I nter connecting Computers:
Architecture, Technology, and Economics'

Butler W. Lampson

Systems Research Center, Digital Equipment Corporation
OneKendall Sg., Bldg 700, Cambridge, MA 02138
lampson@src.dec.com

Abstract. Modern computer systems have a recursive structure of processing and storage
elements that are interconnected to make larger elements:

Functional units connected to registers and on-chip cache.

Multiple processors and caches connected to main memories.

Computing nodes connected by a message-passing local area network.

Loca area networks bridged to form an extended LAN.

Networks connected in a wide-area internet.

All the computersin the world exchanging electronic mail.
Above the lowest level of transistors and gates, the essential character of these connec-
tions changes surprisingly little over about nine orders of magnitude in time and space.
Connections are made up of nodes and links; their important properties are bandwidth,
latency, connectivity, availability, and cost. Switching is the basic mechanism for con-
necting lots of things. There are many ways to implement it, al based on multiplexing
and demultiplexing. This paper describes some of them and gives many examples. It also
considers the interactions among the different levels of complex systems.

1 Introduction

A point of view is worth 80 points of 1Q.
Alan Kay

A computing system is part of a complex web of interconnections. We impose order
on this web by organizing it hierarchically: a system is made up of connected subsys-
tems, and is itself connected to other parts of the larger system that contains it. Figure
1 shows some of this structure as it exists today, ranging from an individual processor
register to the world-wide Internet. It is striking that there is a range of at least seven
orders of magnitude in both the number of components (shown on the right) and the
minimum time for communication (shown on the | &ft).

In spite of this enormous variation, the interconnections themselves are remarkably
similar in design. Both the interface that an interconnection offers to a system and the
structure of the interconnection itself are taken from a small set of design aternatives.
This paper describes many of these aternatives and illustrates them with examples
drawn from every level of the figure.

' Presented at the Conference on Programming Languages and System Architectures, Zurich, March
1994. Published in Lecture Notes in Computer Science 782, Springer, 1994, pp 1-20

D05 nternet 20 [0 10M /100 TB
] C],J:l 0o
30M 100 ms/,,/"'/ \\\ 20K
O oB— o AN 08 3| 500/5GB
U ~. O0OgopodHg
300K 1ms \~\ 500
. <]I
Multiprocessor ... 1
300 1ps /’J \ 1K
10MB RAM | Processor chip {1710 MB
1 3.5ns r i 64
64-bit register
How fast? How many?

Fig. 1. Scalesof interconnection. Relative speed and size areiin italics.

An interface deals either with messages or with storage, and is characterized by a
few performance parameters. bandwidth, latency, connectivity, and availability. Sec-
tion 2 describes these variations.

An implementation of a connection is made up of links and nodes. We explain this
scheme in Section 3 and study links in Section 4. A node in turn can be a converter, a
multiplexer, or a switch; the next three sections are devoted to these components.

A critical property of both links and nodes is that they can be built by composing
lower-level links and nodes according to uniform principles. Because different levels
in this recursion are so similar, a study of interconnections in general reveals much
about the details of any particular one. In the simplest case the interfaces in the com-
posite are the same as those of the whole. Thisis the subject of Section 8, and Section
9 then treats the genera case.

Section 10 gives a brief trestment of fault tolerance, and we end with a conclusion.

Another unifying theme is how the evolution of silicon and fiber optic technology
affects interconnection.

As more devices can fit on a single chip, it becomes feasible to use wide on-chip
data paths, and to depend on control that is both complex and fast as long as the speed
can be obtained by using more gates. The second fact tends to make designs similar at
different scales, since it means that a fast, low-level implementation does not have to
be extremely smple.

As the bandwidth available on a single fiber rises toward the tens of terabits/sec-
ond that seems to be feasible in the long run, a big system can increasingly have the
same interconnection bandwith as a small one. This too tends to make designs similar
at different scales.

Messages Storage

Two-party O—O or

Counting storage as a party, or not.

S NS
w = BN\

Left and right nodes can be the same.

Fig. 2. Communication styles: messages and storage.
Legend: O = active node, [_] = storage node

2 Interfacesfor communication

In the Turing tarpit everything is possible, but nothing is easy.
Alan Perlis

The duality between states and events is a recurring theme in computer science. For us
it is the choice between messages and storage as the style of communication. Both are
universal: you can do anything with one that you can do with the other, and we will
see how to implement each one using the other. But the differences are important.

Figure 2 shows the system structures for various communication patterns using
messages and using storage. The pictures reflect the role of storage as a passive, possi-
ble shared repository for data.

