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1 Requirements for Security

Organizations and people that use computers can describe their needs for information security
under four major headings:

secrecy2: controlling who gets to read information;

integrity: controlling how information changes or resources are used;

accountability: knowing who has had access to information or resources;

availability: providing prompt access to information and resources.

Each user of computers must decide what security means to him. For example, a defense agency
is likely to care more about secrecy, a commercial firm more about integrity of assets. A
description of the user’s needs for security is called a security policy. A system that meets those
needs is called a secure system.

Since there are many different sets of needs, there can’t be any absolute notion of a secure
system. An example from a related field may clarify this point. We call an action legal if it meets
the requirements of the law. Since the law is different in different jurisdictions, there can’t be any
absolute notion of a legal action; what is legal under the laws of Britain may be illegal in the US.

Having established a security policy, a user might wonder whether it is actually being carried out
by the complex collection of people, hardware, and software that make up the information
processing system. The question is: can the system be trusted to meet the needs for security that
are expressed by the policy?  If so, we say that the system is trusted3. A trusted system must be
trusted for something; in this context it is trusted to meet the user’s needs for security. In some
other context it might be trusted to control a shuttle launch or to retrieve all the 1988 court
opinions dealing with civil rights. People concerned about security have tried to take over the
word “trusted” to describe their concerns; they have had some success because security is the
area in which the most effort has been made to specify and build trustworthy systems.

Technology is not enough for a trusted system. A security program must include other
managerial controls, means of recovering from breaches of security, and above all awareness and
acceptance by people. Security cannot be achieved in an environment where people are not
committed to it as a goal. And even a technically sound system with informed and watchful
management and users cannot dispel all the risk. What remains must be managed by surveillance,
auditing, and fallback procedures that can help in detecting or recovering from failures.

The rest of this section discusses security policies in more detail, explains how they are arrived
at, and describes the various elements that go to make up a trusted system.

                                                
1 This description of requirements and technology for computer security was written for the National Research
Council report on computer security [NRC 1991]. Much of this material appears there in a revised form.
2 Often called ’confidentiality’, a seven syllable jawbreaker.
3 Perhaps we ought to say that it is trustworthy, but we don’t.
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1.1 Policies and controls

The major headings of secrecy, integrity, availability, and accountability are a good way to
classify security policies. Most policies include elements from all four categories, but the
emphasis varies widely. Policies for computer systems generally reflect long-standing policies for
security of systems that don’t involve computers. The defense community is most concerned with
secrecy, the commercial data processing community with integrity and accountability, the
telephone companies with availability. Obviously integrity is also important for national security:
an intruder should not be able to change the sailing orders for a carrier, and certainly not to cause
the firing of a missile or the arming of a nuclear weapon. And secrecy is important in commercial
applications: financial and personnel information must not be disclosed to outsiders.
Nonetheless, the difference in emphasis remains.

A different classification of policies has to do with who can modify the rules. With a mandatory
policy most of the rules are fixed by the system or can be changed only by a few administrators.
With a discretionary policy the owner of a resource in the system can make the rules for that
resource.  What kind of policy is appropriate depends on the nature of the system and the threats
against it; these matters are discussed in the next section.

People have also developed a set of tools that are useful for enforcing policies. These tools are
called ‘management controls’ by businessmen and accountants, ‘security services’ by
technologists, and they go by different names although they have much the same content.

Control Service Meaning

Individual
accountability

Authentication Determining who is responsible for a request or
statement, whether it is “the loan rate is 10.3%”
or “read file ‘Pricing’” or “launch the rocket”.

Separation of
duty

Authorization
(a broader term)

Determining who is trusted for a purpose:
establishing a loan rate, reading a file, or
launching a rocket.
Specifically, trusting only two different people
when they act together.

Auditing Auditing Recording who did what to whom, and later
examining these records.

Recovery —4 Finding out what damage was done and who did
it, restoring damaged resources, and punishing
the offenders.

The rest of this section discusses the policies in more detail and explains what the controls do
and why they are useful.

1.1.1.1 Secrecy

Secrecy seeks to keep information from being disclosed to unauthorized recipients. The secrets
might be important for reasons of national security (nuclear weapons data), law enforcement (the
identities of undercover drug agents), competitive advantage (manufacturing costs or bidding
plans), or personal privacy (credit histories).

                                                
4 Technologists usually don’t consider recovery to be a security service.
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The most highly developed policies for secrecy reflect the concerns of the national security
community, because this community has been willing to pay to get policies defined and
implemented5. This policy is derived from the manual system for handling information that is
critical to national security. In this system information is classified at levels of sensitivity and
isolated compartments, and people are cleared for access to particular levels and/or
compartments. Within each level and compartment, a person with an appropriate clearance must
also have a “need to know” in order to get access. The policy is mandatory: elaborate procedures
must be followed to downgrade the classification of information.

It is not hard to apply this policy in other settings. A commercial firm, for instance, might have
access levels such as restricted, company confidential, unclassified, and categories such as
personnel, medical, toothpaste division, etc. Significant changes are usually needed because the
rules for downgrading are usually quite relaxed in commercial systems.

Another kind of secrecy policy, more commonly applied in civilian settings, is a discretionary
one: every piece of information has an owner who can decide which other people and programs
are allowed to see it. When new information is created, the creator chooses the owner. With this
policy there is no way to tell where a given piece of information may flow without knowing how
each user and program that can access the information will behave. It is still possible to have
secrecy, but much more difficult to enforce it.

There is lots more to be said about privacy.

1.1.1.2 Integrity

Integrity seeks to maintain resources in a valid and intended state. This might be important to
keep resources from being changed improperly (adding money to a bank account) or to maintain
consistency between two parts of a system (double-entry bookkeeping). Integrity is not a
synonym for accuracy, which depends on the proper selection, entry and updating of information.

The most highly developed policies for integrity reflect the concerns of the accounting and
auditing community for preventing fraud. A classic example is a purchasing system. It has three
parts: ordering, receiving, and payment. Someone must sign off on each step, the same person
cannot sign off on two steps, and the records can only be changed by fixed procedures, e.g., an
account is debited and a check written only for the amount of an approved and received order.

1.1.1.3 Accountability

In any real system there are many reasons why actual operation will not always reflect the
intentions of the owners: people make mistakes, the system has errors, the system is vulnerable to
certain attacks, the broad policy was not translated correctly into detailed specifications, the
owners change their minds, etc. When things go wrong, it is necessary to know what has
happened: who has had access to information and resources and what actions have been taken.
This information is the basis for assessing damage, recovering lost information, evaluating
vulnerabilities, and taking compensating actions outside the system such as civil suits or criminal
prosecution.

                                                
5 They are embodied in Department of Defense Directive 5200.28, also known as the Orange Book [ref DoD 1985],
a document which specifies policy for safeguarding classified information in computer systems.
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1.1.1.4 Availability

Availability6 seeks to ensure that the system works promptly. This may be essential for operating
a large enterprise (the routing system for long-distance calls, an airline reservation system) or for
preserving lives (air traffic control, automated medical systems). Delivering prompt service is a
requirement that transcends security, and computer system availability is an entire field of its
own. Availability in spite of malicious acts and environmental mishaps, however, is often
considered an aspect of security.

An availability policy is usually stated like this:

On the average, a terminal shall be down for less than ten minutes per month.

A particular terminal (e.g., an automatic teller machine, a reservation agent’s keyboard and
screen, etc.) is up if it responds correctly within one second to a standard request for service;
otherwise it is down. This policy means that the up time at each terminal, averaged over all the
terminals, must be at least 99.9975%.

Such a policy covers all the failures that can prevent service from being delivered: a broken
terminal, a disconnected telephone line, loss of power at the central computer, software errors,
operator mistakes, system overload, etc. Of course, to be implementable it must be qualified by
some statements about the environment, e.g. that power doesn’t fail too often.

A security policy for availability usually has a different form, something like this:

No inputs to the system by any user who is not an authorized administrator shall cause any
other user’s terminal to be down.

Note that this policy doesn’t say anything about system failures, except to the extent that they can
be caused by user actions.  Also, it says nothing about other ways in which an enemy could deny
service, e.g. by cutting a telephone line.

1.1.1.5 Individual accountability (authentication)

To answer the question “Who is responsible for this statement?” it is necessary to know what sort
of entities can be responsible for statements. These entities are (human) users or (computer)
systems, collectively called principals. A user is a person, but a system requires some
explanation. A computer system is comprised of hardware (e.g., a computer) and perhaps
software (e.g., an operating system). Systems implement other systems, so, for example, a
computer implements an operating system which implements a database management system
which implements a user query process. As part of authenticating a system, it may be necessary
to verify that the system that implements it is trusted to do so correctly.

The basic service provided by authentication is information that a statement was made by some
principal. Sometimes, however, there’s a need to ensure that the principal will not later be able to
claim that the statement was forged and he never made it. In the world of paper documents, this
is the purpose of notarizing a signature; the notary provides independent and highly credible
evidence, which will be convincing even after many years, that the signature is genuine and not
forged. This aggressive form of authentication is called non-repudiation.

                                                
6 Often called ’preventing denial of service’.
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1.1.1.6 Authorization and separation of duty

Authorization determines who is trusted for a given purpose. More precisely, it determines
whether a particular principal, who has been authenticated as the source of a request to do
something, is trusted for that operation. Authorization may also include controls on the time at
which something can be done (only during working hours) or the computer terminal from which
it can be requested (only the one on the manager’s desk).

It is a well established practice, called separation of duty, to insist that important operations
cannot be performed by a single person, but require the agreement of (at least) two different
people. This rule make it less likely that controls will be subverted because it means that
subversion requires collusion.

1.1.1.7 Auditing

Given the reality that every computer system can be compromised from within, and that many
systems can also be compromised if surreptitious access can be gained, accountability is a vital
last resort. Accountability policies were discussed earlier --e.g., all significant events should be
recorded and the recording mechanisms should be nonsubvertible. Auditing services support
these policies. Usually they are closely tied to authentication and authorization, so that every
authentication is recorded as well as every attempted access, whether authorized or not.

The audit trail is not only useful for establishing accountability. In addition, it may be possible to
analyze the audit trail for suspicion patterns of access and so detect improper behavior by both
legitimate users and masqueraders. The main problem however, is how to process and interpret
the audit data. Both statistical and expert-system approaches are being tried [Lunt 1988].

1.1.1.8 Recovery

Need words here.

1.2 Choosing a policy

Ideally a comprehensive spectrum of security measures would ensure that the secrecy, integrity,
accountability, and availability of computer-based systems are appropriately maintained. In
practice it is not possible to make iron-clad guarantees. For most users and organizations, very
high levels of defense against every possible threat are not cost-effective (or even feasible,
because they interfere with normal operations). Each user must evaluate his needs and establish a
suitable policy.

Organizations and people confront a wide range of risks every day: natural disaster, business
fluctuations, insolvency, embezzlement, tort liability, and malicious mischief. Part of the job of
management is to manage and contain those risks, balancing inherent business risk and risks
taken explicitly in hopes of earning rewards against risks that can undermine the enterprise. At
this abstract level there is little new about computer security. Yet the scale, speed, reach,
mutability and invisibility of computer activity bring a need for a qualitatively different level of
planning and attention to assure safe operations. Computers magnify both the difficulties and the
opportunities for management controls and auditing.

How to do this:

Evaluate expected losses
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Find vulnerabilities (in users as well as systems).
Vulnerability + attack = threat (bad event)
Threat + cost of bad event = risk
Risk * probability of threat = expected loss

Find countermeasures.
What to they cost?

If countermeasure is available and costs less than expected loss, then it makes sense to
implement it.

Otherwise, make sure that adequate recovery is possible.

All this can’t be done very precisely: quantitative risk assessment of a myriad of qualitatively
different low-probability, high-impact risks has not been successful.

Ideally, controls will be instituted as the result of this kind of careful analysis. In practice, the
most important consideration is what controls are available. For instance, customers appear to
demand password-based authentication because it is available, not because analysis has shown
that this relatively weak mechanism provides enough protection. This effect works in both
directions: a service is not demanded if it isn’t available, but once it becomes available
somewhere, it soon becomes wanted everywhere.

Some consensus exists about rock-bottom security mechanisms. A recent informal survey shows
that nearly everyone wants the ability to identify users and limit times and places of access,
particularly over networks, and to watch for intrusion by logging attempts at invalid actions. Ad
hoc virus checkers, well known in the personal computer market, are also demanded. On the
other hand, there is no demand for system managers to be able to obtain positive confirmation
that the software running on their systems today is the same as what was running yesterday. Such
a simple analog of hardware diagnostics should be a rock-bottom requirement; probably it is not
seen as such because vendors don’t offer it.

Threats are different for different kinds of systems. To illustrate typical concerns, we consider the
threats for some generic categories of computer application: strategic, commercial, operational,
and general computing.

A strategic application is one that keeps high-value, perhaps unique information, the loss of
which entails high risk. The main need is secrecy: outsiders must be kept from learning what’s
stored in a system, and insiders must be kept from leaking it. National defense applications are
the classic examples: loss of secret could result in loss of lives or even a country. Risks are not so
great in business, where aggrieved firms may resort to the courts.

A commercial system is primarily concerned with the maintenance of voluminous similar
records, as in banking, personnel, inventory or purchasing systems. The main need is integrity of
assets and accountability.. Outsiders must be kept from stealing, and insiders must be kept from
misapplying money, goods, or services. Commercial systems have little opportunity to
automatically correct bad data; it comes to light only when it finally affects some person.

Operational applications are less concerned with records are more with the proper flow of
activity, as in air traffic control, telephone switching, chemical process control, or production
scheduling. These applications typically run in a closed-loop fashion: telephone calls, radar
echoes, or reactor temperatures are monitored continually, and occasional errors can be corrected
in the normal course of events. Thus integrity of the working records is not so important, but the
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integrity of the overall process is critical; this is governed by programs and configuration data
which describe the system environment. Availability is likely to be important also.

In a general computer system the computer serves as a resource which may be put to many uses,
running a mix of applications. This arrangement capitalizes on the synergy of close
communication among distinct applications and the convenience of using a single medium for
diverse purposes. Ready communication is more important than secrecy, and availability is not
critical. Integrity against disasters and outside interference is important, since months of work
can be lost or become untrustworthy. ‘Development’ systems, where software is created and
debugged for use elsewhere, fall into this category, though their security requirements often
follow from those of the ultimate application.

Security policies for general computation tend to be discretionary because of the variety of
applications and the need for communication. The other classes of system often need mandatory
policies so that management can exercise more control at the price of flexibility.

It is common to built strategic, commercial, or operational applications on general systems,
because no single application can justify all the development cost of a complete computer
system. Thus there is a tension between the general purposes of computers and the special
requirements of typical classes of applications. But as we have seen, broad classes of applications
have greatly overlapping needs, so systems can justifiably be expected to cater for a wide
spectrum of needs. This is especially true because the various classes of system shade into each
other. A telephone switching system (operational) gathers billing records (commercial).
Battlefield management (operational) depends on tactical plans (strategic) and also on materiel
logistics (commercial). A management information system may contain takeover plans (strategic)
and run electronic mail (operational).

2 Technology

This section describes the technology for protecting information and other resources controlled
by computer systems, and explains how it can be used to make such systems secure. It is a
reasonably complete survey of the entire subject at a high level. It explains the essential technical
ideas, gives the major properties of the techniques that are currently known, and tells why they
are important. A reader of this section will be equipped to understand the impact of technology
on secure computer systems.

Section 3 goes into more detail on a number of topics which are either fundamental or of special
current interest. Here the reader can learn how some important things work, gain some insight
into why they don’t work perfectly, and get an idea of how they may develop in the next few
years.

We discuss the technology of computer security under two major headings:

What do we mean by security?

How do we get it, and how do we know when we have it?

The first deals with specification of security and the services that computer systems provide to
support security. The second deals with implementation of security, and in particular how we
establish confidence that a system will actually provide the security the specifications promise.
Each topic gets space according to its importance for the overall goal of providing computer
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security, and not according to how much work has already been done on that topic. To make up
for this there is a concluding section that points out what technology is already in wide use, what
is ready for deployment, and what needs more research. The conclusion also highlights the topics
that are especially relevant to distributed and embedded systems.

