are
; sequential composition

- guard

a or

® else

I variable introduction
if .. fi

do ... od

These are defined below in several equivalent ways: operationally, as relations between states,
and as predicate transformers. We omit the relational and predicate-transformer definitions of do
For details see Dijkstra (1976) or Nelson (1987); the latter shows how to define do in terms of
the other operators and recursion.

The precedence of operators is the same as their order in the list above; i.e., ;" binds most
tightly and "I" least tightly.

Actions: operational definition (what the machine does)

skip do nothing

loop loop indefinitely

fail don't get here

(P— A) activate A from a state where P is true
(AQOB activate A or B

(ANRB) activate A, else B if A has no outcome
(A ; B) activate A, then B

(if A fi) activate A until it succeeds

(do A od) activate A until it fails

00— 00
01 — (1
10— 10
11— 11

Skip

Xy
00 00
01 ___p 01
10 : 10
11 11

x=0- Skip
Jry=0-y:=1
(partial, non-deterministic)

370

00— 00
01 — 01
10 10
i1 11

x=0- Skip
(partial)

00
01
10
11

xy
00
01

10
11

/]

y=0-oy:=1
(partial)

283

0l

=2 8%

10
11

10
11

if x = 0 Skip
[y=0-y:=1
fi

(non-deterministic)

Figure 1. The anatomy of a guarded command. The command in the lower right is composed of
the subcommands shown in the rest of the figure.

Actions: relational definition

skip so =5=0
loop so =o=1
fail so =false

(P> A) so =PsaAso

(A[0B) so =AsovBso

(ARB) so =Asov(Bsoa=GgA)s)

(A;B) so =(3s"Ass’ABso)v(Asono=1)
(ifAfI) so =Asov(=GA)srno=1)

(x:=y) so =oisthe same state as s, except that the x component equals y.

(x1A) so =(V s, 0% projx{s)=s A projx(o)=0 = A 5’0"), where projy is the
projection that drops the x component of the state, and takes
1 to itself. Thus | is the operator for variable introduction.

See figure 1 for an example which shows the relations for various actions. Note that if A fi

makes the relation defined by A total by relating states such that G(A)=false 1o L.

The idiom x | P(x) => A can be read "With a new x such that P(x) do A".

Actions: predicate transformer definition

w(l)p(skip, R) =R
w(l)p(loop, R) = false(true)
w(l)p(fail, R)
w()p(P— A,R) =-Pv w(l)p(A, R)

w(p(A [0 B, R) =w(l)p(A, R) A w()p(B, R)

w(p(A i B, R) =w(Dp(A, R) A (G(A) v w()p(B, R))
w(p(A ; B,R) =w(p(A, w(p(B, R))
wllp(x:=y,R) =R(x:y)

w()px|A,R) =V x: wl)p(A, R)

wp(if A fi, R) =wp(A,R) A G(A)

wip(if Afi, R) =wIp(A,R)

true

G(.) =
true

true

false

P A G(A)
G(A) v ¢(B)
GA) v G(B)
—~wp(A, ~G(B))
true

I x: G(A)
true

Tue

Programs as specifications

Following Lamport (1988) we say that a specification consists of

A state space, the cartesian product of a set of variables or state functions, divided
into interface and internal variables.

An inigal value for the state.

A set of atomic actions, divided into interface and internal actions, with the possible
state transitions for each action (the transition axioms).

A set of liveness axioms, written in some form of temporal logic. A treatment of
liveness is beyond the scope of these notes.

An implementation I satisfies the specification S if:
The interface variables of S and I are the same, and have the same initial values.

There is a function F from the state of I to the internal state of S (the abstraction function)
such that:

F takes the initial state of I to the initial internal state of S.

Every allowed transition of I when mapped by F is an allowed transition of S, or is the
identity on S.

The transition and liveness axioms of I mapped by F imply the liveness axioms of S.
Soda machine

We give a simple example (due to Lamport) of a soda machine with two specifications: a transi-
tion diagram of the kind familiar from textbooks on finite state automata, and a program. It is not
hard to show that the second one is an implementation of the first; the second is annotated on the
right with the function F, The reverse is also true, but for reasons which are beyond the scope of
these notes.