Multi-party communication requires addresses, which can be flat or hierarchical. A
flat address has no structure: the only meaningful operation (other than communica
tion) is equality. A hierarchical address, sometimes called a path name, is a sequence
of flat addresses or simple names, and if one address is a prefix of another, then in
some sense the party with the shorter address contains, or is the parent of, the party
with the longer one. Usually there is an operation to enumerate the children of an ad-
dress. Flat addresses are usually fixed size and hierarchical ones variable, but there are
exceptions. An address may be hierarchical in the implementation but flat at the inter-

face, for instance an Internet address or a URL in the World Wide Web. The examples
below should clarify these points.

21 Messages

The interface for messages is the familiar send and r ecei ve operations. The simplest
form is a blocking r ecei ve, in which a process or thread of control doing arecei ve
walits until a message arrives. If the receiver wants to go on computing it forks a separ-
ate thread to do the recei ve. The dternative is an interrupt when a message arrives;
this is much more complicated to program but may be necessary in an old-fashioned
system that has no threads or expensive ones.

A range of examples servesto illustrate the possibilities:

System Address Sample address Delivery
Ordered Reliable

J-machineg[4] source route 4 north, 2 east yes yes
IEEE 802 LAN 6 byte flat FFF36E 23 A192 no no
IP 4 byte hierarchical 16.12.3.134 no no
TCP IP + port 16.12.3.134/ 3451 yes yes
RPC TCP+ procedure 16.12.3.134/ 3451 / Open yes yes
E-mail host name + user lampson@src.dec.com no yes

Usually there is some buffering for messages that have been sent but not yet re-
ceived, and the sender is blocked (or perhaps gets an error) when the buffering is ex-
hausted. This kind of “back-pressure” is important in many implementations of links
as well; see Section 4. If there is no buffering the system is said to be “synchronous”
because theend and ther ecei ve must wait for each other; this scheme was intro-
duced in CSP [7] but is unpopular because the implementation must do extra work on
every message. The alternative to blockingsiel is to discard extra messages; the
802 andip interfaces do this. Except in real-time systems where late messages are
useless, an interface that discards messages is usually papered over using backoff and
retry; see Section 4.

Message delivery may be ordered, reliable, both, or neither. Messages which may
be reordered or lost are often cheaper to implement in a large system, so much
cheaper, in fact, that ordered reliable messages are best provided by end-to-end se-
guence numbering and retransmission on top of unordered unreliable messages [10].
TCPonlIPis an example of this, and there are many others.

Often messages are used in an asymmetrical “request—response”, “client—server”,
or “remote procedure call” pattern [2] in which the requester always follovemida
immediately with a ecei ve of a reply, and the responder always followseeei ve
with some computation andsand of a response. This pattern simplifies programming
because it means that communicating parties don’t automatically run in parallel;
concurrency can be programmed explicitly as multiple threads if desired.

A message interface may allow broadcast or multicast to a set of receivers. This is
useful for barrier synchronization in a multiprocessor; the bandwidth is negligible, but
the low latency of the broadcast is valuable. At the opposite extreme in performance

broadcast is aso useful for publishing, where latency is unimportant but the bandwidth
may be considerable. And broadcast is often used to discover the system configuration
at startup; in this application performance is unimportant.

It's straightforward to simulate storage using messages by implementing a storage
server that maintains the state of the storage and responds suitaddy #ndst or e
messages. This is the simplest and most popular example of the client-server pattern.

2.2 Storage

The interface for storage is the familiarad andst or e operations. Like ecei ve and
send, these operations take an address, and they also return or take a data value.
Normally they are blocking, but in a high-performance processor the operations the
programmer sees are implemented by non-blodkiag and write-bufferedt or e to-
gether with extra bookkeeping.

Again, some examples show the range over which this interface is useful:

System Address Sample address Data value
Main memory 32-bit flat 04E72A39 1, 2, 4, or 8 bytes
File system [20] path name /udir/bwl/Mail/inbox/214 0-4 Gbytes
World Wide protocol + host name http://src.dec.com/ typed,
Web + path name SRC/docs.html variable size

Storage has several nice properties as a communication interface. Like request-re-
sponse, it introduces no extra concurrency. It provides lazy broadcast, since the con-
tents of the storage is accessible to any active party. And most important, it allows
caching as an optimization that reduces both the latency of the interface and the
bandwidth consumed. Of course nothing is free, and caching introduces the problem of
cache coherence [9, 11], the treatment of which is beyond the scope of this paper.