The careful analysis here may seem tedious, but it is the only known way to ensure the security of
something as complicated as a computer system. Security is like ecology: It is not enough to
focus on the problem that caused trouble last month, because as soon as one weakness is
repaired, an adversary will shift his attack elsewhere.

2.1 Specification vs. implementation

The distinction between what the system does and how it does it, between specification and
implementation, is basic to the design and analysis of computer systems. A specification for a
system is the meeting point between the customer and the builder. It says what the system is
supposed to do. This is important to the builder, who must ensure that what the system actually
does matches what it is supposed to do. It is equally important to the customer, who must be
confident that what the system is supposed to do matches what he wants. It is especially critical
to know exactly and completely what the system is supposed to do about security, because any
mistake can be exploited by a malicious adversary.

Specifications can be written at many levels of detail and with many degrees of formality. Broad
and informal specifications of security are called security policies7; they are discussed in section
1. Here are some examples of policies:

Secrecy: Information shall be disclosed only to people authorized to receive it.

Integrity: Data shall be modified only according to established procedures and at the direction
of properly authorized people.

We can separate the part of a specification that is relevant to security from the rest. Usually the
whole specification is much bigger than the security-relevant part. For example, it usually says a
good deal about performance, i.e., how much it should cost or how long it should take to do this
or that. But if secrecy and integrity are the security policies, performance isn’t relevant to
security, because the system can provide secrecy and integrity regardless of how well or badly it
performs. Since we are only interested in security here, from now on when we say ‘specification’
we mean only the security-relevant part.

A secure system is one that meets the (security) specifications. Since there are many different
specifications, there can’t be any absolute notion of a secure system. An example from a related
field clarifies this point. We say that an action is legal if it meets the requirements of the law.
Since there are many different sets of laws in different jurisdictions, there can’t be any absolute
notion of a legal action; what is legal under the laws of Britain may be illegal in the US.

A system that is believed to be secure is trusted. Of course, a trusted system must be trusted for
something; in the context of this report it is trusted to meet the security specifications. In some
other context it might be trusted to control a shuttle launch or to retrieve all the 1988 court
opinions dealing with civil rights. People concerned about security have tried to take over the
word ‘trusted’ to describe their concerns; they have had some success because security is the area

                                                
7 Policies are often called ‘requirements’; sometimes the word ‘policy’ is reserved for a broad statement and
‘requirement’ is used for a more detailed one
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in which the most effort has been made to specify and build trustworthy systems. We will adopt
this usage, while recognizing that in a broader context ‘trusted’ may have many other meanings.

Policies express a general intent. Of course, they can be more detailed than the very general ones
given as examples above; for instance, here is a refinement of the first policy:

Salary secrecy: Individual salary information shall only be disclosed to the employee, his
superiors, and authorized personnel people.

But whether general or specific, policies contain terms which are not precisely defined, so it isn’t
possible to reliably tell whether a system satisfies them. Furthermore, they specify the behavior
of people and of the physical environment as well as the behavior of machines, so it isn’t
possible for a computer system alone to satisfy them. Technology for security addresses these
problems by providing methods for:

Integrating a computer system into a larger system, comprising people and a physical
environment as well as computers, that meets its security policies.

Giving a precise specification, called a security model, for the security-relevant behavior of
the computer system.

Building a system that meets the specifications out of components that provide and use
security services.

Establishing trust8 that a system actually does meet the specifications.

This is a tall order, and at the moment we only know how to fill some of it. The first three points
are discussed in the next section on specifications, the last two in the following section on
implementation. Services are discussed in both sections to explain both the functions being
provided and how they are implemented.

2.2 Specification: Policies, models, and services

This section deals with the specification of security. It is based on the taxonomy of known
policies given in Section 2; fortunately, there are only a few of them. For each policy there is a
corresponding security model, which is a precise specification of how a computer system should
behave as part of a larger system that implements the policy. Finally, an implementation of the
model needs some components that provide particular security services. Again, only a few of
these have been devised, and they seem to be sufficient to implement all the models.

We can illustrate the ideas of policy and model with the simple example of a traffic light; in this
example, safety plays the role of security. The light is part of a system which includes roads, cars,
and drivers. The safety policy for the complete system is that two cars should not collide. This is
refined into a policy that traffic must not move on two conflicting roads at the same time. This
policy is translated into a safety model for the traffic light itself (which plays the role of the
computer system within the complete system): two green lights may never appear in conflicting
traffic patterns simultaneously. This is a pretty simple specification. Observe that the complete
specification for a traffic light is much more complex; it includes the ability to set the duration of
the various cycles, to synchronize with other traffic lights, to display different combinations of
arrows, etc. None of these details, however, is critical to the safety of the system, because cars
won’t collide if they aren’t met. Observe also that for the whole system to meet its safety policy

                                                
8 often called ‘assurance’.
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the light must be visible to the drivers, and they must obey its rules. If the light remains red in all
directions it will meet its specification, but the drivers will lose patience and start to ignore it, so
that the entire system may not remain safe.

An ordinary library affords a more complete example, which illustrates several aspects of
computer system security in a context that does not involve computers. It is discussed in section
3.1.1.1 below.

2.2.1 Policies

A security policy is an informal specification of the rules by which people are given access to
read and change information and to use resources. Policies naturally fall under four major
headings:

secrecy: controlling who gets to read information;

integrity: controlling how information changes or resources are used;

accountability: knowing who has had access to information or resources;

availability: providing prompt access to information and resources.

Section 1 describes these policies in detail and discusses how an organization that uses
computers can formulate a security policy by drawing elements from all of these headings. Here
we summarize this material and supplement it with some technical details.

Security policies for computer systems generally reflect long-standing policies for security of
systems that don’t involve computers. In the case of national security these are embodied in the
classification system; for commercial computing they come from established accounting and
management control practices. More detailed policies often reflect new threats. Thus, for
example, when it became known that Trojan Horse software (see section 2.3.1.3) can disclose
sensitive data without the knowledge of an authorized user, policies for mandatory access control
and closing covert channels were added to take this threat into account.

From a technical viewpoint, the most highly developed policies are for secrecy. They reflect the
concerns of the national security community and are embodied in Department of Defense
Directive 5200.28, also known as the Orange Book [Department of Defense 1985], a document
which specifies policy for safeguarding classified information in computer systems.

The DoD computer security policy is based on security levels. Given two levels, one may be
lower than the other, or they may be incomparable. The basic idea is that information can never
leak to a lower level, or even an incomparable level. Once classified, it stays classified no matter
what the users and application programs do within the system.

A security level consists of an access level (one of top secret, secret, confidential, or unclassified)
and a set of categories (e.g., nuclear, NATO, etc.). The access levels are ordered (top secret
highest, unclassified lowest). The categories are not ordered, but sets of categories are ordered by
inclusion: one set is lower than another if every category in the first is included in the second.
One security level is lower than another if it has an equal or lower access level and an equal or
lower set of categories . Thus, (unclassified; NATO) is lower than both (unclassified; nuclear,
NATO) and (secret; NATO). Given two levels, it’s possible that neither is lower than the other.
Thus, (secret; nuclear) and (unclassified; NATO) are incomparable.
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Every piece of information has a security level. Information flows only upward: information at
one level can only be derived from information at equal or lower levels, never from information
which is at a higher level or incomparable. If some information is computed from several inputs,
it has a level which is at least as high as any of the inputs. This rule ensures that if some
information is stored in the system, anything computed from it will have an equal or higher level.
Thus the classification never decreases.

The policy is that a person is cleared to some security level, and can only see information at that
level or lower. Since anything he sees can only be derived from other information at its level or
lower, the result is that what he sees can depend only on information in the system at his level or
lower. This policy is mandatory: except for certain carefully controlled downgrading or
declassification procedures, neither users nor programs in the system can break the rules or
change the security levels.

As Section 1 explains, both this and other secrecy policies can also be applied in other settings.

The most highly developed policies for integrity reflect the concerns of the accounting and
auditing community for preventing fraud. The essential notions are individual accountability,
separation of duty, and standard procedures.

Another kind of integrity policy is derived from the information flow policy for secrecy applied
in reverse, so that information can only be derived from other information of higher integrity
[Biba 1975]. This policy has not been applied in practice.

Integrity policies have not been studied as carefully as secrecy policies, even though some sort of
integrity policy governs the operation of every commercial data processing system. Work in this
area [Clark and Wilson 1987] lags work on secrecy by about 15 years.

Policies for accountability have usually been formulated as part of secrecy or integrity policies.
This subject has not had independent attention.

Very little work has been done on security policies for availability.

2.2.2 Models

In order to engineer a computer system that can be used as part of a larger system that
implements a security policy, and to decide unambiguously whether it meets its specification, the
informal, broadly stated policy must be translated into a precise model. A model differs from a
policy in two ways:

It describes the desired behavior of the computer system, not of the larger system that
includes people.

It is precisely stated in a formal language that removes the ambiguities of English and makes
it possible, at least in principle, to give a mathematical proof that a system satisfies the
model.

There are two models in wide use. One, based on the DoD computer security policy, is the flow
model; it supports a certain kind of secrecy policy. The other, based on the familiar idea of
stationing a guard at an entrance, is the access control model; it supports a variety of secrecy,
integrity and accountability policies. There aren’t any models that support availability policies.
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2.2.2.1 Flow

The flow model is derived from the DoD policy described earlier. In this model [Denning 1976]
every piece of data in the system is held in a container called an object. Each object has a security
level9. An object’s level gives the security level of the data it contains. Data in one object is
allowed to affect another object only if the source object’s level is lower than or equal to the
destination object’s level. All the data within a single object has the same level and hence can be
manipulated freely.

The purpose of this model is to ensure that information at a given security level flows only to an
equal or higher level. Data is not the same as information; for example, an encrypted message
contains data, but it conveys no information unless you know the encryption key or can break the
encryption system. Unfortunately, data is the only thing the computer can understand. By
preventing an object at one level from being affected in any way by data that is not at an equal or
lower level, the flow model ensures that information can flow only to an equal or higher level
inside the conputer system. It does this very conservatively and thus forbids many actions which
would not in fact cause any information to flow improperly.

A more complicated version of the flow model (which is actually the basis of the rules in the
Orange Book) separates objects into active ones called ‘subjects’ which can initiate operations,
and passive ones (just called objects) which simply contain data, such as a file, a piece of paper,
or a display screen. Data can only flow between an object and a subject; flow from object to
subject is called a read operation, and flow from subject to object is called a write operation.
Now the rules are that a subject can only read from an object at an equal or lower level, and can
only write to an object at an equal or higher level.

Not all possible flows in the system look like read and write operations. Because the system is
sharing resources among objects at different levels, it is possible for information to flow on
‘covert channels’ [Lampson 1973]. For example, a high level subject might be able to send a
little information to a low level one by using up all the disk space if it discovers that a surprise
attack is scheduled for next week. When the low level subject finds itself unable to write a file, it
has learned about the attack (or at least gotten a hint). To fully realize the flow model it is
necessary to find and close all the covert channels.

To fit this model of the computer system into the real world, it is necessary to account for the
people. A person is cleared to some level. When he identifies himself to the system as a user
present at some terminal, he can set the terminal’s level to any equal or lower level. This ensures
that the user will never see information at a higher level than his clearance. If the user sets the
terminal level lower than his clearance, he is trusted not to take high level information out of his
head and introduce it into the system.

Although this is not logically required, the flow model has always been viewed as mandatory:
except for certain carefully controlled downgrading or declassification procedures, neither users
nor programs in the system can break the flow rule or change levels. No real system can strictly
follow this rule, since procedures are always needed for declassifying data, allocating resources,
introducing new users, etc. The access control model is used for these purposes.

                                                
9 often called its ‘label’.
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2.2.2.2 Access control

The access control model is based on the idea of stationing a guard in front of a valuable resource
to control who can access it. It organizes the system into

objects: entities which respond to operations by changing their state, providing information
about their state, or both;

subjects: active objects which can perform operations on objects;

operations: the way that subjects interact with objects.

The objects are the resources being protected; an object might be a document, a terminal, or a
rocket. There is a set of rules which specify, for each object and each subject, what operations
that subject is allowed to perform on that object. A ‘reference monitor’ acts as the guard to
ensure that the rules are followed [Lampson 1985].

There are many ways to organize a system into subjects, operations, and objects. Here are some
examples:

 Subject Operation Object

 Smith Read File “1990 pay raises”
 White Send “Hello” Terminal 23
 Process 1274 Rewind Tape unit 7
 Black Fire three rounds Bow gun
 Jones Pay invoice 432567 Account Q34

There are also many ways to express the access rules. The two most popular are to attach to each
subject a list of the objects it can access (called a ‘capability list’), or to attach to each object a
list of the subjects that can access it (called an ‘access control list’). Each list also identifies the
operations that are allowed.

Usually the access rules don’t mention each operation separately. Instead they define a smaller
number of ‘rights’10 (e.g., read, write, and search) and grant some set of rights to each (subject,
object) pair. Each operation in turn requires some set of rights. In this way there can be a number
of different operations for reading information from an object, all requiring the read right.

One of the operations on an object is to change which subjects can access the object. There are
many ways to exercise this control, depending on what the policy is. With a discretionary policy
each object has an owner who can decide without any restrictions who can do what to the object.
With a mandatory policy, the owner can make these decisions only inside certain limits. For
example, a mandatory flow policy allows only a security officer to change the security level of an
object, and the flow model rules limit access. The owner of the object can usually apply further
limits at his discretion.

The access control model leaves it open what the subjects are. Most commonly, subjects are
users, and any active entity in the system is treated as acting on behalf of some user. In some
systems a program can be a subject in its own right. This adds a lot of flexibility, because the
program can implement new objects using existing ones to which it has access. Such a program
is called a ‘protected subsystem’.

                                                
10 often called ‘permissions’.
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The access control model can be used to realize both secrecy and integrity policies, the former by
controlling read operations, and the latter by controlling writes and other operations that change
the state, such a firing a gun. To realize an flow policy, assign each object and subject a security
level, and allow read and write operations only according to the rules of the flow model. This
scheme is due to Bell and LaPadula, who called the rule for reads the simple security property
and the rule for writes the *-property [Bell-LaPadula 1976].

The access control model also supports accountability, using the simple notion that every time an
operation is invoked, the identity of the subject and the object as well as the operation should be
recorded in an audit trail which can later be examined. There are practical difficulties caused by
the fact that the audit trail gets too big.

2.2.3 Services

This section describes the basic security services that are used to build systems satisfying the
policies discussed earlier. These services directly support the access control model, which in turn
can be used to support nearly all the policies we have discussed:

Authentication: determining who is responsible for a given request or statement11, whether it
is “the loan rate is 10.3%” or “read file ‘Memo to Mike’” or “launch the rocket”.

Authorization: determining who is trusted for a given purpose, whether it is establishing a
loan rate, reading a file, or launching a rocket.

Auditing: recording each operation that is invoked along with the identity of the subject and
object, and later examining these records.

Given these services, building a reference monitor to implement the access control model is
simple. Whenever an operation is invoked, it uses authentication to find out who is requesting the
operation and then uses authorization to find out whether the requester is trusted for that
operation. If so, it allows the operation to proceed; otherwise, it cancels the operation. In either
case, it uses auditing to record the event.

2.2.3.1 Authentication

To answer the question “Who is responsible for this statement?” it is necessary to know what sort
of entities can be responsible for statements; we call these entities principals. It is also necessary
to have a way of naming the principals which is consistent between authentication and
authorization, so that the result of authenticating a statement is meaningful for authorization.

A principal is a (human) user or a (computer) system. A user is a person, but a system requires
some explanation. A system is comprised of hardware (e.g., a computer) and perhaps software
(e.g., an operating system). A system can depend on another system; for example, a user query
process depends on a database management system which depends on an operating system which
depends on a computer. As part of authenticating a system, it may be necessary to verify that any
system that it depends on is trusted to work correctly.