We indicate the interface variables and actions by underlining them.

Transition diagram specification

dispense soda

deposit $ 0.50
Program specification
interface depositCoin ...;
ispenses .
var x: {0, 25, 50};
y: (25, 50);
o: do (x:=0)

B: do(x<50)—>

Y. {y = depositCoin
; Xx+y <50 — skip)

o i (xi=x+y)
od
e { dispenseSoda)
od
Notation

Abstraction
function

if at(a)—

0 a@)—

0 at(y—

0 a®-

0O at(e)—
fi

F

1

if x=0—

0 x=25-
0 x=50—
if x=0—

0 x=25—-
0 x=50—
fi

if x+y=25-
0 x+y=50—-
O x+y=75-
fi

In writing the specifications and implementations, we use a few fairly standard notations.

If T is a type, we write ¢, ¢, 11 etc. for variables of type T.

If ¢y, ..., cp are constants, {cy, ..., g} is the enumeration type whose values ure the ¢;.

IfT andk U are types, T @ U is the disjoint union of T and U. If ¢ is a constant, we writc T ® ¢
“forT @ (c}.

If T and U are types, T — U is the type of functions from T to U; the overloading with the — of
guarded commands is hard to avoid. If fis a function, we write f{x) or f [x] for an application of
£, and f |x) := y for the operation that changes f [x] to y and leaves f the same elsewhere. If fis

undefined at x, we write f[x] = L.

If T is a type, sequence of T is the type of all sequences of elements of T, including the empty
sequence. T is a subtype of sequence of T. We write s |l s” for the concatenation of two se-

quences, and A for the empty sequence.

{ A) is an atomic action with the same semantics as A in isolation.

Memory

Simple memory

Here is a specification for simple addressable memory.

type A, address
D; daa

var m:A-D; memory

Read(a, var d) = {(d:=ma])

Write(a, d) = (mla]l:=d)

(d':=mla]; m[a] :=d)

Swap(a, d, var d’)
Cache memory

Now we look at an implementation that uses a write-back cache. The abstraction function is
given after the variable declarations. This implementation maintains the invariant that the number
of addresses at which ¢ is defined is constant; for a hardware cache the motivation should be
obvious. A real cache would maintain a more complicated invariant, perhaps bounding the
number of addresses at which ¢ is defined.

LA

type A address
D; daa

var m:A-D; main memory
c :A->D&l; cache (partial)

abstraction function

1]

mgimpiclal : d if clal]zLl—d:=cla]

X d:=mla]

fi
dirty(a): BOOL = c[a] # L A cla] # m[a]
FlushOne = alclal # L — dodirtyla]l - mla] := c[a] od; cla] == L
Load(a) = (doc[a] =1 — FlushOne; c[a] := m[a) od)
Read(a, var @) = Load(a); (d:=c[a])
Write(a, d) = (ifcla] = L — FlushOne [skipfi); (cla] :=d)
Swap (a, d, var d’) = Load(a); (d’':=c[al; c[a] :=d)

Coherent cache memory

Here is a more complex implementation, suitable for a multiprocessor in which each processor
has its own write-back cache. We still want the system to behave like a single shared memory.
Again, the abstraction function follows the variables. Correctness depends on the invariant at the
end. This implementation is some distance from being practical; in particular, a practical one
would have shared and dirty as variables, with invariants relating their values to the definitions
given here.