There are two ways to simulate messages using storage. One is to construct a
gueue of waiting messages in storage, which the receiver can poll. A common exam-
ple is an input/output channel that takes its commands from memory and delivers sta-
tus reports to memory. The other method is to interceptdde andst or e operations
and interpret them as messages with some other meaning. This idea was first used in
the Burroughs B-5000 [1], but became popular withAbe-11 Unibus, in which an
input/output device has an assigned range of memory addressesyaseasdst or e
operations with those addresses, and interprets the combination of address and data as
an arbitrary message, for instance as a tape rewind command. Most input/output sys-
tems today use this idea under the name “programmed 1/O”. An example at a different
level is the Plan 9 operating system [16], the Unibus of the '90s, in which everything
in the system appears in the file name space, and the display device interprets loads
and stores as commands to copy regions of the bitmap or whatever. The World Wide
Web does the same thing less consistently but on a much larger scale.

2.3 Performance

The performance parameters of a connection are:

— Latency: how long a minimum communication takes. We can measure the latency
in bytes by multiplying the latency time by the bandwidth; this gives the capacity
penalty for each separate operation. There are standard methods for minimizing the ef-
fects of latency:

Caching reduces latency when the cache hits.

Prefetching hides latency by the distance between the prefetch and the use.

Concurrency tolerates latency by giving something else to do while waiting.

— Bandwidth: how communication time grows with data size. Usually this is quoted
for a two-party link. The “bisection bandwidth” is the minimum bandwidth across a
set of links that partition the system if they are removed; it is a lower bound on the
possible total rate of communication. There are standard methods for minimizing the
cost of bandwidth:
Caching saves bandwidth when the cache hits.
More generally, locality saves bandwidth when cost increases with distance.
Combining networks reduce the bandwidth to a hot spot by combining several
operations into one, several loads or increments for example [17].

— Connectivity: how many parties you can talk to. Sometimes this is a function of la-
tency, as in the telephone system, which allows you to talk to millions of parties but
only one at a time.

— Predictability: how much latency and bandwidth vary with time. Variation in la-
tency is called “jitter”; variation in bandwidth is called “burstiness”. The biggest
difference between the computing and telecommunications cultures is that computer
communication is basically unpredictable, while telecommunications service is tradi-
tionally highly predictable.

— Availability: the probability that an attempt to communicate will succeed.

Uniformity of performance at an interface is often as important as absolute perfor-
mance, because dealing with non-uniformity complicates programming. Thus perfor-
mance that depends on locality is troublesome, though often rewarding. Performance
that depends on congestion is even worse, since congestion is usually much more diffi-
cult to predict than locality. By contrast, the Monarch multiprocessor [17] provides
uniform, albeit slow, access to a shared memory from 64K processors, with a total
bandwidth of 256 Gbytes/sec and a very simple programming model. Since all the
processors make memory references synchronously, it can use a combining network to
eliminate many hot spots.

3 Implementation components

An engineer can do for a dime what any fool can do for a dollar.
Anonymous

Communication systems are made up of links and nodes. Data flows over the links.
The nodes connect and terminate the links. Of course, alink or a hode can itself be a
communication system made up of other links and nodes;, we study this recursive
structure in Sections 8 and 9.

There are two kinds of nodes: converters and switches. A converter connects two
links of different types, or a terminal link and the client interface. The simplest
switches connect one link to many; they are called multiplexers and demultiplexers
depending on whether the one link is an output or an input. A general switch connects
any one of aset of input links to any one of a set of output links.

The bandwidth of a connection is usualy the minimum bandwidth of any link or
node. The latency isthe sum of several terms:

link time, which consists of
time of flight for one bit, usually at least half the speed of light, plus
message size (number of bits) divided by bandwidth;

switching time;

buffer delays,

conversion time (especialy at the ends).

The cost of a connection is the total cost of its links and nodes. We study the cost
of physical links in Section 4. Nodes are made of silicon and software, and software
runs on silicon. Hence the cost of a node is governed by the cost of silicon, which is
roughly proportional to area in a mature process. Since 1960 the width of a device
(transistor or wire) on a silicon die has been cut in half every five years. The number
of devices per unit area increases with the square of the width, and the speed increases
linearly. Thus the total amount of computing per unit area, and hence per unit cost
(measured in device-cycles), grows with the cube of the width and doubles three times
every five years, or every 20 months [6, 13].

The cost of a node therefore tends to zero as long as it effectively uses the ever-in-
creasing number of devices on a chip. There are two consequences:

— Concurrency on the chip is essential, in the form of wide busses and multiple func-

tion units.

— Complex control can be made fast as long as it can take advantage of lots of gates.
Instead of a large number of sequential steps, each doing a small amount of work, it's
possible to have lots of concurrent finite state machines, and to use lots of combina-

tional logic to do more work in a single cycle.

We see typical results in Ethernet interface chips that cost $10, or in a high-band-

width, low-latency, robust, reliable, low-cost switched network like Autonet [22].