In order to express trust in a principal (e.g., to specify who can launch the rocket) you must be
able to give the principal a name. The name must be independent of any information that may
change without any change in the principal itself (such as passwords or encryption keys). Also, it

                                                
11 That is, who caused it to be made, in the context of the computer system; legal responsibility is a different matter.
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must be meaningful to you, both when you grant access and later when it is time to review the
trust being granted to see whether it is still what you want. A naming system must be:

Complete: every principal has a name; it is difficult or impossible to express trust in a
nameless principal.

Unambiguous: the same name does not refer to two different principals; otherwise you can’t
know who is being trusted.

Secure: you can easily tell what other principals you must trust in order to authenticate a
statement from a named principal.

In a large system naming must be decentralized. Furthermore, it’s not possible to count on a
single principal that is trusted by every part of the system.

It is well known how to organize a decentralized naming system in a hierarchy, following the
model of a tree-structured file system like the one in Unix or MS-DOS. The CCITT X.500
standard for naming defines such a hierarchy [CCITT 1989b]; it is meant to be suitable for
naming every principal in the world. In this scheme an individual can have a name like
US/GOV/State/Kissinger. Such a naming system can be complete; there is no shortage of names,
and registration can be made as convenient as desired. It is unambiguous provided each directory
is unambiguous.

The CCITT X.509 standard defines a framework for authenticating a principal with an X.500
name; the section on authentication techniques below discusses how this is done [CCITT 1989b].
An X.509 authentication may involve more than one agent. For example, agent A may
authenticate agent B, who in turn authenticates the principal.

A remaining issue is exactly who should be trusted to authenticate a given name. Typically,
principals trust agents close to them in the hierarchy. A principal is less likely to trust agents
farther from it in the hierarchy, whether those agents are above, below, or in entirely different
branches of the tree. If a system at one point in the tree wants to authenticate a principal
elsewhere, and there is no one agent that can certify both, then the system must establish a chain
of trust through multiple agents. The simplest such chain involves all the agents in the path from
the system, up through the hierarchy to the first ancestor that is common to both the system and
the principal, and then down to the principal. Such a chain will always exist if each agent is
prepared to authenticate its parent and children. This scheme is simple to explain; it can be
modified to deal with renaming and to allow for shorter authentication paths between cooperating
pairs of principals.

Since systems as well as users can be principals, systems as well as users must be able to have
names.

Often a principal wants to act with less than his full authority, in order to reduce the damage that
can be done in case of a mistake. For this purpose it is convenient to define additional principals
called ‘roles’, to provide a way of authorizing a principal to play a role, and to allow the principal
to make a statement using any role for which he is authorized. For example, a system
administrator might have a ‘normal’ role and a ‘powerful’ role. The authentication service then
reports that the statement was made by the role rather than by the original principal, after
verifying both that the statement comes from the original principal and that he is authorized to
play that role.
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In general trust is not simply a matter of trusting a single user or system principal. It is necessary
to trust the (hardware and software) systems through which that user is communicating. For
example, suppose that a user Alice running on a workstation Bob is entering a transaction on a
transaction server Charlie which in turn makes a network access to a database machine Dan.
Dan’s authorization decision may need to take account not just of Alice, but also of the fact the
Bob and Charlie are involved and must be trusted. Some of these issues do not arise in a
centralized system, where a single authority is responsible for all the authentication and provides
the resources for all the applications, but even in a centralized system an operation on a file, for
example, is often invoked through an application such as a word processing program which is not
part of the base system and perhaps should not be trusted in the same way.

Rather than trusting all the intermediate principals, we may wish to base the decision about
whether to grant access on what intermediaries are involved. Thus we want to grant access to a
file if the request comes from the user logged in on the mainframe, or through a workstation
located on the second floor, but not otherwise.

To express such rules we need a way to describe what combinations of users and intermediaries
can have access. It is very convenient to do this by introducing a new, compound principal to
represent the user acting through intermediaries. Then we can express trust in the compound
principal exactly as in any other. For example, we can have principals “Smith ON Workstation
4” or “Alice ON Bob ON Charlie” as well as “Smith” or “Alice”. The names “Workstation 4”,
“Bob” and “Charlie” identify the intermediate systems just as the names “Smith” and “Alice”
identify the users.

How do we authenticate such principals? When Workstation 4 says “Smith wants to read file
‘Pay raises’”, how do we know

first, that the request is really from that workstation and not somewhere else;

second, that it is really Smith acting through Workstation 4, and not Jones or someone else?

We answer the first question by authenticating the intermediate systems as well as the users. If
the resource and the intermediate are on the same machine, the operating system can authenticate
the intermediate to the resource. If not, we use the cryptographic methods discussed in the
section below on secure channels.

To answer the second question, we need some evidence that Smith has delegated to Workstation
4 the authority to act on his behalf. We can’t ask for direct evidence that Smith asked to read the
file--if we could have that, then he wouldn’t be acting through the workstation. We certainly
can’t take the workstation’s word for it; then it could act for Smith no matter who is really there.
But we can demand a statement that we believe is from Smith, asserting that Workstation 4 can
speak for him (probably for some limited time, and perhaps only for some limited purposes).
Given

 Smith says: “Workstation 4 can act for me”

 Workstation 4 says “Smith says to read the file Pay raises”

we can believe

 Smith ON Workstation 4 says “Read the file Pay raises”

How can we authenticate the delegation statement from Smith, “Workstation 4 can act for me”,
or from Jones, “TransPosting can act for me”? Again, if Jones and the database file are on the
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same machine, Jones can tell the operating system, which he does implicitly by running the
TransPosting application, and the system can pass his statement on to the file system. Since
Smith is not on the same machine, he needs to use the cryptographic methods described below.

The basic service provided by authentication is information that a statement was made by some
principal. Sometimes, however, we would like a guarantee that the principal will not later be able
to claim that the statement was forged and he never made it. In the world of paper documents,
this is the purpose of notarizing a signature; the notary provides independent and highly credible
evidence, which will be convincing even after many years, that the signature is genuine and not
forged. This aggressive form of authentication is called ‘non-repudiation’. It is accomplished by a
digital analog of notarizing, in which a trusted authority records the signature and the time it was
made.

2.2.3.2 Authorization

Authorization determines who is trusted for a given purpose, usually for doing some operation on
an object. More precisely, it determines whether a particular principal, who has been
authenticated as the source of a request to do an operation on an object, is trusted for that
operation on that object.

In general, authorization is done by associating with the object an access control list or ACL
which tells which principals are authorized for which operations. The authorization service takes
a principal, an ACL, and an operation or a set of rights, and returns yes or no. This way of
providing the service leaves the object free to store the ACL in any convenient place and to make
its own decisions about how different parts of the object are protected. A data base object, for
instance, may wish to use different ACLs for different fields, so that salary information is
protected by one ACL and address information by another, less restrictive one.

Often several principals have the same rights to access a number of objects. It is both expensive
and unreliable to repeat the entire set of principals for each object. Instead, it is convenient to
define a group of principals, give it a name, and give the group access to each of the objects. For
instance, a company might define the group “executive committee”. The group thus acts as a
principal for the purpose of authorization, but the authorization service is responsible for
verifying that the principal actually making the request is a member of the group.

Our discussion of authorization has been mainly from the viewpoint of an object, which must
decide whether a principal is authorized to invoke a certain operation. In general, however, the
subject doing the operation may also need to verify that the system implementing the object is
authorized to do so. For instance, when logging in over a telephone line, a user may want to be
sure that he has actually reached the intended system and not some other, hostile system which
may try to spoof him. This is usually called ‘mutual authentication’, although it actually involves
authorization as well: statements from the object must be authenticated as coming from the
system that implements the object, and the subject must have access rules to decide whether that
system is authorized to do so.

2.2.3.3 Auditing

Given the reality that every computer system can be compromised from within, and that many
systems can also be compromised if surreptitious access can be gained, accountability is a vital
last resort. Accountability policies were discussed earlier --e.g., all significant events should be
recorded and the recording mechanisms should be nonsubvertible. Auditing services support
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these policies. Usually they are closely tied to authentication and authorization, so that every
authentication is recorded as well as every attempted access, whether authorized or not.

The audit trail is not only useful for establishing accountability. In addition, it may be possible to
analyze the audit trail for suspicion patterns of access and so detect improper behavior by both
legitimate users and masqueraders. The main problem however, is how to process and interpret
the audit data. Both statistical and expert-system approaches are being tried [Lunt 1988].

2.3 Implementation: The trusted computing base

In this section we explore how to build a system that meets the kind of security specifications
discussed earlier, and how to establish confidence that it does meet them.

Systems are built out of components; we also say that the system depends on its components.
This means that the components have to work (i.e., meet their specifications) for the system to
work (i.e., meet its specification). If this were not true, then the system would work no matter
what the components do, and we wouldn’t say that it depends on them or is built out of them.

Each component is itself a system with specifications and implementation, so it’s systems all the
way down. For example, a distributed system depends on a network, workstations, servers,
mainframes, printers, etc. A workstation depends on a display, keyboard, disk, processor,
network interface, operating system, spreadsheet application, etc. A processor depends on
integrated circuit chips, wires, circuit boards, connectors, etc. A spreadsheet depends on display
routines, an arithmetic library, a macro language processor, etc., and so it goes down to the basic
operations of the programming language, which in turn depend on the basic operations of the
machine, which in turn depend on changes in the state of the chips, wires, etc. A chip depends on
adders, memory cells, etc., and so it goes down to the electrons and photons, whose behavior is
described by quantum electrodynamics.

A component is trusted if it has to work for the system to meet its specification. The set of trusted
hardware and software components is called the trusted computing base or TCB. If a component
is in the TCB, so is every component that it depends on, because if they don't work, it's not
guaranteed to work either. Don't forget that we are only concerned with security, so the trusted
components need to be trusted only for security, even though much of what we have to say
applies more generally.

From this perspective, there are three aspects of implementing a secure system:

Keeping the trusted computing base as small as possible, by having as few trusted
components as possible and making the implementation of each one as simple as possible.

Assurance that each trusted component is trustworthy, i.e., does its job, by

applying systematic, and preferable formal, methods to validate each component and to
find the components it depends on (each one of which must also be trusted),

keeping the specifications as simple as possible, and

regularly checking that the TCB is what you think it is (hardware and software not
corrupted, authorization rules as intended, authentication methods not compromised).

Techniques for implementing the individual components, such as cryptography and access
control lists.
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A system depends on more than its hardware and software. The physical environment and the
people who use, operate, and manage it are also components of the system. Some of them must
also be trusted. For example, if the power fails the system may stop providing service; thus the
power source must be trusted for availability. Another example: every system has security
officers who set security levels, authorize users, etc.; they must be trusted to do this properly. Yet
another: the system may disclose information only to authorized users, but they must be trusted
not to publish the information in the newspaper. Thus the security of the entire system must be
evaluated, using the basic principles of analyzing dependencies, minimizing the number and
complexity of trusted components, and carefully analyzing each one. The rest of this section
deals only with the TCB, but it is only part of the story.

The basic method for keeping the TCB small is to make it a kernel that contains only functions
that are needed for security, and separate out all the other functions into untrusted components.
For example, an elevator has a very simple braking mechanism whose only job is to stop the
elevator if it starts to move faster than a fixed maximum speed, no matter what else goes wrong.
The rest of the elevator control mechanism may be very complex, involving scheduling of several
elevators, responding to requests from various floors, etc., but none of this must be trusted for
safety, because the braking mechanism doesn’t depend on anything else. The braking mechanism
is the safety kernel.

The purchasing system mentioned in the earlier discussion of integrity policies is another
example. A large and complicated word processor may be used to prepare orders, but the TCB
can be limited to a simple program that displays the completed order and asks the user to confirm
it. An even more complicated database system may be used to find the order that corresponds to
an arriving shipment, but the TCB can be limited to a simple program that displays the received
order and a proposed payment authorization and asks the user to confirm them. If the order and
authorization can be digitally signed (using methods described later), even the components that
store them need not be in the TCB.

The basic method for finding dependencies is careful analysis of how each step in building and
executing a system is carried out. Ideally we then get assurance for each system by a formal
mathematical proof that the system satisfies its specification provided all its components do. In
practice such proofs are only sometimes feasible, because it is hard to formalize the
specifications and to carry out the proofs. The state of the art is described in 3.1.4. In practice, we
get assurance by a combination of relying on components that have worked for lots of people,
trusting implementors not to be malicious, carefully writing specifications for components, and
carefully examining implementations for dependencies and errors.

These methods are bound to have flaws. Because there are so many bases to cover, and every one
is critical to true security, there are bound to be mistakes. Hence two other important parts of
assurance are redundant checks like the security perimeters discussed below, and methods for
recovering from failures such as audit trails and backup databases.

We now proceed to discuss the main components of a trusted computing base, under the major
headings of computing and communications. This division reflects the fact that a modern
distributed system is made up of computers that can be analyzed individually, but must
communicate with each other quite differently than they do internally.

2.3.1 Computing

This part of the TCB includes the application programs, the operating system that they depend
on, and the hardware that both depend on.
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2.3.1.1 Hardware

Since software consists of instructions which must be executed by hardware, the hardware must
be part of the TCB. Security requires, however, very little from the hardware beyond the storage
and computing functions needed by all software, nothing more than a “user state” in which a
program can access only the ordinary computing instructions and a restricted part of the memory,
as well as a “supervisor state” in which a program can access every part of the hardware. There is
no need for fancier hardware features; at best they may improve performance, and usually they
don’t even do that because they add complications that slow down basic hardware operations that
are executed much more frequently.

The only essential thing, then, is to have simple hardware that is trustworthy. For most purposes
the ordinary care that competent engineers take to make the hardware work is good enough. It’s
possible to get higher assurance by using formal methods to design and verify the hardware; this
has been done in several projects, of which the Viper verified microprocessor chip is typical
[Cullyer 1989]. There is a mechanically checked proof that the Viper chip’s gate-level design
implements its specification. Viper pays the usual price for high assurance: it is several times
slower than ordinary microprocessors built at the same time. It is described in more detail in
section 3.1.2.2.1.

Another approach to hardware support for high assurance is to provide a separate, simple
processor with specialized software to implement the basic access control services. If this
hardware controls the computer’s memory access mechanism and forces all input/output data to
be encrypted, that is enough to keep the rest of the hardware and software out of the TCB. This
approach has been pursued in the Lock project, which is described in more detail in section
3.1.2.2.2.

Unlike the other components of a computing system, hardware is physical and has physical
interactions with the environment. For instance, someone can open a cabinet containing a
computer and replace one of the circuit boards. Obviously if this is done with malicious intent,
all bets are off about the security of the computer. It follows that physical security of the
hardware must be assured. There are less obvious physical threats. In particular, computer
hardware involves changing electric and magnetic fields, and therefore generates electromagnetic
radiation12 as a byproduct of normal operation. Because it can be a way for information to be
disclosed, secrecy may require this radiation to be controlled. Similarly, radiation from the
environment can affect the hardware.

2.3.1.2 Operating system

The job of an operating system is to share the hardware among several application programs and
to provide generic security services so that the applications don’t need to be part of the TCB.
This is good because it keeps the TCB small, since there is only one operating system but many
applications. Within the operating system itself the same idea can be used to divide it into a
‘kernel’ which is part of the TCB and other components which are not [Gasser 1988]. It is well
known how to do this.

The generic services are authorization services for the basic objects that the system implements:
virtual processors as subjects, and files and communication devices such as terminals as objects.
The operating system can enforce various security models for these objects, which may be
enough to satisfy the security policy. In particular it can enforce an flow model, which is enough

                                                
12 often called ‘emanations’.
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for the DoD secrecy policy, as long as it is enough to keep track of security levels at the coarse
granularity of whole files.

To enforce an integrity policy like the purchasing system policy described earlier, there must be
some trusted applications to handle functions like approving orders. The operating system must
be able to treat these applications as principals, so that they can access objects that the untrusted
applications running on behalf of the same user cannot access. Such applications are called
‘protected subsystems’.