We write ¢p instead of ¢[p] for readability.

type A; address
D, data
P; processor

var m:A-D; main memory
c:P5A-D®1; caches (partial)

abstraction function

if dp: cp[a] #1— di=cpla]
M d = mla]
fi

msimple[fl] 0d

shared(a): BOOL Ap,qcplal#Lacglal# Lap#gq

dirty (a): BOOL Ap: cplal# L A cplal # mla]

Load(p, a) = docpla]l=1—-
FlushOne(p)
; if (glcglalzLl— cplal :=c4lal)
[(cplal :=mlal)
fi
od
FlushOne(p) = al¢glal#L—
{ do —shared[a) A dirtyla] — mla) := cpla] od)
o cp[a] =1
Read(p, a, vard) = Load(p, a); (d :=cplal)
Write(p, a, d) = if ¢pla) = L — FlushOne(p) [g skip fi
; { cpla)i=d
; dogicglal # L Acglal # cplal— cqlal = cpla] od
)

Swap (p,a,d,vard’) = Load(p, a);{d’:=cplal; Write(p, a, d))
Invariant

cplal # L Acglal # L= cplal = cqla]

Write-buffered memory

We now turn to a memory with a different specification. This is not another implementation of
the simple memory specification. In this memory, each processor sees its own writes as it would
in a simple memory, but it sees only a non-deterministic sampling of the writes done by other
processors. A FlushAll operation is added to permit synchronization.

The motivation for using the weaker specification is the possibility of building a faster processor
if writes don't have to be synchronized as closely as is required by the simple memory specifica-
tion. After giving the specification, we show how to implement a critical section within which
variables shared with other processor can be read and written with the same results that the sim-
ple memory would give.

type A; address
D; daa
P; processor
var m:A-D; main memory
b:PoA-DDL; buffers (partial)
Flush(p, a) = bpla] # L — (mla] :=bplal);{bpla] := L)
FlushSome = p, alFlush(p, a); FlushSome
O skip
Read(p, a, var d) = if { bplal =L — d:=mla])
O (qlbglal #L— d:=bya))
fi
Write(p, a, d) = (bpla):=d)

Swap (p,a,d,vard’) = FlushSome; (d’:=m[a]; m[a) :=d)

FlushAll(p) do a | Flush(p, a) od

Critical section

We want to get the effect of an ordinary critical section using simple memory, so we write that as
a specification (the right-hand column below). The implementation (the left-hand column below)
uses buffered memory to achieve the same effect. Provided the non-critical section doesn't
reference the memory and the critical section dogsn't reference the lock, a program using
buffered memory with the left-hand implementation of mutual exclusion has the same semantics
as (as a relation, is a subset of) the same program using simple memory with the standard right-
hand implementation of mutual exclusion. To nest critical sections we use the usual device:
partition A into disjoint subsets, each protected by a different lock.

var m: A-—D; Multiple write-buffered memory
» b PoA->D &1;)
This version is still weaker, since each processor keeps a sequence of all its writes to each loca-
const [:= the address of a location to be used as a lock tion rather than just the last one. Again, the motivation is to allow a higher-performance imple-

mentation, by increasing the amount of buffering at the expense of more non-determinism. The

abstraction function
= if plbylal #1L > d:=pla]

same critical section works.

mSimPIC[a] rd d=mid] type A; address
g =mla D daa
fi
P; processor

E = sequence of D;

Implementation Specification var m:A—-D; main memory

(using buffered memory) (using simple memory) b:PoA-SE; buffers

dodp| dodyl Flush(p, a) = d,elbpla] =dlle— {mla] :=d);{byla] :=¢)
ap: (dp:=1) (dp:=1)
ﬁpi . do(dp # 0) - . do(dp# 0) — FlushSome = p,-a | Flush(p, a); FlushSome
Voo Swap(p, I, 1, dp) Swap(l, 1, dp) [J skip

od . od Read(p, a): d = if (bplal = A = d:=mlal)
8p: 3 critical section i critical section del b —erlld'll
: ; FlushAll(p) O(qend ez qlal = el e

& . . A (gtp vea=A) —d:=d)
Kp: ;3 Write(p, [, 0) s Write(, 0) fi
kp: s non-critical section s non-critical section

od od Write(p, a, d) = (bpla] :=bpla] Il d)
initially Vp,a:bplal =L ,m[l] =0
assume Swap (p, a,d): d’ = FlushSome; (d’ := m[a]; mla] :=d)