In addition, dramatic improvements in fiber optics mean that almost as much
bandwidth is available on long distance links as locally, and at much lower cost that in

the past [5].

4 Links

There are many kinds of physical links, with cost and performance that vary based on
length, number of drops, and bandwidth. Here are some current examples. Bandwidth
isin bytes/second, and the“+” signs mean that software latency must be added.

Medium Link Bandwidth Latency Width
Alpha chip on-chip bus 22 GBJ/s 3.6 ns 64
PC board RAMbus 05 GB/s 150 ns 8

PCl I/O bus 133.0 MB/s 250 ns 32
Wires HIPPI 100 MB/s 100 ns 32
scsl 20 MB/s 500 ns 16
LAN FDDI 125 MB/s 20+ us 1
Ethernet 1.25 MB/s 100 + [V 1
Wireless WaveAN .25 MB/s 100 + us 1
Fiber 0C-48 300 MB/s 5 ps/km 1
Coax cable T3 6 MB/s 5 ps/km 1
Copper pair T1 0.2 MB/s 5 ps/km 1
Copper pair IDSN 16 KB/s 5 ps/km 1
Broadcast CAP 16 3 MB/s 3 ps/km 6 MHz

A physical link can be unidirectional (“simplex”) or bidirectional (“duplex”). A
duplex link may operate in both directions at the same time (“full-duplex”), or in one
direction at a time (“half-duplex”). A pair of simplex links running in opposite direc-
tions form a full-duplex link, as does a half-duplex link in which the time to reverse
direction is negligible.
To increase the bandwidth of a link, run several copies of it in parallel. This goes
by different names in different branches of our subject; “space division multiplexing”
and “striping” are two of them. Common examples are
Parallel busses, as in the first five lines of the table.
Switched networks: the telephone system and switched LANs (see Section 7).
Multiple disks, each holding part of a data block, that can transfer in parallel.
Cellular telephony, using spatial separation to reuse the same frequencies.

In the latter two cases there must be physical switches to connect the parallel links.

Another use for multiple links is fault tolerance, discussed in Section 10.

Many links do not have a fixed bandwidth that is known to the sender, because of
multiplexing inside the link. Instead, some kindflafv control is necessary to match
the flow of traffic to the link’s capacity. A link can provide this in two ways:

— By dropping excess traffic and signaling “trouble” to the sender, either explicitly or
by failing to return an acknowledgment. The sender responds by waiting for a while
and then retransmitting. The sender increases the wait by some factor after every
trouble signal and decreases it with each trouble-free send. In this “exponential back-
off” scheme the sender is using the wait as an estimate of the link capacity. It is used
in the Ethernet and incp [14, 8]

— By supplying “back-pressure” that tells the sender how much it can send without
suffering losses. This can take the form of start and stop signals, or of “credits” that al-

low a certain amount of traffic to be sent. The number of unused credits the sender has

is called its “window”. Let b be the bandwidth at which the sender can send when it
has permission ardbe the time for the link to respond to new traffic from the sender.

A start—stop scheme can allety units of traffic between a start and a stop; a link that
has to buffer this traffic will overrun and lose trafficrifs too large. A credit scheme
needsb credits when the link is idle to keep running at full bandwidth; a link will un-
derrun and waste bandwidthrifs too large. The failure mode of the credit scheme is
usually less serious. Start—stop is used in the Autonet [22] and on RS-232 serial lines
under the namgON-XOFF; credits are used ircP [8].

Either of these schemes can be implemented on an individual link. An alternative
is to let internal links simply drop excess traffic and to implement backoff end-to-end
[19]. Tcp does this, and it confusingly also uses credits to keep the receiver’'s buffers
from overflowing.

5 Converter nodes

Many converters from one kind of link to another connect a fast link to a slow one and
are therefore part of a multiplexer or demultiplexer. Most other converters are for
backward compatibility. They are usually cheap, because by the time an old link must
be connected to a new one, hardware technology has improved so much that the old
link is simple to implement. A glance at the back of a Macintosh or a stereo receiver
shows how many different connectors you can buy for a small amount of money.

The converters that terminate connections are another matter. For a simple, syn-
chronous link that is designed along with its end nodes, like the bus between a register
file and a functional unit on a processor chip, the converter is implemented in simple,
fast hardware and presents a design problem only if a lot of switching is involved.