2.3.1.3 Applications

Ideally applications should not be part of the TCB, since there are many of them, they are often
large and complicated, and they tend to come from a variety of sources that are difficult to police.
Unfortunately, attempts to build electronic mail or database applications on top of an operating
system that enforces flow have run into difficulties. It is necessary to use a different operating
system object for information at each security level, and often these objects are too big and
expensive. And for an integrity policy it is always necessary to trust some application code. It
seems that the best we can do is to apply the kernel method again, putting the code that must be
trusted into separate components which are protected subsystems. The operating system must
support this [Boebert 1985]. See section 3.1.3 for more on this subject.

In many systems any application program running on behalf of a user has the full access to all
objects that the user has. This is considered acceptable on the assumption that the program, even
if not trusted to always do the right thing, is unlikely to do an intolerable amount of damage.
What if the program is not just wrong, but malicious? Such a program, which appears to do
something useful but has hidden within it the ability to cause serious damage, is called a ‘Trojan
horse’ [Thompson 1984]. When the Trojan horse runs, it can do a lot of damage: delete files,
corrupt data, send a message with the user’s secrets to another machine, disrupt the operation of
the host, waste machine resources, etc. There are many ways to package a Trojan horse: the
operating system, an executable program, a shell command file, a macro in a spreadsheet or word
processing program are only a few of the possibilities. It is even more dangerous if the Trojan
horse can also make copies of its evil genius. Such a program is called a virus. Because it can
spread fast in a computer network or by copying disks, it can be a serious threat. There have been
several examples of viruses that have infected thousands of machines [Computers & Security
1988, Dewdney 1989]. Section 3.2.4 gives more details and describes countermeasures.

2.3.2 Communications

Methods for dealing with communications and distributed systems security are less well
developed than those for stand-alone centralized systems; distributed systems are both newer and
more complex. Even though there is less of a consensus about methods for distributed systems,
we describe one way of thinking about them, based on suitable functions inside a TCB built up of
trusted code on the various distributed components. We believe that distributed systems are now
well enough understood that these approaches should also become recognized as effective and
appropriate in achieving security.

The TCB for communications has two important aspects: secure channels for communication
among the various parts of a system, and security perimeters for restricting communication
between one part of a system and the rest.
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2.3.2.1 Secure Channels

We can describe a distributed system as a set of computers which communicate with each other
quite differently than they operate internally. More generally, the access control model describes
the working of a system in terms of requests for operations from a subject to an object and
corresponding responses. Either way, it makes sense to study the communication separately from
the computers, subjects, or objects.

Secure communication has one or both of the properties:

 (1) Integrity: You can know who originally created a message you receive.

 (2) Secrecy: You can know who can read a message you send.

The concept of a secure channel is an abstraction of these properties. A channel is a path by
which two or more principals communicate. A secure channel may be a physically protected path
(e.g., a physical wire, a disk drive and associated disk, or memory protected by hardware and an
operating system), or a logical path secured by encryption. A channel need not be real time: a
message sent on a channel may be read much later, for instance if it is stored on a disk. A secure
channel provides integrity, confidentiality, or both. The process of finding out who can send or
receive on a secure channel is called authenticating the channel; once a channel has been
authenticated, statements and requests arriving on it are also authenticated.

Typically the secure channels between subjects and objects inside a computer are physically
protected: the wires in the computer are assumed to be secure, and the operating system protects
the paths by which programs communicate with each other. This is one aspect of a broader point:
every component of a physical channel is part of the TCB and must meet a security specification.
If the wire connects two computers it may be difficult to secure physically, especially if the
computers are in different buildings.

To keep such wires out of the TCB we resort to encryption, which makes it possible to have a
channel whose security doesn’t depend on the security of any wires or intermediate systems
through which the bits of the message are passed. Encryption works by computing from the data
of the original message, called the ‘cleartext’, some different data, called the ‘ciphertext’, which
is actually transmitted. A corresponding decryption operation at the receiver takes the ciphertext
and computes the original plaintext. A good encryption scheme has the property that there are
some simple rules for encryption and decryption, and that computing the plaintext from the
ciphertext, or vice versa, without knowing the rules is too hard to be practical. This should be
true even if you already know a lot of other plaintext and its corresponding ciphertext.

Encryption thus provides a channel with secrecy and integrity. All the parties that know the
encryption rules are possible senders, and those that know the decryption rules are possible
receivers. Since we want lots of secure channels, we need lots of sets of rules, one for each
channel. To get them, we divide the rules into two parts, the algorithm and the key. The
algorithm is fixed, and everyone knows it. The key can be expressed as a reasonably short
sequence of characters, a few hundred as most. It is different for each secure channel, and is
known only to the possible senders or receivers. It must be fairly easy to come up with new keys
that can’t be easily guessed.

There are two kinds of encryption algorithms:

Secret key encryption, in which the same key is used to send and receive (i.e., to encrypt and
decrypt). The key must be known only to the possible senders and receivers, who are the
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same. The Data Encryption Standard (DES) is the most widely used form of secret key
encryption [National Bureau of Standards, 1977].

Public key encryption, in which different keys are used to send and receive. The key for
sending must be known only to the possible senders, and the key for receiving only to the
possible receivers. For a broadcast the key for receiving may be public while the key for
sending is secret; in this case there is no secrecy (since everyone knows the receiving key),
but there is still integrity (since you have to know the secret sending key in order to send).
The Rivest-Shamir-Adelman (RSA) algorithm is the most widely used form of public key
encryption [Rivest 1978].

Known algorithms for public key encryption are slow (a few thousand bits per second at most),
while it is possible to buy hardware that implements DES at 15 megabits per second, and an
implementation at one gigabit per second is feasible with current technology. A practical design
therefore uses a secret key scheme for handling bulk data, and uses public key encryption only
for setting up secret keys and a few other special purposes. Section 3.1.5 has more on encryption.

A digital signature is a secure channel for sending a message to many receivers who may see the
message long after it is sent, and are not necessarily known to the sender. Digital signatures have
many important applications in making the TCB smaller. For instance, in the purchasing system
described earlier, if an approved order is signed digitally it can be stored outside the TCB, and
the payment component can still trust it. See section 3.1.5.3 for a more careful definition and
some discussion of how to implement digital signatures.

2.3.2.2 Authenticating channels

Given a secure channel, it is still necessary to find out who is at the other end, i.e., to authenticate
it. We begin with authenticating a channel from one computer system to another. The simplest
way to do this is to ask for a password. Then if there is a way to match up the password with a
principal, authentication is complete. The trouble with a password is that the receiver can
impersonate the sender to anyone else who trusts the same password. As with secret key
encryption, this means that you need a separate password to authenticate to every system that you
trust differently. Furthermore, anyone who can read the channel can also impersonate the sender.
If the channel is an ethernet or token ring, there may be lots of people who can read it.

Both of these problems can be overcome by challenge-response authentication schemes. These
schemes make it possible to prove that you know a secret without disclosing what it is to an
eavesdropper. The simplest scheme to explain is based on public key encryption. The challenger
finds out the public key of the principal being authenticated, chooses a random number, and
sends it to him. The principal encrypts the number with his private key and sends back the result.
The challenger decrypts the result with the principal’s public key; if he gets back the original
number, the principal must have done the encrypting.

How does the challenger learn the principal’s public key? The CCITT X.509 standard defines a
framework for authenticating a secure channel to a principal with an X.500 name; this is done by
authenticating the principal’s public key using certificates that are digitally signed. The standard
does not define how other channels to the principal can be authenticated, but technology for
doing this is well understood. An X.509 authentication may involve more than one agent. For
example, agent A may authenticate agent B, who in turn authenticates the principal.

Challenge-response schemes solve the problem of authenticating one computer system to
another. Authenticating a user is more difficult, since users are not good at doing public-key
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encryption or remembering long secrets. Traditionally, you are authenticated by what you know
(a password), what you are (biometrics), or what you have (a ‘smart card’ or ‘token’). The first is
the traditional method. Its drawbacks have already been explained, and are discussed in more
detail in section 3.2.2.1.

Biometrics involves measuring some physical characteristic of a person: handwriting, fingerprint,
retinal patterns, etc, and transmitting this to the system that is authenticating the person . The
problems are forgery and compromise. It may be easy to substitute a mold of someone else’s
finger, especially if the person is not being watched. And if the digital encoding of the fingerprint
pattern becomes known, anyone who can bypass the physical reader and just inject the bits can
impersonate the person.

A smart card or token is a way to reduce the problem of authenticating a user to the problem of
authenticating a computer, by providing the user with a tiny computer he can carry around that
will act as his agent to authenticate him [NIST 1988]. A smart card fits into a special reader and
communicates electrically with the system; a token has a keypad and display, and the user keys in
the challenge, reads the response, and types it back to the system. For more details on both, see
section 3.2.2.2. A smart card or token is usually combined with a password to keep it from being
easily used if it is lost or stolen; automatic teller machines require a card and a PIN for the same
reason.

2.3.2.3 Perimeters

A distributed system can become very large; systems with 50,000 computers exist today, and
they are growing fast. In a large system no single agent will be trusted by everyone; security must
take account of this fact. To control the amount of damage that a security breach can do and to
limit the scope of attacks, a large system may be divided into parts, each surrounded by a security
perimeter.

Security is only as strong as its weakest link. The methods described above can in principle
provide a very high level of security even in a very large system that is accessible to many
malicious principals. But implementing these methods throughout the system is sure to be
difficult and time-consuming. Ensuring that they are used correctly is likely to be even more
difficult. The principle of “divide and conquer” suggests that it may be wiser to divide a large
system into smaller parts and to restrict severely the ways in which these parts can interact with
each other.

The idea is to establish a security perimeter around part of the system, and to disallow fully
general communication across the perimeter. Instead, there are gates in the perimeter which are
carefully managed and audited, and which allow only certain limited kinds of traffic (e.g.,
electronic mail, but not file transfers or general network datagrams). A gate may also restrict the
pairs of source and destination systems that can communicate through it.

It is important to understand that a security perimeter is not foolproof. If it passes electronic mail,
then users can encode arbitrary programs or data in the mail and get them across the perimeter.
But this is less likely to happen by mistake, and it is more difficult to do things inside the
perimeter using only electronic mail than using terminal connections or arbitrary network
datagrams. Furthermore, if, for example, a mail-only perimeter is an important part of system
security, users and managers will come to understand that it is dangerous and harmful to
implement automated services that accept electronic mail requests.
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As with any security measure, a price is paid in convenience and flexibility for a security
perimeter: it’s harder to do things across the perimeter. Users and managers must decide on the
proper balance between security and convenience.

See section 3.2.5 for more details.

2.3.3 Methodology

An essential part of establishing trust in a computing system is ensuring that it was built using
proper methods. This important subject is discussed in detail in Chapter 4 of Computers at Risk.

2.4 Conclusion

The technical means for achieving greater system security and trust are a function of the policies
and models that people care about. Most interest and money has been spent on secrecy, so the
best services and implementations support secrecy. What is currently on the market is thus only
some of what is needed.

3 Some technical details

This section goes into considerably more detail on selected topics in computer security
technology. The topics have been chosen either because they are well understood and
fundamental, or because they are solutions to current urgent problems.

3.1 Fundamentals

3.1.1 Examples of security policies

3.1.1.1 Library example

Another “trusted system” that illustrates a number of principles is that of a library. In a very
simple library where there is no librarian, anyone (a subject) can walk in and take any book (a
object) desired. In this case, there is no policy being enforced and there is no mechanism for
enforcing the policy. In a slightly more sophisticated case where the librarian checks who should
have access to the library, but doesn’t particularly care who takes out which book, the policy that
is being enforced is anyone allowed in the room is allowed to access anything in the room. The
policy requires only identification of the subject. In a third case, a simple extension of the
previous one, no one is allowed to take more than five books out at a time. A sophisticated
version of this would have the librarian check how many books you already have out before you
can take more out. The policy requires a check of the person’s identity and current status.

Moving toward an even more complex policy, only certain people are allowed to access certain
books. The librarian performs a check by name of who is allowed to access which books. This
policy frequently involves the development of long lists of names and may evolve toward, in
some cases, a negative list, that is, a list of people who should not be able to have access to
specific information. In large organizations users frequently have access to specific information
based on the project they are working on or the sensitivity of data for which they are authorized.
In each of these cases, there is an access control policy and an enforcement mechanism. The
policy defines the access that an individual will have to information contained in the library. The
librarian serves as the policy enforcing mechanism.
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3.1.1.2 Orange Book  security models

The best known and most widely used formal models of computer security functionality, e.g.,
Bell-LaPadula and its variants [Bell & LaPadula 1976], emphasize confidentiality (protection
from unauthorized disclosure of information) as their primary security service. In particular,
these models attempt to capture the ‘mandatory’ (what ISO 7498-2 refers to as “administratively
directed, label based”) aspects of security policy. This is especially important in providing
protection against Trojan Horse software, a significant concern in the classified data processing
community. This policy is typically enforced by operating system mechanisms at the relatively
coarse granularity of processes and files. This state of affairs has resulted from a number of
factors, several of which are noted below:

1) The basic security models were perceived to accurately represent DoD security concerns in
which protecting classified information from disclosure, especially in the face of Trojan Horse
attacks, was a primary concern. Since it was under the auspices of DoD funding that the work in
formal security policy models was carried out, it is not surprising that the emphasis was on
models which represented DoD concerns with regard to confidentiality.

2) The embodiment of the model in the operating system has been deemed essential in order to
achieve a high level of assurance and to make available a secure platform on which untrusted (or
less trusted) applications could be executed without fear of compromising overall system
security. It was recognized early that the development of trusted software, i.e., software that
trusted to not violate the security policy imposed on the computer system, was a very difficult
and expensive task. This is especially true if the security policy calls for a high level of assurance
in a potentially ”hostile” environment, e.g., execution of software from untrusted sources.

The strategy evolved of developing trusted operating systems which could segregate information
and processes (representing users) to allow controlled sharing of computer system resources. If
trusted application software were written, it would require a trusted operating system as a
platform on top of which it would execute. (If the operating system were not trusted it, or other
untrusted software, could circumvent the trusted operation of the application in question.) Thus
development of trusted operating systems is a natural precursor to the development of trusted
applications.

At the time this strategy was developed, in the latter part of the 60’s and in the 70’s, computer
systems were almost exclusively time-shared computers (mainframes or minis) and the resources
to be shared (memory, disk storage, and processors) were expensive. With the advent of trusted
operating systems, these expensive computing resources could be shared among users who would
develop and execute applications without requiring trust in each application to enforce the system
security policy. This has proven to be an appropriate model for systems in which the primary
security concern is disclosure of information and in which the information is labelled in a fashion
which reflects its sensitivity.

3) The granularity at which the security policy is enforced is, in large part, due to characteristics
of typical operating system interfaces and concerns for efficient implementation of the security
enforcement mechanisms. Thus, for example, since files and processes are the objects managed
by most operating systems, these were the objects which were protected by the security policy
embodied in the operating system. In support of Bell-LaPadula, data sensitivity labels are
associated with files and authorizations for data access are associated with processes operating on
behalf of users. The operating system enforces the security policy by controlling access to data
based on file labels and process (user) authorizations. This type of security policy
implementation is the hallmark of high assurance systems as defined by the TCSEC.
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3.1.2 TCB structuring of systems

3.1.2.1 Purchasing system

A third illustration of a trusted system involves a typical business situation. In most organizations
there is an individual (or group) authorized to order material, another individual (or group)
authorized to receive material that has been ordered and an individual (or group) that is
authorized to pay for material that has been received. To avoid theft or embezzlement, businesses
establish policies that restrict 1) ordering material to the individual with proper authority; 2)
receiving material to those authorized and then only for material that has been properly ordered;
and 3) paying for material received to the individual who is authorized to pay, and then only for
material that has been properly ordered and received.