A e Iyl = Aindependent of m : no Read, Write or Swap in A
Ae ISPI => A independent of m[[]: no Read, Write or Swap(p, /,...) in A

The proof depends on the following invariants for the implementation.
Invariants

¢)) CSp=> (~CSqvp=q)
A m[ll#0
A byfl1#0
where CSp, = in(8exp) v (at(Bp) Adp=0)

@ —in@ep) A al=>bylal=L

FlushAll(p)

= do a | Flush(p, a) od

|
Transactions Msimple = m
This example describes the characteristics of a memory that provides transactions so that several Abort,() =(doalla] # L— m[a] :=l[a); l{a] := L od); x := abort
writes can be done atomically with respect to failure and restart of the memory. The idea is that .
the memory is not obliged to remember the writes of a transaction until it has accepted the trans- Begin,0 = doallfal#1-(lfa]:=1)od
ion'] i i discard the writ d indicate that the transaction has aborted.
action's commit; until then it may discard the writes and indicate that the tra n h Orte Read(a, vard,varx) = (d:=mla]} x:= ok
A real transaction system also provides atomicity with respect to concurrent accesses by other [Abort
transactions, but this elaboration is beyond the scope of these notes.)
Write/(a, d, var x) = dolfa]l =1 — (l]a) :=m[a]) od; { m[a):=d); x := ok
We write Proc(...) for Proc(s, ...) and /; for /[z]. [] Abort
type A; address Commit,(var x) = x:=ok
D; data [] Abort
T, transaction
X = {ok, abort}; Compare this abstraction function with the one for the cache memory.
var m:A—D; memory Redo implementation
b:T 5A-D; backup This is the other standard implementation: the writes are remembered and done in the memory
) = ab only at commit time. Essentially the same work is done as in the undo version, but in different
Abart = (m:=by) ;x:=abon places; notice how similar the code sequences are.
Begin/() = (b=m) var m:A—-D; memory
Read((a, vard,varx) = (d:=mla]) ;x:=ok I :T5>A-D®L log
[Abort abstraction function
Write,(a, d, var x) = (mla]:=d) ;x:=o0k by = m
[J Abort msimplelal: d = ifrlifal#L = d:=l[a]
M d :=m[a)
Commit,(var x) = x:=0k ‘ fi
[J Abort
Abort = x:=abort
Undo implementation
) Begin,() = doallfal# 1> (Ilfa]:=1)o0d
This is one of the standard implementations of the specification above: the old memory values are dla] (lda])
remembered, and restored in case of an abort. Readi(a,vard,varx) = iflfal# L —d:=1Ifa) B(d:=mla])fi;x :=ok
Abo
var m:A—-D; memory 0 mt
| :T5A->D&1; log Write/(a, d, var x) = Ifal:=d;x:=0k
[J Abort
abstraction function
blal: d = iflfal#L > d:=1[a) Commit,(var x): = (doalla]l # L- mla] :=Ifa); lfa] := L od);x:=ok
X d :=mla) [Abort
fi

Undo version with non-atomic abort

Note the atomicity of commit in the redo version and abort in the undo version; a real implemen-

tation gets this with a commit record, instead of using a large atomic action. Here is how it goes
for the undo version.

var m: A-D; memory
l]: ToA-D®L; log
ab: T —BOOL; aborted

abstraction function

bla):d = iflfal# L - d:=l[a]
7| d :=mlal
fi
msimplelal: d = iftlabiAla)l =L —>d:=l][a]
N d = mla]
fi
Abort,() = {(ab;:=true)
o doal{Lfal#L)Y—> (mlal:=1l{a]);{lla]:=1) od
; x:=abort
Beginy() = ab;:=false;doa | lfa]# L — (lfa]:=L)od
Read/(a, var d,varx) = —ab;—(d:=mla]),x:=o0k
[J Abort
Write(a, d, var x) = —ab;— do Ij[a] = L — (Ia] := m[a)) od; { m[a]:=d); x := ok
[d Abort
Commit,(var x) = —ab;—x:=o0k
[Abort

Name service

This section describes a tree-structured storage system which was designed as the basis of a
large-scale, highly-available distributed name service. After explaining the properties of the ser-
vice informally, we give specifications of the essential abstractions that underlie it.