Terminating a network link is much more complicated because of requirements for
standardization and fault-tolerance. Furthermore, the link is usually specified without
much attention to the problem of terminating it. A network converter consists of an
“adapter” or “controller” together with “driver” software. In computer applications the
driver is usually the main source of latency and often a serious bandwidth bottleneck
as well, especially when individual messages are small. To see why this is true, con-
sider Amdahl’'s rule that one instruction of useful work needs one bit of 1/O. If a
message is 20 bytes (a common size for multiprocessors) and we want to keep the
driver overhead below 10%, there are only 16 instructions available for handling each
message. It takes a lot of care to handle a message this cheaply [3, 4, 21]. Certainly it
cannot be done unless the controller and the driver are designed together.

6 Multiplexer nodes

A multiplexer combines traffic from several input links onto one output link, and a de-
multiplexer separates traffic from one input link onto several output links. The multi-
plexed links are called “sub-channels” of the one link, and each one has an address.
Figure 3 shows various examples.

There are three main reasons for multiplexers:

=

perfect (lossless) mux

%

output buffered mux demux

'

input buffered mux broadcast

=

unbuffered mux

Fig. 3. Multiplexers and demultiplexers. Traffic flows from left to right.

— Traffic must flow between one node and many, for example when the one node is a
busy server or the head end of a cable TV system.

— One wide wire may be cheaper than many narrow ones, because there is only one
thing to install and maintain, or because there is only one connection at the other end.
Of course the wide wire is more expensive than a single narrow one, and the multi-

plexers must also be paid for.

— Traffic aggregated from several links may be more predictable than traffic from a

single one. This happens when traffic is bursty (varies in bandwidth) but uncorrelated
on the input links. An extreme form of bursty traffic is either absent or present at full

bandwidth. This is standard in telephony, where extensive measurements of line uti-
lization have shown that it's very unlikely for more than 10% of the lines to be active

at one time.

There are many techniques for multiplexing. In the analog domain:

— Frequency division (FDM) uses a separate frequency band for each sub-channel,
taking advantage of the fact theiftt is a convenient basis set of orthogonal functions.
The address is the frequency band of the sub-charmelis used to subdivide the
electromagnetic spectrum in free space, on cables, and on optical fibers.

— Code division multiplexing €DM) uses a different coordinate system in which a ba-

sis vector is a time-dependent sequence of frequencies. This smears out the cross-talk
between different sub-channels. The address is the “code”, the sequence of frequen-
cies.cDM is used for military communications and in a new variety of cellular tele-
phony.

In the digital domain time-division multiplexingrgm) is the standard method. It
comes in two flavors:

— Fixed TDM, in whichn sub-channels are multiplexed by dividing the data sequence
on the main channel into fixed-size slots (single bits, bytes, or whatever) and assigning
everynth slot to the same sub-channel. Usually all the slots are the same size, but it's
sufficient for the sequence of slot sizes to be fixed. A 1.5 Mbit/sec T1 line, for ex-
ample, has 24 sub-channels and “frames” of 193 bits. One bit marks the start of the
frame, after which the first byte belongs to sub-channel 1, the second to sub-channel 2,
and so forth. Slots are numbered from the start of the frame, and a sub-channel’s slot
number is its address.

— Variable TDM, in which the data sequence on the main channel is divided into
“packets”. One packet carries data for one sub-channel, and the address of the sub-
channel appears explicitly in the packet. If the packets are fixed size, they are often
called “cells”, as in the Asynchronous Transfer Mod&M) networking standard.
Fixed-size packets are used in other contexts, however, for instance to carry load and
store messages on a programmed /O bus. Variable sized packets (up to some maxi-
mum which either is fixed or depends on the link) are usual in computer networking,
for example on the Ethernet, token rirgPI, or Internet, as well as f@MA bursts on

I/O busses.

All these methods fix the division of bandwidth among sub-channels except for
variableTbm, which is thus better suited to handle the burstiness of computer traffic.
This is the only architectural difference among them. But there are other architectural
differences among multiplexers, resulting from the different ways of implementing the
basic function ofrbitrating among the input channels. The fixed schemes do this in a
fixed way that is determined which the sub-channels are assigned. This is illustrated at
the top of Figure 3, where the wide main channel has enough bandwidth to carry all
the traffic the input channels can offer. Arbitration is still necessary when a sub-chan-
nel is assigned to an input channel; this operation is usually called “circuit setup”.

With variableTDM there are many ways to arbitrate, but they fall into two main
classes, which parallel the two methods of flow control described in Section 4.

— Cadllision: an input channel simply sends its traffic, but has some way to tell
whether it was accepted. If not, it “backs off” by waiting for a while, and then retries.
The input channel can get an explicit and immediate collision signal, as on the
Ethernet [14], or it can infer a collision from the lack of an acknowledgment,Tasin

[8].

— Scheduling: an input channel makes a request for service and the multiplexer even-

tually grants it; I/0O busses and token rings work this way. Granting can be centralized,
as in many I/O busses, or distributed, as in a daisy-chained bus or a token ring [18].