In a nonautomated environment, controls such as review and audit procedures are established to
prevent misuse (often only to limited effectiveness). The policy to be enforced can be rather
simple to state. The enforcement mechanisms in a nonautomated situation may turn out to be
quite complex.

In an automated environment, the material handling case might be performed in the following
manner by a trusted system. The person who orders material may use her favorite untrusted word
processing system to prepare an order. The person receiving material may use his favorite
untrusted database management system to indicate that material has been received, and the
person who writes the check may use her favorite untrusted spreadsheet to be able to generate the
information for the check. How can a trusted system enforce the overall system policy and allow
individuals to use untrusted tools to do their work? In this case, the trusted portion of the system
(referred to as the trusted computing base) establishes separate, noncomparable project categories
for the three functions. They are isolated from one another except by a specific trusted process
that are described shortly. The order preparer invokes her word processor and prepares a
purchase order for 500 pencils. When the document is completed, she indicates her desire to send
a copy to the pencil salesman and a copy to the receiving department. All the work up to this
point has been done in the ordering person’s isolated work space using her untrusted word
processor without interference. At this point, the trusted computer base invokes a small trusted
process that clears the user’s screen, displays the order, and requests that the user authenticate
that this is indeed the order that she wishes to send. When she approves, the trusted process
proceeds to print the order for the pencil salesman and labels an electronic copy so that the
receiving department can now have access to it.

Up to this point, all of the information that the ordering person has employed has been labeled by
the system to be accessible only to the ordering department. Once the user has indicated that the
order is complete and proper, the order is made available to the receiving department and an
audit record is made that the ordering person at this time and on this date authorized this order.
From here on the ordering person can no longer modify the order (except by issuing another); she
can read it but no longer has write access to it.

Time goes by; the pencils show up on the loading dock. The receiving person checks to see if an
authorized order for the pencils exists; if so, he accepts them and indicates in his database
management system that he has received the pencils. Now he prepares an authorization for the
accounts payable department to pay for the pencils. All of this is done in an untrusted database
management system, all of the information which the receiving department has is labeled by the
trusted computing base so that only the receiving department can access the information.
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Once the receipt is completed and the receiving department wishes to authorize payment, another
trusted process is invoked which clears the user’s screen, displays the order for payment on the
screen, and requests the receiver to acknowledge that this is indeed a proper authorization for
payment. Once acknowledged as correct, the trusted process copies the authorization for payment
to a file labeled by the trusted computing base as accessible to the accounts payable department.
Until this point the accounts payable department has known nothing about the order or the fact
that it might be received shortly. Now, in the queue for the accounts payable department, a new
authorization for payment appears and the check can be prepared using an untrusted spreadsheet
program. Prior to the check being issued, a third trusted process will ask the accounts payable
person to acknowledge that this is a correct check payment and pass the check order to the check
writing mechanism.

This is a simple illustration of a case that appears in most organizations in which untrusted
programs of considerable sophistication may be used in conjunction with the trusted computing
base to ensure that an important business function is performed in a manner which enforces the
organization’s overall accounting policies. The ordering department must acknowledge the
preparation of a proper order before the receiving department can receive the material. The
receiving department must acknowledge the receipt of material for which it has a proper order
before the accounts payable department can authorize a check.

3.1.2.2 Examples of hardware TCB components

3.1.2.2.1 VIPER

The VIPER microprocessor was designed specifically for high integrity control applications at
the Royal Signals and Radar Establishment (RSRE), which is part of the UK Ministry of Defense
(MoD). VIPER attempts to achieve high integrity with a simple architecture and instruction set,
designed to meet the requirements of formal verification and to provide support for high integrity
software.

VIPER 1 was designed as a primitive building block which could be used to construct complete
systems capable of running high integrity applications. Its most important requirement is that it
stop immediately if any hardware error is detected, including illegal instruction codes, numeric
underflow and overflow. By stopping when an error is detected, VIPER assures that no incorrect
external actions are taken following a failure. Such ‘fail-stop’ operation [ Schlichting 1983]
simplifies the design of higher-level algorithms used to maintain the reliability and integrity of
the entire system.

VIPER 1 is a memory-based processor, making use of a uniform instruction set (i.e., all
instructions are the same width). The processor has only three programmable 32-bit registers.
The instruction set limits the amount of addressable memory to be 1 Megaword, with all access
on word boundaries. There is no support for interrupts, stack processing or micro-pipelining.

The VIPER 1 architecture provides only basic program support. In fact, multiplication and
division aren’t supported directly by the hardware. This approach was taken primarily to simplify
the design of VIPER, thereby allowing it to be verified. If more programming convenience is
desired, it must be handled by a high-level compiler, assuming the resulting loss in performance
is tolerable.

The VIPER 1A processor allows two chips to be used in tandem in an active/monitor
relationship. That is, one of the chips can be used to monitor the operation of the other. This is
achieved by comparing the memory and I/O addresses generated by both chips as they are sent
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off-chip. If either chip detects a difference in this data, then both chips are stopped. In this model,
a set of two chips are used to form a single fail-stop processor making use of a single memory
module and I/O line.

It is generally accepted that VIPER’s performance falls short of conventional processors and
always will. Because it is being developed for high-integrity applications, the VIPER processor
must always depend on well-established, mature implementation techniques and technologies.
Many of the design decisions made for VIPER were done with static analysis in mind.
Consequently, the instruction set was kept simple, without interrupt processing, to allow static
analysis to be done effectively.

3.1.2.2.2 LOCK

The LOgical Coprocessing Kernel (LOCK) Project, which intends to develop a secure
microcomputer prototype by 1990 that provides A1-level security for general-purpose
processing. The LOCK design makes use of a hardware-based reference monitor, known as
SIDEARM, that can be used to retrofit existing computers or to be included in the design of new
computers as an option. The goal is to provide the highest level of security currently defined by
the NCSC standards, while providing 90 percent of the performance achievable by an
unmodified, insecure computer. SIDEARM is designed to achieve this goal by monitoring the
memory references made by applications running on the processor to which it is attached.
Assuming that SIDEARM is always working properly and can not be circumvented, it provides
high assurance that applications can only access those data items for which they have been given
permission. The LOCK Project centers around guaranteeing that these assumptions are valid.

The SIDEARM module is the basis of the LOCK architecture and is itself an embedded
computer system, making use of its own processor, memory, communications and storage
subsystems, including a laser disk for auditing. It is logically placed between the host processor
and memory, examining all memory requests and responses to prevent unauthorized accesses.
Since it is a separate hardware component, applications can not modify any of the security
information used to control SIDEARM directly.

Access control is accomplished by assigning security labels to all subjects (i.e., applications or
users) and objects (i.e., data files and programs), and enforcing a mandatory security policy
independent of the host system. The SIDEARM module is also responsible for type enforcement
controls, providing configurable, mandatory integrity. That is, ‘types’ can be assigned to data
objects and used to restrict the processing allow by subjects with given security levels.
Mandatory access control (MAC), discretionary access control (DAC) and type enforcement are
‘additive’ in that a subject must pass all three criteria before being allowed to access an object.

The LOCK project makes use of multiple TEPACHE-based TYPE-I encryption devices to
safeguard SIDEARM media (e.g., hard-disk), data stored on host system media, data transmitted
over the host system network interface and the unique identifiers assigned to each object. (The
object identifiers are encrypted to prevent a ‘covert channel’ that would otherwise allow a subject
to determine how many objects were generated by another subject.) As such, LOCK combines
aspects of both COMSEC (Communications Security) and COMPUSEC (Computer Security) in
an inter-dependent manner. The security provided by both approaches are critical to LOCK’s
proper operation.

The LOCK architecture requires a few trusted software components, including a SIDEARM
device driver and extensions to the operating system kernel. The operating system extensions
handle machine-dependent support, such as printer and terminal security labeling, and
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application specific security policies, such as that required by a database management system.
These functions implemented outside the TCB provide the flexibility needed to allow SIDEARM
to support a wide range of applications, without becoming too large or becoming architecture-
dependent.

One of LOCK’s advantages is that a major portion of the operating system, outside of the kernel
extensions and the SIDEARM device driver, can be considered ‘hostile’. That is, even if the
operating system is corrupted, LOCK will not allow an unauthorized application to access data
objects. However, parts of the operating system must still be modified or removed to make use of
the functionality provided by SIDEARM. The LOCK project intends to port UNIX System V
directly to the LOCK architecture and to certify the entire system at the A1-level.

3.1.3 Application Layer Security

Although the operating systems which have resulted from the Bell- LaPadula paradigm have
been used to provide the sort of process and file segregation noted above, the development of
trusted applications using these operating systems has often proven to be quite difficult and/or
very limiting. This has been the case even for applications in which the emphasis is primarily one
of confidentiality, as noted in examples below.

In the course of developing a secure messaging system based on DoD requirements, the Naval
Research Laboratory (NRL) has found the operating system support provided by TCSEC-
evaluated system to be lacking. They have spent considerable effort over more than 5 years
developing a security policy model and, more recently, an operating system interface tailored to
this application. Electronic messaging is a widespread application, not just in the military
environment.

Trusted (disclosure-secure) database management systems represent another major application
area. This is viewed as a sufficiently important and specialized application as to warrant the
development of evaluation criteria of its own, i.e., the Trusted Database Interpretation of the
TCSEC. These criteria have been under development for several years and represent an attempt
to apply the TCSEC policy and evaluation model to database systems. Trusted database systems
developed directly on top of trusted operating systems (as defined by the TCSEC criteria) have
exhibited some significant limitations, e.g., in terms of functionality and/or performance
[Denning 1988]. Development of full functionality trusted database management systems would
seem to require a significant effort in additional to the use of a TCSEC-secure operating system
base.

These examples suggest that, even when the primary security policy is one of confidentiality,
trusted operating systems do not necessarily provide a base which makes development of trusted
applications straightforward. Even though a trusted operating system can be seen as providing a
necessary foundation for a secure application, it may not provide a sufficient foundation.

Over time it has become increasingly apparent that many military and commercial security
applications call for a richer set of security policies, e.g., various flavors of integrity and more
complex authorization facilities [Clark and Wilson1987], not just confidentiality. This poses a
number of problems for developers of applications which would be deemed “trusted” relative to
these policies:

1) These other forms of trustedness are generally viewed as being harder to achieve. Security
from unauthorized disclosure of information is simple compared to some of the other security
requirements which users envision. Specification and verification of general program
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“correctness” properties are much more complex than statements dealing only with data flow
properties of programs.

2) There are no generally accepted security policy models for the wider range of security services
alluded to above and thus criteria against which such systems can be evaluated.

3) Existing trusted operating systems generally do not provide facilities tailored to support these
security policies, thus requiring an application developer to provide these services directly.

These problems are closely related. For example, trusted operating systems may not provide a
good foundation for development of applications with more sophisticated security service
requirements in in part because of the orientation of the TCSEC. Inclusion of software in an
operating system to support an application developer who wishes to provide these additional
services would delay the evaluation of the operating system. The delay would arise because of
the greater complexity that accrues from the inclusion of the additional trusted software and
because there are no policy models on which to base the evaluation of this added trust
functionality. Thus the TCSEC evaluation process discourages inclusion of other security
facilities in trusted operating systems as these facilities do not yield higher ratings and may
hinder the evaluation relative to existing policy models. If the criteria for trusted operating
systems were expanded to include additional security facilities in support of application security
policies, vendors might be encouraged to include such facilities in their products.

Also note that, in many instances, one might expect that the level of assurance provided by
security facilities embodied in applications will tend to be lower than that embodied in the
operating system. The assumption is that developers of applications will, in general, not be able
to devote as much time and energy to security concerns as do the developers of secure operating
systems. (Database systems constitute an exception to this general observation as they are
sufficiently general and provide a foundation for so many other applications as to warrant high
assurance development procedures and their own evaluation process and criteria.) This is not so
much a reflection on the security engineering capabilities of application developers versus
operating system developers, but rather an observation about the relative scope of specific
applications versus specific operating systems. It seems appropriate to devote more effort to
producing a secure operating system for a very large user community than to devote a
comparable level of effort to security facilities associated with a specific application for a smaller
community.

In discussing security policies for applications it is also important to observe that in many
contexts the application software must, in some sense, be viewed as “trusted” because it is the
correct operation of the application which constitutes trusted operation from the user’s
perspective. For example, trusted operation of an accounts payable system may require creating
matching entries in two ledgers (debits and credits) and authorization by two independent
individuals before a check is issued. These requirements are not easily mapped into the
conventional security facilities, e.g., access controls, provided by TCSEC-evaluated operating
systems.

This is not to say that the process and file-level segregation security facilities provided by current
secure operating systems are irrelevant in the quest for application security. Although these
facilities have often proven to be less than ideal building blocks for secure applications, they do
provide useful, high assurance firewalls among groups of users, different classes of applications,
etc. If nothing else, basic operating system security facilities are essential to ensure the
inviolability of security facilities that might be embedded within applications or extensions to the
operating system. Thus the process and data isolation capabilities found in current trusted
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systems should be augmented with, not replaced by, security facilities designed to meet the needs
of developers of trusted applications.

One Solution Approach

In order to better support the development and operation of trusted applications, vendors
probably need to provide a set of security facilities than goes beyond those currently offered by
most trusted operating systems. Development of trusted applications has probably been hindered
by the coarseness and limited functionality of the protection facilities offered by current trusted
operating systems. None of the trusted operating system products now on the Evaluated Products
List (EPL) appear to incorporate security mechanisms sufficient to support the development of
trusted applications as described above. This is not a criticism of these systems, nor of their
developers. It is probably reflects the difficulty of engineering operating systems with such added
functionality, and the penalty imposed by the current evaluation criteria for systems which might
attempt to incorporate such facilities in their products, as discussed earlier.

To counter the latter problem the R&D and vendor communities must be encouraged to develop
operating systems which embody explicit security facilities in support of applications. Such
facilities might take the form of a set of security primitives which are deemed generally useful in
the construction of secure applications, if such a set of application security primitives can be
identified. It also may be appropriate to provide facilities to support the construction of what
sometimes have been called ‘protected subsystems’, so that application developers can build
systems which are protected from user software and from other applications, without subverting
the basic security services offered by the operating system.

The LOCK system [Boebert 1985], a trusted operating system program funded by the NCSC,
incorporates an elaborate set of security facilities which may be an appropriate model for the sort
of operating system constructs that are required for secure application development. This system,
which is designed as an adjunct to various operating system/hardware bases, includes facilities to
support protected subsystems. These facilities are designed to enable applications be to
constructed in a layered fashion (from a security standpoint). Application-specific security
software could be protected from other applications and from user-developed software and would
not be able to compromise the basic security guarantees offered by the operating system (e.g.,
process and data segregation according).

It is not yet known if the constructs provided by LOCK will yield application-specific security
software which is “manageable”, e.g., which can be readily understood by application
developers, nor is the performance impact fo these facilities well understood. LOCK is designed
as a “beyond A1” system and thus includes features to support very high assurance for all of its
security functionality, e.g., encryption of storage media. A trusted operating system which
provided the security functionality of LOCK without some of these assurance features might be
adequate for many of trusted application contexts. Finally, LOCK should not be viewed as the
only approach to this problem, but rather as one technical approach which is the product of
considerable research and development activity.

3.1.4 Formal validation

Working from the bottom up, we have a lot of confidence in quantum electrodynamics; though
we certainly can’t give any proof that electrons behave according to that specification, there is a
lot of experimental support, and many people have studied the theory over more than fifty years.
We are pretty sure about the device physics of transistors and the behavior of signals on wires,
especially when conservatively designed, even though in practice we can’t calculate these these
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things from their quantum basis. It is one more step to assemble transistors and wires and
abstract their behavior as digital zeros and ones and AND and OR gates. This step is validated by
simulations of the electrical behavior of the circuits, based on our models of transistors and
wires. None of these steps is completely formal; all rely on inspection by many people over a
long period of time.

From this point there are three steps which can be formalized completely:

logic design goes from digital signals and gates to a computer with memory and instructions;

an assembler goes from a computer interpreting bit patterns as instructions to an assembly
language description of a program;

a compiler goes from the assembly language program to a higher level language.