A name service maps a name for an entity (an individual, organization or service) into a set of la-

beled properties, each of which is a string. Typical properties are
password=XQE$#

mailboxes={Cabemnet, Zinfandel}

network address=173#4456#1655476653
distribution list={ Birrell, Needham, Schroeder}

A name service is not a general database: the set of names changes slowly, and the properties
given name also change slowly. Furthermore, the integrity constraints of a useful name servic
are much weaker those of a database. Nor is it like a file directory system, which must create .
look up names much faster than a name service, but need not be as large or as available. Eithe
database or a file system root can be named by the name service, however.

Figure 2: The tree of directory values

A directory is not simply a mapping from simple names to values. Instead, it contains a tree o1
values (see Figure 2). An arc of the tree carries a name (N), which is just a string, written nex
the arc in the figure. A node carries a timestamp (S), represented by a number in the figure, a
mark which is either present or absent. Absent nodes are struck through in the figure. A path
through the tree is defined by a sequence of names (A); we write this sequence in the Unix sty
e.g., Lampson/Password. For the value of the path there are three interesting cases:

+ If the path a/n ends in a leaf that is an only child, we say that n is the value of a. This rule

applies to the path Lampson/Password/XGZQ#$3, and hence we say that XGZQ#$3 is
value of Lampson/Password.

« If the path a/n; ends in a leaf that is not an only child, and its siblings are labeled n...nz, we
say that the set {n]...ng} is the value of a. For example, {Zin, Cab, Ries, Pinot} is the val
of Lampson/Mailboxes.

» If the path a does not end in a leaf, we say that the subtree rooted in the node where it ends i
the value of a. For example, the value of Lampson is the subtree rooted in the node with
timestamp 10.

An update to a directory makes the node at the end of a given path present or absent. The upda
is timestamped, and a later timestamp takes precedence over an earlier one with the same path.

The subtleties of this scheme are discussed later; its purpose is to allow the tree to be updated
concurrently from a number of places without any prior synchronization.

A value is determined by the sequence of update operations which have been applied to an initial
empty value. An update can be thought of as a function that takes one value into another.
Suppose the update functions have the following properties:

+ Total: it always makes sense to apply an update function.
+ Commutative: the order in which two updates are applied does not affect the result.
¢ Idempotent: applying the same update twice has the same effect as applying it once.

Then it follows that the set of updates that have been applied uniquely defines the state of the
value.

It can be shown that the updates on values defined earlier are total, commutative and idempotent.
Hence a set of updates uniquely defines a value. This observation is the basis of the concurrency
control scheme for the name service. The right side of Figure 3 gives one sequence of updates
which will produce the value on the left.

P Lampson:4/Password:11/UI0&6Z:12
P Lampson:10

P Birrell:11

A Schroeder:12

P Lampson:10/Mailboxes:13

P Lampson:10/Password:14

P Lampson:10/Mailboxes:13/Zin:17

P Lampson:10/Mailboxes:13/Cab:17

A Lampson:10/Mailboxes:13/Pinot:18
P Lampson:10/Mailboxes:13/Ries:19
P Lampson:10/Password:14/XGZQ#$:22

Figure 3: A possible sequence of updates

The presence of the timestamps at each name in the path ensures that the update is modifying the
value that the client intended. This is significant when two clients concurrently try to create the
same name. The two updates will have different timestamps, and the earlier one will lose. The
fact that later modifications, e.g. to set the password, include the creation timestamp ensures that
those made by the earlier client will also lose. Without the timestamps there would be no way to
tell them apart, and the final value might be a mixture of the two sets of updates.

The client sees a single name service, and is not concerned with the actual machines on which it
is implemented or the replication of the database which makes it reliable. The administrator
allocates resources to the implementation of the service and reconfigures it to deal with long-term
failures. Instead of a single directory, he sees a set of directory copies (DC) stored in different

servers. Figure 4 shows this situation for the DEC/SRC directory, which is stored on four
servers named alpha, beta, gamma, and delta. A directory reference now includes a list of
the servers that store its DCs. A lookup can try one or more of the servers to find a copy from
which to read.