Flow control means buffering, as we saw in Section 4, and there are several ways
to arrange buffering around a multiplexer, shown on the left side of Figure 3. Having
the buffers near the arbitration point is good because it red@eshence the size of
the buffers. Output buffering is good because it tolerates a largenoss the multi-
plexer, but the buffer may cost more because it has to accept traffic at the total band-
width of all the inputs.

A multiplexer can be centralized, like a T1 multiplexer or a crosspoint in a cross-
bar switch, or it can be distributed along a bus. It seems natural to use scheduling with

a centralized multiplexer and collision with a distributed one, but the examples of the
Monarch memory switch [17] and the token ring [18] show that the other
combinations are also possible.

Multiplexers can be cascaded to increase the fan-in. This structure is usually com-
bined with a converter. For example, 24 voice lines, each with a bandwidth of 64 Kb/s,
are multiplexed to one 1.5 Mb/s T1 line, 30 of these are multiplexed to one 45 Mb/s
T3 line, and 50 of these are multiplexed to one 2.4 Gb/s OC-48 fiber which carries
40,000 voice sub-channels. In the Vax 83800 16 Unibuses are multiplexed to one Bl
bus, and 4 of these are multiplexed to oneinterna processor-memory bus.

Demulltiplexing uses the same physical mechanisms as multiplexing, since one is
not much use without the other. There is no arbitration, however; instead, there is ad-
dressing, since the input channel must select the proper output channel to receive each
sub-channel. Again both centralized and distributed implementations are possible, as
the right side of figure 3 shows. In a distributed implementation the input channel is
broadcast to each output channel, and an address decoder picks off the sub-channel as
its data fly past. Either way it's easy to broadcast a sub-channel to any number of out-
put channels.

7 Switch nodes

A switch is a generalization of a multiplexer or demultiplexer. Instead of connecting
one link to many, it connects many links to many. Figure 4(a) is the usual drawing for
a switch, with the input links on the left and the output links on the right. We view the
links as simplex, but usually they are paired to form full-duplex links so that every in-
put link has a corresponding output link which sends data in the reverse direction.

A basic switch can be built out of multiplexers and demultiplexers in the two ways
shown in Figure 4(b) and 4(c). The latter is sometimes called a “space-division”
switch since there are separate multiplexers and demultiplexers for each link. Such a
switch can accept traffic from every link provided each is connected to a different out-
put link. With full-bandwidth multiplexers this restriction can be lifted, usually at a
considerable cost. If it isn’t, then the switch must arbitrate among the input links, gen-
eralizing the arbitration done by its component multiplexers, and if input traffic is not
reordered the average switch bandwidth is limited to 58% of the maximum by “head-
of-line blocking”.

Some examples reveal the range of current technology. The range in latencies for
the LAN switches is because they receive an entire packet before starting to send it on.

Medium Link Bandwidth Latency Links
Alpha chip register file 13.2 GBI/s 3.6 ns 6
Wires Cray T3D 85 GB/s 1 pus 2K
HIPPI 1.6 GB/s 1 us 16
LAN FDDI Gigaswitch 275 MB/s 10-400 s 22

Switched Ethernet 10 MB/s 100-1200 ps 8
Copper pair Central office 80 MB/s 125 Ms 50K

() The usual representation of a switch
mux demux

full bandwidth

—~limited bandwidth ——
(b) A mux—demux implementation

demux mux

(c) A demux—mux implementation, often drawn as a crossbar

Fig. 4. Switches.

It is also possible to use storage as a switch of the kind shown in Figure 4(b). The
storage device is the common channel, and queues keep track of the addresses that in-
put and output links should use. If the switching isimplemented in software the queues
are kept in the same storage, but sometimes they are maintained separately. Bridges
and routers usually implement their switches this way.

8 Composing switches

Any idea in computing is made better by being made recursive.
Brian Randell

Having studied the basic elements out of which interconnections are made, we can
now look at how to compose them. We begin by looking at how to compose switches
to make a larger switch with the same interface; the next section examines the effect
of changing the interface.

O——=O
f concatenate

O—5O0—O0
30— 2

t route
1o ol
20 02

3 2

P\
36 o3
40 o4

Fig. 5. Composing switches.

8.1 Concatenatinglinks

First we observe that we can concatenate two links using a connector, as in the top
half of Figure 5, to make a longer link. This structure is sometimes called a “pipeline”.

The only interesting thing about it is the rule for forwarding a single traffic unit: can
the unit start to be forwarded before it is completely received (“wormholes”) [15], and
can parts of two units be intermixed on the same link (“interleaving”)? As we shall
see, wormholes give better performance when the time to send a unit is not small, and
it is often not because a unit is often an entire packet. Furthermore, wormholes mean
that a connector need not buffer an entire packet.