Each of these steps has been formalized and mechanically checked at least once, and putting all
three together within the same formal system is within reach. We must also ask how the
mechanical checker is validated; this depends on making it very simple and publishing it for
widespread inspection. The system that checks a formal proof can be much simpler than the
theorem-proving system that generates one; the latter need not be trusted.

It’s important to realize that no one has built a system using a computer, assembler and compiler
that have all been formally validated, though this should be possible in a few years. Furthermore,
such a system will be significantly slower and more expensive than one built in the usual way,
because the simple components that can be validated don’t have room for the clever tricks that
make their competitors fast. Normally these parts of the TCB are trusted based on fairly casual
inspection of their implementation and a belief that their implementors are trustworthy. It has
been demonstrated that casual inspection is not enough to find fatal weaknesses [Thompson
1984].

3.1.5 Cryptography

3.1.5.1 Fundamental Concepts of Encryption

 Cryptography and cryptanalysis have existed for at least two thousand years, perhaps beginning
with a substitution algorithm used by Julius Caesar [Tanebaum 1981]. Using his method, every
letter in the original message, known as the plaintext, is replaced by the letter which occurs three
places later in the alphabet. That is, A is replaced by D, B is replaced by E, and so on. For
example, the plaintext “VENI VIDI VICI” would yield “YHQL YLGL YLFL”. The resulting
message, known as the ciphertext, is then couriered to the awaiting centurion, who ‘decrypts’ it
by replacing each letter with the letter which occurs three places‘before it in the alphabet. The
encryption and decryption algorithms are essentially controlled by the number three, which is
known as the encryption and decryption ‘key’. If Caesar suspected that an unauthorized person
had discovered how to decrypt the ciphertext, he could simply change the key value to another
number and inform the field generals of that new value using some other communication
method.

Although Caesar’s cipher is a relatively simple example of cryptography, it clearly depends on a
number of essential components: the encryption and decryption algorithms, a key which is
known by all authorized parties, and the ability to change the key. Figure X shows the encryption
process and how the various components interact.
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 Encryption Decryption Key Key | | v v Plaintext -> Encryption -> Ciphertext -> Decryption ->
Plaintext (Message) Algorithm Algorithm (Message)

 Figure X. The Encryption Process

If any of these components are compromised, the security of the information being protected
decreases. If a weak encryption algorithm is chosen, an opponent might be able to guess the
plaintext once a copy of the ciphertext is obtained. In many cases, the cryptanalyst need only
know the type of encryption algorithm being used in order to break it. For example, knowing that
Caesar used only a cyclic substitution of the alphabet, we could simply try every key value from
1 to 25, looking for the value which resulted in a message containing Latin words. Similarly,
there are many encryption algorithms which appear to be very complicated, but are rendered
ineffective by an improper choice of a key value. In a more practical sense, if the receiver forgets
the key value or uses the wrong one then the resulting message will probably be unintelligible,
requiring additional effort to re-transmit the message and/or the key. Finally, it is possible that
the enemy will break the code even if the strongest possible combination of algorithms and key
values is used. Therefore, keys and possibly even the algorithms need to be changed over a
period of time to limit the loss of security when the enemy has broken the current system. The
process of changing keys and distributing them to all parties concerned is known as ‘key
management’ and is the most difficult aspect of security management after an encryption method
has been chosen.

In theory, any logical function can be used as an encryption algorithm. The function may act on
single bits of information, single letters in some alphabet, single words in some language or
groups of words. The Caesar cipher is an example of an encryption algorithm which operates on
single letters within a message. A number of ‘codes’ have been used throughout history in which
a two column list of words are used to define the encryption and decryption algorithms. In this
case, plaintext words are located in one of the columns and replaced by the corresponding word
from the other column to yield the ciphertext. The reverse process is performed to regenerate the
plaintext from the ciphertext. If more than two columns are distributed, a key can be used to
designate both the plaintext and ciphertext columns to be used. For example, given 10 columns,
the key (3,7) might designate that the third column represents plaintext words and the seventh
column represents ciphertext words. Although code books (e.g., multi-column word lists) are
convenient for manual enciphering and deciphering, their very existence can lead to compromise.
That is, once a code book falls into enemy hands, ciphertext is relatively simple to decipher.
Furthermore, code books are difficult to produce and to distribute, requiring accurate accounts of
who has which books and which parties can communicate using those books. Consequently,
mechanical and electronic devices have been developed to automate the encryption and
decryption process, using primarily mathematical functions on single bits of information or
single letters in a given alphabet.

3.1.5.2 Private vs. Public Crypto-Systems

The security of a given crypto-system depends on the amount of information known by the
cryptanalyst about the algorithms and keys in use. In theory, if the encryption algorithm and keys
are independent of the decryption algorithm and keys, then full knowledge of the encryption
algorithm and key wouldn’t help the cryptanalyst break the code. However, in many practical
crypto-systems, the same algorithm and key are used for both encryption and decryption. The
security of these ‘symmetric cipher’ systems depends on keeping at least the key secret from
others, making them known as ‘private key crypto-systems’.
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An example of a symmetric, private-key crypto-system is the Data Encryption Standard (DES)
[NBS 1978]. In this case, the encryption/decryption algorithm is widely known and has been
widely studied, relying on the privacy of the encryption/decryption key for its security. Other
private-key systems have been implemented and deployed by the NSA for the protection of
classified government information. In contrast to the DES, the encryption/decryption algorithms
within those crypto-systems have been kept private, to the extent that the computer chips on
which they are implemented are coated in such a way as to prevent them from being examined.

Users are often intolerant of private encryption and decryption algorithms because they don’t
know how the algorithms work or if a ‘trap-door’ exists which would allow the algorithm
designer to read the user’s secret information. In an attempt to eliminate this lack of trust a
number of crypto-systems have been developed around encryption and decryption algorithms
based on fundamentally-difficult problems, or ‘one-way functions’, which have been studied
extensively by the research community. In this way, users can be confident that no trap-door
exists that would render their methods insecure.

For practical reasons, it is desirable to use different encryption and decryption keys in the crypto-
system. Such ‘asymmetric’ systems allow the encryption key to be made available to anyone,
while remaining confident that only people who hold the decryption key can decipher the
information. These systems, which depend solely on the privacy of the decryption key, are known
as ‘public-key cryptosystems’. An example of an asymmetric, public-key cipher is the patented
RSA system.

The primary benefit of a public-key system is that anyone can send a secure message to another
person simply by knowing the encryption algorithm and key used by the recipient. Once the
message is enciphered, the sender can be confident that only the recipient can decipher it. This
mode of operation is facilitated by the use of a directory or depository of public keys which is
available to the general public. Much like the telephone book, the public encryption key for each
person could be listed, along with any specific information about the algorithm being used.

3.1.5.3 Digital Signatures

 Society accepts handwritten signatures as legal proof that a person has agreed to the terms of a
contract as stated on a sheet of paper, or that a person has authorized a transfer of funds as
indicated on a check. But the use of written signatures involves the physical transmission of a
paper document; this is not practical if electronic communication is to become more widely used
in business. Rather, a ‘digital signature’ is needed to allow the recipient of a message or
document to irrefutably verify the originator of that message or document.

A written signature can be produced by one person (although forgeries certainly occur), but it can
be recognized by many people as belonging uniquely to its author. A digital signature, then, to be
accepted as a replacement for a written signature would have to be easily authenticated by
anyone, but producible only by its author.

3.1.5.3.1 Detailed Description

 A digital signature system consists of three procedures

• the generator, which produces two numbers called the mark and the secret;

• the signer, which accepts a secret and an arbitrary sequence of bytes called the input, and
produces a number called the signature;
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• the checker, which accepts a mark, an input, and a signature and says whether the signature
matches the input for that mark or not.

The procedures have the following properties

 (1) If the generator produces a mark and a secret, and the signer when given the secret and an
input produces a signature, then the checker will say that the signature matches the input for that
mark.

 (2) Suppose you have a mark produced by the generator, but don’t have the secret. Then even if
you have a large number of inputs and matching signatures for that mark, you still cannot
produce one more input and matching signature for that mark. In particular, even if the signature
matches one of your inputs, you can’t produce another input that it matches. A digital signature
system is useful because if you have a mark produced by the generator, and you have an input
and matching signature, then you can be sure that the signature was computed by a system that
knew the corresponding secret. The reason is that, because of property (2), a system that didn’t
know the secret couldn’t have computed the signature.

 For instance, you can trust a mark to certify an uninfected program if

•  you believe that it came from the generator, and

•  you also believe that any system that knows the corresponding secret is one that can be
trusted not to sign a program image if it is infected.

Known methods for digital signatures are based on computing a secure check sum of the input to
be signed, and then encrypting the check sum with the secret. If the encryption uses public key
encryption, the mark is the public key that matches the secret, and the checker simply decrypts
the signature.

For more details, see Davies and Price, Security for Computer Networks: An Introduction to Data
Security in Teleprocessing and Electronic Funds Transfers (New York, J. Wiley, 1084), ch 9.

3.1.5.3.2 Secure Check Sums

 A secure check sum or one-way hash function accepts any amount of input data (in this case a
file containing a program) and computes a small result (typically 8 or 16 bytes) called the check
sum. Its important property is that it takes a lot of work to find a different input with the same
check sum. Here “a lot of work” means “more computing than an adversary can afford”.

A secure check sum is useful because it identifies the input: any change to the input, even a very
clever one made by a malicious person, is sure to change the check sum. Suppose someone you
trust tells you that the program with check sum 7899345668823051 does not have a virus
(perhaps he does this by signing the check sum with a digital signature). If you compute the
check sum of file WORDPROC.EXE and get 7899345668823051, you should believe that you
can run WORDPROC.EXE without worrying about a virus.

For more details, see Davies and Price, ch 9.

3.1.5.4 Public-Key Cryptosystems and Digital Signatures

 Public key cryptosystems offer a means of implementing digital signatures. In a public key
system the sender enciphers a message using the receiver’s public key creating ciphertext1. To
sign the message he enciphers ciphertext1 with his private key creating ciphertext2. Ciphertext2



Computers at Risk chapters 37

is then sent to the receiver. The receiver applies the sender’s public key to decrypt ciphertext2,
yielding ciphertext1. Finally, the receiver applies his private key to convert ciphertext1 to
plaintext. The authentication of the sender is evidenced by the fact that the receiver successfully
applied the sender’s public key and was able create plaintext. Since encryption and decryption
are opposites, using the sender’s public key to decipher the sender’s private key proves that only
the sender could have sent it.

To resolve disputes concerning the authenticity of a document, the receiver can save the
ciphertext, the public key, and the plaintext as proof of the sender’s signature. If the sender later
denies that the message was sent, the receiver can present the signed message to a court of law
where the judge then uses the sender’s public key to check that the ciphertext corresponds to a
meaningful plaintext message with the sender’s name, the proper time sent, etc. Only the sender
could have generated the message, and therefore the receiver’s claim would be held up in court.

3.1.5.5 Key Management

 In order to use a digital signature to certify a program (or anything else, such as an electronic
message), it is necessary to know the mark that should be trusted. Key management is the process
of reliably distributing the mark to everyone who needs to know it. When only one mark needs to
be trusted, this is quite simple: someone you trust tells you what the mark is. He can’t do this
using the computer system, because you would have no way of knowing that the information
actually came from him. Some other communication channel is needed: a face-to-face meeting, a
telephone conversation, a letter written on official stationery, or anything else that gives adequate
assurance. When several agents are certifying programs, each using its own mark, things are
more complex. The solution is for one agent that you trust to certify the marks of the other
agents, using the same digital signature scheme used to certify anything else. CCITT standard
X.509 describes procedures and data formats for accomplishing this multi-level certification.

3.1.5.6 Algorithms

3.1.5.6.1 One-Time Pads

 There is a collection of relatively simple encryption algorithms, known as one-time pad
algorithms, whose security is mathematically provable. Such algorithms combine a single
plaintext value (e.g., bit, letter or word) with a random key value to generate a single ciphertext
value. The strength of one-time pad algorithms lies in the fact that separate random key values
are used for each of the plaintext values being enciphered and the stream of key values used for
one message is never used for another, as the name implies. Assuming there is no relationship
between the stream of key values used during the process, the cryptanalyst has to try every
possible key value for every ciphertext value, which can be made very difficult simply by using
different representations for the plaintext and key values.

The primary disadvantage of one-time pad systems is that it requires an amount of key
information equal to the size of the plaintext being enciphered. Since the key information must
be known by both parties and is never re-used, the amount of information exchanged between
parties is twice that contained in the message itself. Furthermore, the key information must be
transmitted using mechanisms different from those for the message, thereby doubling the
resources required. Finally, in practice, it is relatively difficult to generate large streams of
“random” values efficiently. Any non-random patterns which appear in the key stream provides
the cryptanalyst with valuable information which can be used to break the system.
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One-time pads can be implemented efficiently on computers using any of the primitive logical
functions supported by the processor. For example, the Exclusive-Or (XOR) operator is a
convenient encryption/decryption function. When 2 bits are combined using the XOR operator,
the result is 1 if one and only one of the input bits is 1, otherwise the result is 0, as defined by the
table in Figure X.

 1 XOR 0 = 1 0 XOR 1 = 1 0 XOR 0 = 0 1 XOR 1 = 0

 Figure X. The XOR Function

The XOR function is convenient because it is fast and you can decrypt the encrypted information
simply by XORing the ciphertext with the same data (key) that you used to encrypt the plaintext,
as shown in Figure Y.

 ENCRYPTION Plaintext 0101 0100 0100 0101 Key 0100 0001 0100 0001 -------------------
Ciphertext 0001 0101 0000 0100

 DECRYPTION Ciphertext 0001 0101 0000 0100 Key 0100 0001 0100 0001 -------------------
Plaintext 0101 0100 0100 0101

 Figure Y. Encryption/Decryption using XOR Function

3.1.5.6.2 Data Encryption Standard (DES)

 In 1972, the NBS identified a need for a standard cryptosystem for unclassified applications and
issued a call for proposals. Although it was poorly received at first, IBM proposed, in 1975, a
private-key cryptosystem which operated on 64-bit blocks of information and used a single 128-
bit key for both encryption and decryption. After accepting the initial proposal, NBS sought both
industry and NSA evaluations. Industry evaluation was desired because NBS wanted to provide
them with a secure encryption that they would want to use and NSA’s advice was requested
because of their historically strong background in cryptography and cryptanalysis. NSA
responded with a generally favorable evaluation, but recommended that the key length be
changed from 128-bits to 56 bits and that some of its fundamental components, known as S-
boxes, be re-designed. Based primarily on that recommendation, the Data Encryption Standard
(DES) became a federal information processing standard in 1977 and an ANSI standard in 1980,
using a 56-bit key.

The DES represents that first time that the U.S. government has developed a cryptographic
algorithm in public. Historically, such algorithms have been developed by the NSA as highly
classified projects. However, despite the openness of its design, many researchers believed that
NSA’s influence on the S-box design and the length of the key introduced a trap-door which
allowed the NSA to read any message encrypted using the DES. In fact, one researcher described
the design of a special-purpose parallel processing computer that was capable of breaking a DES
system using 56-bit keys and that, according to the researcher, could be built by the NSA using
conventional technology. Nonetheless, in over ten years of academic and industrial scrutiny, no
flaw in the DES has been made public. Unfortunately, as with all cryptosystems, there is no way
of knowing if the NSA or any other organization has succeeded in breaking the DES.

The controversy surrounding the DES was reborn when the NSA announced that it would not
recertify the algorithm for use in unclassified government applications after 1987. (Note, DES
has never been used to protect classified, government information, which is protected using
methods controlled by the NSA.) An exception to this ruling was made for electronic funds
transfer applications, most notably FedWire, which had invested substantially in the use of DES.
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NSA cited the widespread use of the DES as a disadvantage, stating that if it were used too much
it would become the prime target of criminals and foreign adversaries. In its place, NSA has
offered a range of private-key algorithms based on classified algorithms that make use of keys
which are generated and managed by NSA.