Lampson 10 Lampson 10 Lampson 10 Lampson 10
Birrell 12 Schroeder14 Birrell 12
: Brooosarny, Needham 11

S

Figure 4: Directory copies

The copies are kept approximately, but not exactly the same. The figure shows four updates to
SRC, with timestamps 10, 11, 12 and 14. The copy on delta is current to time 12, as indicate
by the italic 12 under it, called its lastSweep field. The others have different sets of updates, bu
are current only to time 10. Each copy also has a next§ value which is the next timestamp it wil
assign to an update originating there; this value can only increase.

An update originates at one DC, and is initially recorded there. The basic method for spreading
updates to all the copies is a sweep operation, which visits every DC, collects a complete set of
updates, and then writes this set to every DC. The sweep has a timestamp sweepS, and before |
reads from a DC it increases that DC's nextS to sweepS; this ensures that the sweep collects all
updates eartlier than sweepS. After writing to a DC, the sweep sets that DC's lastSweep to
sweepS. Figure 5 shows the state of SAC after a sweep at time 14.

DEC

alpha 3
14 14 74 14

Lampson 10 Lampson 10 Lampson 10 Lampson 10
Needham 11 Needham 11 Needham 11 Needham 11
Birrell 12 Birrell 12 Birrell 12 Birrell 12
Schroeder14 Schroeder14 Schroeder 14 Schroeder 14

J

Figure 5: The directory after a Sweep

~

In order to speed up the spreading of updates, any DC may send some updates to any other DC
in a message. Figure 4 shows the updates for Birrell and Needham being sent to server beta.
Most updates should be distributed in messages, but it is extremely difficult to make this method
fully reliable. The sweep, on the other hand, is quite easy to implement reliably.

A sweep's major problem is to obtain the set of DCs reliably. The set of servers stored in the
parent is not suitable, because it is too difficult to ensure that the sweep gets a complete set if the
directory's parent or the set of DCs is changing during the sweep. Instead, all the DCs are linked
into a ring, shown by the fat arrows in figure 6. Each arrow represents the name of the server to
which it points. The sweep starts at any DC and follows the arrows; if it eventually reaches the
starting point, then it has found a complete set of DCs. Of course, this operation need not be
done sequentially; given a hint about the contents of the set, say from the parent, the sweep can
visit all the DCs and read out the ring pointers concurrently.

DEC

Figure 6: The ring of directory copies

DCs can be added or removed by straightforward splicing of the ring. If a server fails
permanently, however (say it gets blown up), or if the set of servers is partitioned by a network
failure that lasts for a long time, the ring must be reformed. In the process, an update will be lost
if it originated in a server that is not in the new ring and has not been distributed. The ring is
reformed by starting a new epoch for the directory and building a new ring from scratch, using
the DR or information provided by the administrator about which servers should be included. An
epoch is identified by a timestamp, and the most recent epoch that has ever had a complete ring is
the one that defines the contents of the directory. Once the new epoch's ring has been
successfully completed, the ring pointers for older epochs can be removed. Since starting a new
epoch may change the database, it is never done automatically, but must be controlled by an
administrator.

Distributed writes

Here is the abstraction for the name service's update semantics. The details of the tree of values
are deferred until later; this specification depends only on the fact that updates are total,
commutative and idempotent. We begin with a specification that says nothing about multiple
copies; this is the client's view of the name service. Compare this with the write-buffered
memory.

type \'A value
U=V-oYV; update, assumed total,
commutative, and idempotent

W = set of U; updates "in progress”
var m:V; memory

bW, buffer
AddSome(var v) = ulue baul)#v—-v:=ulv); AddSome(v)

O skip
Read(var v) = {(v:=m; AddSome(v))
Update(u) = {(b=bu{u})
Sweep() = {(doulue b—-m:=u(m);b:=b—{u} od)

Update and Sweep were called Write and Flush in the specification for buffered writes. This dif-
fers in that there is no ordering on b, there are no updates in b that a Read is guaranteed (o see,
and there is no Swap operation.