The latency of the composite link is the total delay of its component links (the time
for a single bit to traverse the link) plus a term that reflects the time the unit spends on
links. With no wormholes this term is the sum of the times the unit spends on each link
(the size of the unit divided by the bandwidth of the link). With wormholes and inter-
leaving, it is the time on the slowest link. With wormholes but without interleaving, if
there are alternating slow and fast lirsgs1 s f2 ... s fy on the path (withi, perhaps
null), it is the total time on slow links minus the total time on fast links. A sequence of
links with increasing times is equivalent to the slowest, and a sequence with decreas-
ing times to the fastest. We summarize these facts:

Wormhole Interleaving Time on links

No — 2t

Yes No Stg—2tfi=2 (tg —tf;)
Yes Yes ma;

The moral is to use either wormholes or small units. A unit shouldn’t be too small
on a variablerbM link because it must always carry the overhead of its address. Thus

ATM cells, with 48 bytes of payload and 5 bytes of overhead, are about the smallest
practical units (though the Cambridge dotted ring used cells with 2 bytes of payload).
Thisisnot an issue for fixed TDM, and indeed telephony uses 8 bit units.

There is no need to use wormholes for ATM cells, since the time to send 53 bytesis
small in the intended applications. But Autonet [22], with packets that take millisec-
onds to transmit, uses wormholes, as do multiprocessors like the Jmachine [4] which
have short messages but care about every microsecond of latency and every byte of
network buffering. The same considerations apply to pipelines.

8.2 Routing

If we replace the connectors with switch nodes, we can assemble a mesh like the
one at the bottom of Figure 5. The mesh can implement the bigger switch that sur-
rounds it and is connected to it by dashed lines. The path from node 3 to node 4 is
shown by the heavy lines in both the mesh and the switch. The pattern of links be-
tween switchesis called the “topology” of the mesh.

The new mechanism we need to make this workuting, which converts an ad-
dress into a “path”, a sequence of decisions about what output link to use at each
switch. Routing is done with a map from addresses to output links at each switch. In
addition the address may change along the path; this is implemented with a second
map, from input addresses to output addresses.

There are three kinds of addresses. In order of increasing cost to implement the
maps, and increasing convenience to the end nodes, they are:

— Source routing: the address is just the sequence of output links to use; each switch
strips off the one it uses. Them token ring and several multiprocessors [4, 23] use
this. A variation distributes the source route across the path; the address (called a
“virtual circuit”) is local to a link, and each switch knows how to map the addresses on
its incoming linksATM uses this variation.

— Hierarchical routing: the address is hierarchical. Each switch corresponds to one
node in the address tree and knows what links to use to get to its siblings, children, and
parent. The Internet and cascaded 1/O busses use this.

— Flat routing: the address is flat, and each switch knows what links to use for every
address. Broadcast networks like Ethernet emmi use this; the implementation is

easy since every receiver sees all the addresses and can just pick off those destined for
it. Bridged LANs also use flat routing, falling back on broadcast when the map is in-
adequate. The mechanism for routing 800 numbers is mainly flat.

8.3 Deadlock

Traffic traversing a composite link needs a sequence of resources (most often buffer
space) to reach the end, and usually it acquires a resource while holding on to existing
ones. This means that deadlock is possible. The left side of Figure 6 shows the sim-
plest case: two nodes with a single buffer pool in each, and links connecting them. If
traffic must acquire a buffer at the destination before giving up its buffer at the source,

4 1
A
2 <= . (? 3
OO0 |
1———P»4g
3 2

Fig. 6. Deadlock.

it is possible for all the messages to deadlock waiting for each other to release their
buffers.

The simple rule for avoiding deadlock is well known: define a partial order on the
resources, and require that a resource cannot be acquired unless it is greater in this or-
der than all the resources already held. In our application it is usual to treat the links as
resources and require paths to be increasing in the link order. Of course the ordering
relation must be big enough to ensure that a path exists from every sender to every re-
ceiver.

The right side of Figure 6 shows what can happen even on a simple rectangular
grid if this problem is ignored. The four paths use links as follows: 1—EN, 2—NW,
3—WS, 4—SE. There is no ordering that will allow all four paths, and if each path
acquires its first link there is a deadlock.

The standard order on a grid is:< |, iff they are head to tail, and either they
point in the same direction, br goes east or west ahglgoes north or south [15]. So
the rule is: “Go east or west first, then north or south.” On alired, iff they are
head to tail, and either both go up toward the rodg goes down away from the root.
The rule is thus “First up, then down.” OmAaG impose a spanning tree and label all
the other links up or down arbitrarily [22].