The DES algorithm has four approved modes of operation, the electronic cookbook, cipher block
chaining, cipher feedback and output feedback modes. Each of these modes has certain
characteristics that make them more appropriate for specific purposes. For example, the cipher
block chaining and cipher feedback modes are intended for message authentication purposes,
while the electronic cookbook mode is used primarily for encryption and decryption of bulk data.

3.1.5.6.3 RSA

 RSA is a public key crypto-system, invented and patented by Ronald Rivest, Adi Shamir and
Leonard Adelman, which is based on large prime numbers. In their method, the decryption key is
generated by selecting a pair of prime numbers, P and Q, (i.e., numbers which are not divisible
by any other) and another number, E, which must pass a special mathematical test based on the
values of the pair of primes. The encryption key consists of the product of P and Q, which we
call N, and the number E, which can be made publicly available. The decryption key consists of
N and another number, called D, which results from a mathematical calculation using N and E.
The decryption key must be kept secret.

A given message is encrypted by converting the text to numbers (using conventional conversion
mechanisms) and replacing each number with a number computed using N and E. Specifically,
each number is multiplied by itself E times, with the result being divided by N, yielding a
quotient, which is discarded, and a remainder. The remainder is used to replace the original
number as part of the ciphertext. The decryption process is similar, multiplying the ciphertext
number by itself D times (vice E times) and dividing it by N, with the remainder representing the
desired plaintext number (which is converted back to a letter).

RSA’s security depends on the fact that, while finding large prime numbers is computationally
easy, factoring large integers into their component primes is not. That is, in order to break the
RSA algorithm, a cryptanalyst must be able to factor large numbers into their prime components
and this is computationally intensive. However, in recent years, parallel processing techniques
have significantly increased the size of numbers (measured as the number of decimal digits in its
representation) that can be factored in a relatively short period of time (i.e., less than 24 hours).
Seventy digit numbers are well within reach of modern computers and processing techniques,
with eighty digit numbers on the horizon. Consequently, most of commercial RSA systems use
512-bit keys (i.e., 154-digits) which should be out of the reach of conventional computers and
algorithms for quite some time.

3.2 Topics of current interest

3.2.1 Commercial integrity models

3.2.1.1 Proprietary software/database protection

The problem of the protection of proprietary software or of proprietary databases is an old and
difficult one. The blatant copying of a large commercial program such as a payroll program, and
its systematic use within the pirating organization is often detectable and will then lead to legal
action. Similar considerations apply to large databases and for these the pirating organization has
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the additional difficulty of obtaining the vendor-supplied periodic updates, without which the
pirated database will become useless.

The problem of software piracy is further exacerbated in the context of personal computing.
Vendors supply programs for word processing, spread sheets, game playing programs, compilers
etc., and these are systematically copied by pirate vendors and by private users. While large scale
pirate vendors may be eventually detected and stopped, there is no hope of hindering through
detection and legal action, the mass of individual users form copying from each other.

Various technical solutions were proposed for the problem of software piracy in the personal
computing world. Some involve a machine customized layout of the data on the disk. Others
involve the use of volatile transcription of certain parts of the program text (A. Shamir).
Cryptography employing machine or program instance customized keys is suggested, in
conjunction with co-processors which are physically impenetrable so that cryptographic keys and
crucial decrypted program text cannot be captured. Some of these approaches, especially those
employing special hardware, and hence requiring cooperation between hardware and software
manufacturers, did not penetrate the marketplace. The safeguards deployed by software vendors
are usually incomplete and after a while succumb to attacks by talented amateur hackers who
produce copyable versions of the protected disks. There even exist programs (Nibble) to help a
user overcome the protections of many available proprietary programs. (These thieving programs
are then presumably themselves copied through use of their own devices!)

It should be pointed out that there is even a debate as to whether the prevalent theft of proprietary
personal computing software by individuals is sufficiently harmful to warrant the cost of
development and of deployment of really effective countermeasures.

It is our position that the problem of copying proprietary software and databases discussed above,
while important, lie outside the purview of system security. Software piracy is an issue between
the rightful owner and the thief and its resolution depends on tools and methods, and represents a
goal, which are disjoint from system security.

There is, however, an important aspect of protection of proprietary software and/or databases
which lies directly within the domain of system security as we understand it. It involves the
unauthorized use of proprietary software/databases by parties other than the organization licensed
to use that software/database, and that within the organization’s system where the proprietary
software is legitimately installed. Consider, for example, a large database with the associated
complex-query software which is licensed by a vendor to an organization. This may be done with
the contractual obligation that the licensee obtains the database for his own use and not for
making query services available to outsiders. Two modes of transgression against the proprietary
rights of the vendor are possible. The organization itself may breach its obligation not to provide
the query services to others, or some employee who himself may have legitimate access to the
database may provide or even sell query services to outsiders. In the latter case the licensee
organization may be held responsible, under certain circumstances, for not having properly
guarded the proprietary rights of the vendor. Thus, there is a security issue associated with the
prevention of unauthorized use of proprietary software/database which is legitimately installed in
a computing system. In our classification of security services it comes under the heading of
resource (usage) control. Namely, the proprietary software is a resource and we wish to protect
against its unauthorized use (say for sale of services to outsiders) by a user who is otherwise
authorized to access that software.

The security service of resource control has attracted very little, if any, research and
implementation efforts. It poses some difficult technical as well as possible privacy problems.
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The obvious approach is to audit, on a selective and possibly random basis, accesses to the
proprietary resource in question. This audit trail can then be evaluated by human scrutiny, or
automatically, for indications of unauthorized use as defined in the present context. It may well
be that effective resource control will require recording, at least on a spot check basis, of aspects
of the content of the user’s interaction with the software/database. For obvious reasons, this may
encounter resistance.

Another security service that may come into play in this context of resource control is non-
repudiation. The legal aspects of the protection of proprietary rights may require that certain
actions taken by the user in connection with the proprietary rights may require that certain actions
taken by the user in connection with the proprietary resource be such that once recorded, the user
is barred from later on repudiating his connection to these actions.

It is clear that such measures for resource control if properly implemented and installed will
serve to deter unauthorized use by individual users of proprietary resources. But what about the
organization controlling the trusted system in which the proprietary resource is imbedded. The
organization may well have the ability to dismantle the very mechanisms designed to control the
use of proprietary resources, thereby evading effective scrutiny by the vendor or his
representations. But the design and nature of security mechanisms is such that they are difficult
to change selectively, and especially in a manner ensuring that their subsequent behavior will
emulate the untempered mode thus, making the change undetectable. Thus the expert effort and
people involved in effecting such changes will open the organization to danger of exposure.

At the present time there is no documented major concern about the unauthorized use, in the
sense of the present discussion, of proprietary programs/databases. It may well be that in the
future, when the sale of proprietary databases will assume economic significance, the possibility
of abuse of proprietary rights by licenced organizations and authorized will be an important
issue. At that point an appropriate technology for resource control will be essential.

3.2.2 Authentication: secure channels to users

3.2.2.1 Passwords

Passwords have been used throughout military history as a mechanism to distinguish friends and
foes. When sentries were posted they were told the daily password which would be given by any
friendly soldier that attempted to enter the camp. Passwords represent a shared secret that allow
strangers to recognize each other and have a number of advantageous properties. They can be
chosen to be easily remembered (e.g., “Betty Boop”) without begin easily guessed by the enemy
(e.g., “Mickey Mouse”). Furthermore, passwords allow any number of people to use the same
authentication method and can be changed frequently (as opposed to physical keys which must be
duplicated). The extensive use of passwords for user authentication in human-to-human
interactions has led to their extensive use in human-to-computer interactions.

“A password is a character string used to authenticate an identity. Knowledge of the password
that is associated with a user ID is considered proof of authorization to use the capabilities
associated with that user ID.” (NCSC - Password Management Guideline)

Passwords can be issued to users automatically by a random generation routine, providing
excellent protection against commonly-used passwords. However, if the random password
generator is not good, breaking one may be equivalent to breaking all. At one installation, a
person reconstructed the entire master list of passwords by guessing the mapping from random
numbers to alphabetic passwords and inferring the random number generator. For that reason, the
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random generator must base its seed from a non-deterministic source such as the system clock.
Often the user will not find a randomly selected password acceptable because it is too difficult to
memorize. This can significantly decrease the advantage of random passwords because the user
may write the password down somewhere in an effort to remember it. This may cause infinite
exposure of the password thwarting all attempts of security. For this reason it can be helpful to
give the user the option to accept or reject, or choose from a list. This may increase the
probability that the user will find an acceptable password.

User defined passwords can be a positive method for assigning passwords if the users are aware
of the classic weaknesses. If the password is too short, say 4 digits, a potential intruder can
exhaust all possible password combinations and gain access quickly. That is why every system
must limit the number of tries any user can make towards entering his password successfully. If
the user picks very simple passwords, potential intruders can break the system by using a list of
common names or using a dictionary. A dictionary of 100,000 words has been shown to raise the
intruder’s chance of success by 50 percent. Specific guidelines of how to pick passwords is
important if the users are allowed to pick their own passwords. Voluntary password systems
should guide the user to never reveal his password to another user and to change the password on
a regular basis, which can be enforced by the system. (The NCSC - Guide to Password
Management represents such a guideline.)

There must be a form of access control provided to prevent unauthorized persons from gaining
access to the password list and reading or modifying the list. One way to protect passwords in
internal storage is by encryption. The passwords of each user are stored as ciphertext produced by
an approved cryptographic algorithm. When a user signs on and enters his password, the
password is processed by the algorithm to produce the corresponding ciphertext. The plaintext
password is immediately deleted, and the ciphertext version of the password is compared with
the one stored in memory. The advantage of this technique is that passwords cannot be stolen
from the computer. However, a person obtaining unauthorized access could delete or change the
ciphertext passwords and effectively deny service.

The longer a password is used, the more opportunities exist for exposing it. The probability of
compromise of a password increases during its lifetime. This probability is considered acceptably
low for an initial time period, after a longer time period it becomes unacceptably high. There
should be a maximum lifetime for all passwords. It is recommended that the maximum lifetime
of a password be no greater than 1 year. (NCSC Password Guideline Management)

3.2.2.2 Tokens

 - physical device assigned to a user - usually used in conjunction with password or PIN -
magnetic strip cards - inexpensive - may be forged - smart cards - contains a micro-processor,
memory and interface - stores user profile data - usually encrypted

3.2.2.3 Biometric Techniques

 Voice - fingerprints - retinal scan - signature dynamics.

Can be combined with smart cards easily

Problems: forgery, compromise
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3.2.3 Networks and distributed systems

3.2.4 Viruses

A computer virus is a program which

•  is hidden in another program (called its host) so that it runs whenever the host program runs,
and

•  can make a copy of itself.

When the virus runs, it can do a lot of damage. In fact, it can do anything that its host can do:
delete files, corrupt data, send a message with the user’s secrets to another machine, disrupt the
operation of the host, waste machine resources, etc. There are many places to hide a virus: the
operating system, an executable program, a shell command file, a macro in a spreadsheet or word
processing program are only a few of the possibilities. In this respect a virus is just like a trojan
horse. And like a trojan horse, a virus can attack any kind of computer system, from a personal
computer to a mainframe.

A virus can also make a copy of itself, into another program or even another machine which can
be reached from the current host over a network, or by the transfer of a floppy disk or other
removable medium. Like a living creature, a virus can spread quickly. If it copies itself just once
a day, then after a week there will be more than 50 copies, and after a month about a billion. If it
reproduces once a minute (still slow for a computer), it takes only half an hour to make a billion
copies. Their ability to spread quickly makes viruses especially dangerous.

There are only two reliable methods for keeping a virus from doing harm:

•  Make sure that every program is uninfected before it runs.

•  Prevent an infected program from doing damage.

3.2.4.1 Keeping It Out

Since a virus can potentially infect any program, the only sure way to keep it from running on a
system is to ensure that every program you run comes from a reliable source. In principle this can
be done by administrative and physical means, ensuring that every program arrives on a disk in
an unbroken wrapper from a trusted supplier. In practice it is very difficult to enforce such
procedures, because they rule out any kind of informal copying of software, including shareware,
public domain programs, and spreadsheets written by a colleague. A more practical method uses
digital signatures.

Informally, a digital signature system is a procedure you can run on your computer that you
should believe when it says “This input data came from this source” (a more precise definition is
given below). Suppose you have a source that you believe when it says that a program image is
uninfected. Then you can make sure that every program is uninfected before it runs by refusing to
run it unless

•  you have a certificate that says “The following program is uninfected:” followed by the text
of the program, and

•  the digital signature system says that the certificate came from the source you believe.

Each place where this protection is applied adds to security. To make the protection complete, it
should be applied by any agent that can run a program. The program image loader is not the only
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such agent; others are the shell, a spreadsheet program loading a spreadsheet with macros, a word
processing program loading a macro, and so on, since shell scripts, macros etc. are all programs
that can host viruses. Even the program that boots the machine should apply this protection when
it loads the operating system.

3.2.4.2 Preventing Damage

Because there are so many kinds of programs, it may be hard to live with the restriction that
every program must be certified uninfected. This means, for example, that a spreadsheet can’t be
freely copied into a system if it contains macros. If you want to run an uncertified program,
because it might be infected you need to prevent it from doing damage--leaking secrets, changing
data, or consuming excessive resources.

Access control can do this if the usual mechanisms are extended to specify programs, or set of
programs, as well as users. For example, the form of an access control rule could be “user A
running program B can read” or “set of users C running set of programs D can read and write”.
Then we can define a set of uninfected programs, namely the ones which are certified as
uninfected, and make the default access control rule be “user running uninfected” instead of
“user running anything”. This ensures that by default an uncertified program will not be able to
read or write anything. A user can then relax this protection selectively if necessary, to allow the
program access to certain files or directories.

3.2.4.3 Vaccines

It is well understood how to implement the complete protection against viruses just described,
but it requires changes in many places: operating systems, command shells, spreadsheet
programs, programmable editors, and any other kinds of programs, as well as procedures for
distributing software. These changes ought to be implemented. In the meantime, however, there
are various stopgap measures that can help somewhat. They are generally known as vaccines, and
are widely available for personal computers.

The idea of a vaccine is to look for traces of viruses in programs, usually by searching the
program images for recognizable strings. The strings may be either parts of known viruses that
have infected other systems, or sequences of instructions or operating system calls that are
considered suspicious. This idea is easy to implement, and it works well against known threats,
but an attacker can circumvent it with only a little effort. Vaccines can help, but they don’t
provide any security that can be relied upon.

3.2.5 Security perimeters

Security is only as strong as its weakest link. The methods described above can in principle
provide a very high level of security even in a very large system that is accessible to many
malicious principals. But implementing these methods throughout the system is sure to be
difficult and time-consuming. Ensuring that they are used correctly is likely to be even more
difficult. The principle of “divide and conquer” suggests that it may be wiser to divide a large
system into smaller parts and to restrict severely the ways in which these parts can interact with
each other.

The idea is to establish a security perimeter around part of the system, and to disallow fully
general communication across the perimeter. Instead, there are GATES in the perimeter which
are carefully managed and audited, and which allow only certain limited kinds of traffic (e.g.,
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electronic mail, but not file transfers or general network datagrams). A gate may also restrict the
pairs of source and destination systems that can communicate through it.

It is important to understand that a security perimeter is not foolproof. If it passes electronic mail,
then users can encode arbitrary programs or data in the mail and get them across the perimeter.
But this is less likely to happen by mistake, and it is more difficult to do things inside the
perimeter using only electronic mail than using terminal connections or arbitrary network
datagrams. Furthermore, if, for example, a mail-only perimeter is an important part of system
security, users and managers will come to understand that it is dangerous and harmful to
implement automated services that accept electronic mail requests.

As with any security measure, a price is paid in convenience and flexibility for a security
perimeter: it’s harder to do things across the perimeter. Users and managers must decide on the
proper balance between security and convenience.