You might think that Sweep is too atomic, and that it should be written to move one u from b to
m in each atomic action. However, if two systems have the same b U m, the one with the smaller
b is an implementation of the one with the larger b, so a system with non-atomic Sweep imple-
ments a specification with atomic Sweep.

We can substitute distinguishable for idempotent and ordered for commutative as properties of
updates. AddSome and Sweep must be changed to apply the updates in order. If the updates are
ordered, and we require that Update's argument follows any update already in m, then the
boundary between m and b can be defined by the last update in m. This is a conveneint way to
summarize the information in b about how much of the state can be read deterministically. In the
name server application the updates are ordered by their timestamps, and the boundary is called
last Sweep.

2

N-copy version

Now for an implementation that makes the copies visible. It would be neater to give each copy
its own version of m and its own set b of recent updates. However, this makes it quite difficult
to define the abstraction function. Instead, we simply give each copy its version of b, and define
m to be the result of starting with an initial value vp and applying all the updates known to every
copy. To this end the auxiliary function apply turns a set of updates w into a value v by applying
all of them to vp.

type V; value
U=V-YV; update, assumed total,
commutative, and idempotent

W =set of U; updates "in progress”

P; processor
var b:PoW, buffers
Abstraction function
Msimple = apply(M bl p])

peP
bsimple = Ublpl- Mblp]
peP pEeEP

In other words, the abstract m is all the updates that every processor has, and the abstract b is all
the updates known to some processor but not to all of them.

apply(w): v = vi=yg,doulue wovi=uW)w:=w- (ujod

Read(p, var v) = apply(b[p])

Update(p, u) = (blp]:=blplu (u})
Sweep() = wl (w:= b:b[P”

; dopuluewnueblpl- (blp] :=blp]u (4})od

Since this meant to be viewed as an implementation, we have given the least atomic Sweep,
rather than the most atomic one. Abstractly an update moves from b to m when it is added to the
last processor that didn't have it already.

Tree memory

Finally, we show the abstraction for the tree-structured memory that the name service needs. To
be used with the distributed writes specification, the updates must be timestamped so that they
can be ordered. This detail is omitted here in order to focus attention on the basic idea.

We use the notation:x <y for x#y — x:=y. This allows us to copy a tree from v’ to v with
the idiom

do alv[a] « va] od
which changes the function v to agree with v’ at every point. Recall also that Il stands for
concatenation of sequences; we use sequences of names as addresses here, and often need to
concatenate such path names.

type N; name
D; data
A = sequence of N; address
V=A-D®&l; tree value
var m:V; memory
Read(a, varv) = {(doa'lv[a’]l &« m[alla]od)
‘Write(a, v) = (doa'lmlalla] < vialod)
Write(a, d) = vl Va:v[al =1 — v[A] =d; Write(a, v)

Read copies the subtree of m rooted at a to v. Write(a, v) makes the subtree of m rooted at a
equal to v. Write(g, d) sets m[a] to d and makes undefined the rest of the subtree rooted at m.

Timestamped tree memory

We now introduce timestamps on the writes, in fact more of them that are needed to provide
write ordering. The name service uses timestamps at each node in the tree to provide a poor
man's ransactions: each point in the memory is identified not only by the a that leads to it, but
also by the timestamps of the writes that created the path to a. Thus conflicting use of the same
names can be detected; the use with later timestamps will win. Figure 3 above shows an
example.