3.2.5.1 Application gateways

3.2.5.1.1 What’s a gateway

 The term ‘gateway’ has been used to describe a wide range of devices in the computer
communication environment. Most devices described as gateways can be categorized as one of
two major types, although some devices are difficult to characterize in this fashion.

 - The term ‘application gateway’ usually refers to devices that convert between different
protocols suites, often including application functionality, e.g., conversion between DECNET
and SNA protocols for file transfer or virtual terminal applications.

 - The term ‘router’ is usually applied to devices which relay and route packets between
networks, typically operating at layer 2 (LAN bridges) or layer 3 (internetwork gateways). These
devices do not convert between protocols at higher layers (e.g, layer 4 and above).

 ‘Mail gateways,’ devices which route and relay electronic mail (a layer 7 application) may fall
into either category. If the device converts between two different mail protocols, e.g., X.400 and
SMTP, then it is an application gateway as described above. In many circumstances an X.400
Message Transfer Agent (MTA) would act strictly as a router, but it may also convert X.400
electronic mail to facsimile and thus operate as an application gateway. The multifaceted nature
of some devices illustrates the difficulty of characterizing gateways in simple terms.

3.2.5.1.2 Gateways as Access Control Devices

 Gateways are often employed to connect a network under the control of one organization (an
‘internal’ network) to a network controlled by another organization (an ‘external’ network such
as a public network). Thus gateways are natural points at which to enforce access control
policies, i.e., the gateways provide an obvious security perimeter. The access control policy
enforced by a gateway can be used in two basic ways:

 - Traffic from external networks can be controlled to prevent unauthorized access to internal
networks or the computer systems attached to them. This means of controlling access by outside
users to internal resources can help protect weak internal systems from attack.

 - Traffic from computers on the internal networks can be controlled to prevent unauthorized
access to external networks or computer systems. This access control facility can help mitigate
Trojan Horse concerns by constraining the telecommunication paths by which data can be
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transmitted outside of an organization, as well as supporting concepts such as release authority,
i.e., a designated individual authorized to communicate on behalf of an organization in an official
capacity.

 Both application gateways and routers can be used to enforce access control policies at network
boundaries, but each has its own advantages and disadvantages, as described below.

3.2.5.1.2.1 Application Gateways as PAC Devices

 Because an application gateway performs protocol translation at layer 7, it does not pass through
packets at lower protocol layers. Thus, in normal operation, such a device provides a natural
barrier to traffic transiting it, i.e., the gateway must engage in significant explicit processing in
order to convert from one protocol suite to another in the course of data transiting the device.
Different applications require different protocol conversion processing. Hence, a gateway of this
type can easily permit traffic for some applications to transit the gateway while preventing other
traffic, simply by not providing the software necessary to perform the conversion. Thus, at the
coarse granularity of different applications, such gateways can provide protection of the sort
described above.

 For example, an organization could elect to permit electronic mail to pass bi-directionally by
putting in place a mail gateway while preventing interactive login sessions and file transfers (by
not passing any traffic other than e-mail). This access control policy could be refined also to
permit restricted interactive login, e.g., initiated by an internal user to access a remote computer
system, by installing software to support the translation of the virtual terminal protocol in only
one direction (outbound).

 An application gateway often provides a natural point at which to require individual user
identification and authentication information for finer granularity access control. This is because
many such gateways require human intervention to select services etc. in translating from one
protocol suite to another, or because the application being supported is one which intrinsically
involves human intervention, e.g., virtual terminal or interactive database query. In such
circumstances it is straightforward for the gateway to enforce access control on an individual user
basis as a side effect of establishing a ‘session’ between the two protocol suites.

 Not all applications lend themselves to such authorization checks, however. For example, a file
transfer application may be invoked automatically by a process during off hours and thus no
human user may be present to participate in an authentication exchange. Batch database queries
or updates are similarly non-interactive and might be performed when no ‘users’ are present. In
such circumstances there is a temptation to employ passwords for user identification and
authentication, as though a human being were present during the activity, and the result is that
these passwords are stored in files at the initiating computer system, making them vulnerable to
disclosure (as discussed elsewhere in the report on user authentication technology). Thus there
are limitations on the use of application gateways for individual access control.

 As noted elsewhere in this report, the use of cryptography to protect user data from source to
destination (end-to-end encryption) is a powerful tool for providing network security. This form
of encryption is typically applied at the top of the network layer (layer 3) or the bottom of the
transport layer (layer 4). End-to-end encryption cannot be employed (to maximum effectiveness)
if application gateways are used along the path between communicating entities. The reason is
that these gateways must, by definition, be able to access protocols at the application layer, which
is above the layer at which the encryption is employed. Hence the user data must be decrypted for
processing at the application gateway and then re-encrypted for transmission to the destination
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(or to another application gateway). In such an event the encryption being performed is not really
“end-to-end.”

 If an application layer gateway is part of the path for (end-to-end) encrypted user traffic, then
one would, at a minimum, want the gateway to be trusted (since it will have access to the user
data in cleartext form). Note, however, there use of a trusted computing base (TCB) for the
gateway does not necessarily result in as much security as if (uninterrupted) encryption were in
force from source to destination. The physical, procedural, and emanations security of the
gateway must also be taken into account as breeches of any of these security facets could subject
the user’s data to unauthorized disclosure or modification. Thus it may be especially difficult, if
not impossible, to achieve as high a level of security for a user’s data if an application gateway is
traversed vs. using end-to-end encryption in the absence of such gateways.

 In the context of electronic mail the conflict between end-to-end encryption and application
gateways is a bit more complex. The secure messaging facilities defined in X.400 [CCITT
1989a] allow for encrypted e-mail to transit MTAs without decryption, but only when the MTAs
are operating as routers rather than application gateways, e.g., when they are not performing
“content conversion” or similar invasive services. The Privacy-Enhanced Mail facilities
developed for the TCP/IP Internet [RFC 1113, August 1989] incorporate encryption facilities
which can transcend e-mail protocols, but only if the recipients are prepared to process the
decrypted mail in a fashion which smacks of protocol layering violation. Thus, in the context of
electronic mail, only those devices which are more akin to routers than application gateways can
be used without degrading the security offered by true end-to-end encryption.

3.2.5.1.2.2 Routers as PAC Devices

 Since routers can provide higher performance, greater robustness and are less intrusive than
application gateways, access control facilities that can be provided by routers are especially
attractive in many circumstances. Also, user data protected by end-to-end encryption technology
can pass through routers without having to be decrypted, thus preserving the security imparted by
the encryption. Hence there is substantial incentive to explore access control facilities that can be
provided by routers.

 One way a router at layer 3 (to a lesser extent at layer 2) can effect access control through the use
of “packet filtering” mechanisms. A router performs packet filtering by examining protocol
control information (PCI) in specified fields in packets at layer 3 (and maybe layer 4). The router
accepts or rejects (discards) a packet based on the values in the fields as compared to a profile
maintained in an access control database. For example, source and destination computer system
addresses are contained in layer 3 PCI and thus an administrator could authorize or deny the flow
of data between a pair of computer systems based on examination of these address fields.

 If one peeks into layer 4 PCI, an eminently feasible violation of protocol layering for many layer
3 routers, one can effect somewhat finer grained access control in some protocol suites. For
example, in the TCP/IP suite one can distinguish among electronic mail, virtual terminal, and
several other types of common applications through examination of certain fields in the TCP
header. However, one cannot ascertain which specific application is being accessed via a virtual
terminal connection, so the granularity of such access control may be more limited than in the
context of application gateways. Several vendors of layer 3 routers already provide facilities of
this sort for the TCP/IP community, so this is largely an existing access control technology.

 As noted above, there are limitations to the granularity of access control achievable with packet
filtering. There is also a concern as to the assurance provided by this mechanism. Packet filtering
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relies on the accuracy of certain protocol control information in packets. The underlying
assumption is that if this header information is incorrect then packets will probably not be
correctly routed or processed, but this assumption may not be valid in all cases. For example,
consider an access control policy which authorizes specified computers on an internal network to
communicate with specified computers on an external network. If one computer system on the
internal network can masquerade as another, authorized internal system (by constructing layer 3
PCI with incorrect network addresses), then this access control policy could be subverted.
Alternatively, if a computer system on an external network generates packets with false
addresses, it too could subvert the policy.

 Other schemes have been developed to provide more sophisticated access control facilities with
higher assurance, while still retaining most of the advantages of router-enforced access control.
For example, the VISA system [Estrin 1987] requires a computer system to interact with a router
as part of an explicit authorization process for sessions across organizational boundaries. This
scheme also employs a cryptographic checksum applied to each packet (at layer 3) to enable the
router to validate that the packet is authorize to transit the router. Because of performance
concerns, it has been suggested that this checksum be computed only over the layer 3 PCI,
instead of the whole packet. This would allow information surreptitiously tacked onto an
authorized packet PCI to transit the router. Thus even this more sophisticated approach to packet
filtering at routers has security shortcomings.

3.2.5.1.3 Conclusions

 Both application gateways and routers can be used to enforce access control at the interfaces
between networks administered by different organizations. Application gateways, by their nature,
tend to exhibit reduced performance and robustness, and are less transparent than routers, but
they are essential in the heterogeneous protocol environments in which much of the world
operates today. As national and international protocol standards become more widespread, there
will be less need for such gateways. Thus, in the long term, it would be disadvantageous to adopt
security architectures which require that interorganizational access control (across network
boundaries) be enforced through the use of such gateways. The incompatibility between true end-
to-end encryption and application gateways further argues against such access control
mechanisms for the long term.

 However, in the short term, especially in circumstances where application gateways are required
due to the use of incompatible protocols, it is appropriate to exploit the opportunity to implement
perimeter access controls in such gateways. Over the long term, we anticipate more widespread
use of trusted computer systems and thus the need for gateway-enforced perimeter access control
to protect these computer systems from unauthorized external access will diminish. We also
anticipate increased use of end-to-end encryption mechanisms and associated access control
facilities to provide security for end-user data traffic. Nonetheless, centrally managed access
control for inter-organizational traffic is a facility than may best be accomplished through the use
of gateway-based access control. If further research can provide higher assurance packet filtering
facilities in routers, the resulting system, in combination with trusted computing systems for end
users and end-to-end encryption would yield significantly improved security capabilities in the
long term.
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5 Glossary

Access control Granting or denying a principal’s access to an object according to the
security model

Access control
list

A list of the principals that are permitted to access an object, and the
access rights of each principal.

Access level Part of the Orange Book security level.
Accountability Enabling individuals to be held responsible for things that happen in a

system.
Identity based An access control rule based only on the identity of the subject and object.

Contrasted with ‘rule based’. See ‘discretionary’.
Rule based An access control rule based on some properties of the subject and object

beyond their identities. Contrasted with ‘identity based’. See ‘mandatory’.
User directed Access control in which the user who owns an object controls who can

access it. Contrasted with ‘administratively directed’. See ‘discretionary’.
Administratively
directed

Access control in which a small number of administrators control who
can access which objects. Contrasted with ‘user directed’. See
‘mandatory’.

Assurance Establishing confidence that a system meets its security specification.
Auditing Recording each operation on an object and the subject responsible for it.
Authentication Determining who is responsible for a given request or statement.
Authorization Determining who is trusted for a given purpose.
Availability Assuring that a given event will occur by a specified time.
Bell-LaPadula An information flow security model couched in terms of subjects and

objects.
Capability Something which is accepted as evidence of the right to perform some

operation on some object.
Category Part of the Orange Book security level.
Challenge-
response

An authentication procedure that requires calculating a correct response to
an unpredictable challenge.

COMPUSEC Computer security.
COMSEC Communications security.
Confidential Synonym for secret.
Confidentiality Keeping information confidential.
Countermeasure A mechanism that reduces the vulnerability of or threat to a system.
Covert channel A communications channel that allows two cooperating processes to

transfer information in a manner that violates security policy.
Crypto ignition
key

A key storage device that must be plugged into an encryption device to
enable secure communication.

Delegate To authorize one principal to exercise some of the authority of another.
Depend A system depends on another system if you can’t count on the first system

to work properly unless the second one does.
Denial of service The opposite of availability.
DES The Data Encryption Standard secret key encryption algorithm.
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Digital signature Data which can only be generated by an agent that knows some secret,
and hence is evidence that such an agent must have generated it.

Discretionary
access control

An access control rule that can be freely changed by the owner of the
object.

Emanation An signal emitted by a system which is not explicitly allowed by its
specification.

Gateway A system connected to two computer networks which transfers
information between them.

Group A set of principals.
Implementation The mechanism that causes the behavior of a system, which with luck

matches its specification.
Information flow
control

Ensuring that information flows into an object only from other objects
with lower security levels.

Integrity Keeping system state from changing in an unauthorized manner.
Kernel A trusted part of an operating system on which the rest depends.
Key An input, usually a string of a few dozen or hundred characters, that

makes a general encryption or decryption algorithm suitable for secure
communication among parties that know the key.

Label The security level of an object.
Level see Security level.
Mandatory access
control

An access control rule that the woner of the object can’t make more
permissive; often, a rule based on the security levels of the resource and
the requesting subject.

Model An expression of a security policy in a form that a system can enforce.
Mutual
authentication

Authenticating each party to a communication to the other; specifically,
authenticating the system that implements an object and verifying that it
is authorized to do so.

Non-
discretionary

Synonym for mandatory.

Non-repudiation Authentication which remains credible for a long time.
Object Something to which access is controlled.
Operating system A program intended to directly control the hardware of a computer, and

on which all the other programs running on the computer must depend.
Orange book Department of Defense Trusted Computer System Evaluation Criteria.
Password A secret that a principal can present to a system in order to authenticate

himself.
Perimeter A boundary where security controls are applied to protect assets.
Policy A description of the rules by which people are given access to

information and resources, usually broadly stated.
Principal A person or system that can be authorized to access objects or can make

statements affecting access control decisions.
Protected
subsystem

A program that can act as a principal in its own right.

Public key The publicly known key of a key pair for a public key encryption
algorithm

Public key
encryption

An encryption algorithm that uses a pair of keys; one key of the pair
decrypts information that is encrypted by the other.
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Receivers Principals reading from a channel.
Reference
monitor

A system component that enforces access controls on an object.

Requirement see Policy; a requirement is often more detailed.
RSA The Rivest-Shamir-Adelman public key encryption algorithm.
Secrecy Keeping information secret.
Secret Known at most to an authorized set of principals.
Secret key A key for a secret key encryption algorithm.

The secret key of a key pair for a public key encryption algorithm
Secret key
encryption

An encryption algorithm that uses the same key to decrypt information
that is used to encrypt it.

Secure channel An information path where the set of possible senders can be known to
the receivers, or the set of possible receivers can be known to the senders,
or both.

Security level Data that expresses how secret some information should be; one level
may be higher than another if information at the higher level is supposed
to be more secret.

Senders Principals writing to a channel.
Separation of
duty

An authorization rule that requires two different principals to approve an
operation.

Signature see Digital signature.
Simple security
property

An information flow rule that a subject can only read from an equal or
higher level object.

Smart card A small computer in the shape of a credit card.
Specification A description of the desired behavior of a system.
Star property An information flow rule that a subject can only write to an equal or

higher level object.
Subject An active entity that can make request to obtain information from an

object or change the state of an object.
System A state machine: a device that, given the current state and some inputs,

yields one of a set of outputs and new states.
An interdependent collection of components that can be considered as a
unified whole.

TCB Trusted computing base.
Tempest US government rules for limiting compromising signals from electrical

equipment.
Threat Any circumstance or event with the potential to cause harm to a system.
Token A pocket-sized computer which can participate in a challenge-response

authentication scheme.
Trap door A hidden mechanism in a system that can be triggered to circumvent the

system’s security mechanisms.
Trojan horse A computer program with an apparently or actually useful function that

also contains a trap door.
Trust Confidence that a system meets its specifications.
Trusted
computing base

The components of a system that must work for the system to meet its
security specifications.

Vaccine A program that attempts to detect viruses and disable them.
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Virus A self-propagating program.
Vulnerability A weakness in a system that can be exploited to violate the system’s

security policy.