We show only the write of a single value at a node identified by a given timestamped address b.
The write fails (returning false in x) unless the timestamps of all the nodes on the path to node b
match the ones in b. We write m[a].d and m{a].s for the d and s components of m[a].

type N; name
D; data
S; timestamp
A = sequence of N; address

tree value
address with timestamps

V=A-5DxS) &l
B = sequence of (N x S);

var m:V; memory

Read(a, varv) = (doa’'lv[al < ml[allaod)

= (al forall i<length(b): a[i] = b[i]l.n —
if for all O<i<length(b), m[a[l..i]].s = bli]l.s =
doa'Imlallal « Lod
;i mla] := (d, bllength(b)].s)
7 X:=true
M x:=false
fi

Write(b, d, var x)

)

The ordering relation on writes needed by the distributed writes specification is determined by the
timestamped address:

by<by= 3 i<length(by): j<i = b1ljl=b2[j] A bilil.n=bali).n A by[il.s<balil.s

In other words, by<b; if they match exactly up to some point, they have the same name at that
point, and by has the smaller timestamp at that point. This rule ensures that a write to a node near
the root takes precedence over later writes into the subtree rooted at that node with an earlier
timestamp. For example, Lampson:10 takes precedence over Lampson:4/Password:11.

Threads

The specification below for thread (or process) synchronization primitives is transcribed from
(Birrell 1987), where it was expressed in the Larch specification language. Except for alerts, i
constructs should be familiar, although in some cases the meaning varies slightly from the liter:
ture. A condition variable is a substitute for busy waiting: a process waits there until a Broadca
is done to the condition, or enough Signals. An alert is an indication to a thread that it should
look around; it is delivered only after an AlertWait. Thus a thread which computes indefinitely
without ever waiting on a condition or executing TestAlert will not notice the alert.

type

var

Acquire(var m)

Release(var m)

Wait(var m, var c)

Signal(var ¢)

Broadcast(var ¢)

P(var s)

V(var s)

Alen()

TestAlent(): b

T, thread
M =T @ nil; mutex
S = {busy, free}; semaphore
C =set of T; condition
a:set of T; alerted threads
self: T the thread doing the operation
= (m=nil > m:=self)
= (ifm# self = chaos
K m:=ni
fi)
= (ifm# self = chaos
M c:=cu (self}; m:=nil
fi)
i { m=nilA-selfe ¢ & m:=self)
= (ifc=(}— skip
Oc'leoce 2eci=c
fi
)
= { c:=(})
= (s=free - s:=busy)
= (s:=free)
= (a=avuf})

b:=(self € a); a:=a- (self})

AlertP(var s): b = (s=free —os:= busy; b :=false
[selfea —a:=a-(self); b:=true

)

AlentWait(var m, var c): b
= ifm# self - chaos
M (ci=cu{self};m:=nil)
fi

i (m=nil-o
m = self
: —selfe ¢ = b:=false
0 selfea — b:=true
;€= — {self}
; a:=a- {self}

)

For comparison, we give the original Larch version of Wait:
type Condition = set of Thread initially {}

procedure Wait(var m: Mutex; var c: Condition)
= composition of Enqueue, Resume end
requires m = self
modifies at most [m, ¢]

atomic action Enqueue
ensures (cpos=insert(c, self)) A (mpost = nil)

atomic action Resume
when (m =nil) A —(self € ¢)
ensures mpog = self & unchanged [¢]

References

A. Birrell et. al. (1987). Synchronization primitives for a multiprocessor: A formal specification
ACM Operating Systems Review 21(5): 94-102.

E. Dijkstra (1976). A Discipline of Programming. Prentice-Hall,

L. Lamport (1988). A simple approach to specifying concurrent systems. Technical report 15
(revised), DEC Systems Research Center, Palo Alto. To appear in Comm. ACM, 1988.

L. Lamport (1983). Specifying concurrent program modules. ACM Transactions on Program-
ming Languages and Systems, 5(2): 190-222.

L. Lamport and F. Schneider (1984). The "Hoare logic" of CSP, and all that. ACM Transaction:
on Programming Languages and Systems, 6(2): 281-296.

B. Lampson (1986). Designing a global name service. Proc. 4th ACM Symposium on Principles
of Distributed Computing, Minaki, Ontario, pp 1-10.

G. Nelson (1987). A generalization of Dijkstra's calculus. Technical report 16, DEC Systems
Research Center, Palo Alto.