9 Layers

There arethreerules for writing a novel.
Unfortunately, no one knows what they are.
Somerset Maugham

In the last section we studied systems composed by plugging together components
with the same interface such as Internet routers, LAN bridges, and telephone switches
and multiplexers. Here we look at systems in which the interface changes. When we
implement an interface on top of a different one we call the implementation a “layer”.
The simplest kind of layering is “encapsulation”, in which we stick converters on
the ends of a link that implements one interface to get a link that implements a differ-
ent one; see Figure 7. Examples are transporting Internet packets over an 802 LAN, or
overDECnet, or the reverse encapsulations of 802emnet packets over the Internet.
Another way to think of this is as multiplexing several protocols over a single link. As
usual, multiplexing needs an address field in each message, so it is prudent and cus-

O——O
1 convert

0—@O

Fig. 7. Encapsulation.

tomary to provide a “protocol type” field in every link interface. A “version number”
field plays a similar role on a smaller scale.
Here is encapsulation in the large. We can build

What Why
a) aTtcpreliable transport link function: reliable stream
b) on an Internet packet link function: routing
c) on thePpp header compression protocol performance: space
d) on theHDLC data link protocol function: packet framing
e) ona 14.4 Kbit/sec modem line function: byte stream
f) on an analog voice-grade telephone line compatibility
g) on a 64 Kbit/sec digital line multiplexed function: bit stream
h) onaT1 line multiplexed performance: aggregation
i) ona T3 line multiplexed performance: aggregation
j) onan OC-48 fiber. performance: aggregation

This stack is ten layers deep. Each one serves some purpose, tabulated in the right col-
umn and classified as function, performance, or compatibility. Note that compatibility
caused us to degrade a 64 Kbhit/sec stream to a 14.4 Kbit/sec stream in layers (f) and
(g) at considerable cost; the great achievemersbof is to get rid of those layers.

On top of TCP we can add four more layers, some of which don’t look so much
like encapsulation:

What Why
w) malil folders function: organization
X) on a mail spooler function: storage
y) onsMTP mail transport function: routing
z) onfTPfile transport function: reliable char arrays

Now we have 14 layers with two kinds of routing, two kinds of reliable transport,
three kinds of stream, and three kinds of aggregation. Each serves some purpose that
isn't served by other, similar layers. Of course many other structures could underlie
the filing of mail messages in folders.

Here is an entirely different example, an implementation of a machine’s load in-
struction:

What Why
a) load from cache function: data access
b) miss to second level cache performance: space
C) miss toRAM performance: space
d) page fault to disk performance: space

Layer (d) could be replaced by a page fault to other machines on a LAN that are shar-
ing the memory [12] (function: sharing), or layer (c) by access to a distributed cache
over a multiprocessor’'s network (function: sharing). Layer (b) could be replaced by

access to a PCl 1/0 bus (function: device access) which at layer (c) is bridged to an 1sA
bus (compatibility).

The standard picture for a communication system is the osl reference model,
which shows peer-to-peer communication at each of seven layers. physical, data link,
network, transport, session, presentation, and application. The peer-to-peer aspect of
this picture is not as useful as you might think, because peer-to-peer communication
means that you are writing a concurrent program, something to be avoided if at all
possible. At any layer peer-to-peer communication is usually replaced with client-
Server communication as soon as possible.

It should be clear from these examples that there is nothing magic about any par-
ticular arrangement of layers. The same load/store function is provided for the file data
type by NFs and other distributed file systems [20], and for an assortment of viewable
data types by the World Wide Web. What is underneath is both similar and totally dif-
ferent. Furthermore, it is possible to collapse layers in an implementation as well as
add them; thisimproves efficiency at the expense of compatibility.

We have seen several communication interfaces and many designs for implement-
ing them. The basic principle seemsto be that any interface and any design can be use-
ful anywhere, regardiess of how lower layers are done. Something gets better each
time we pile on another abstraction, but it's hard to predict the pattern beforehand.

10 Fault-tolerance

The simplest strategies for fault-tolerance are

Duplicate components, detect errors, and ignore bad components.

Detect errors and retry.

Checkpoint, detect errors, crash, reconfigure without the bad components, and

restart from the checkpoint.

Highly available systems use the first strategy, others use the second and third. The
second strategy works very well for communications, since there is no permanent state
to restore, retry is just resend, and many errors are transient.

A more complex approach is to fail over to an alternate component and retry; this
requires a failover mechanism, which for communications takes the simple form of
changes in the routing database. An often overlooked point is that unless the alternate
component is only used as a spare, it carries more load after the failure than it did be-
fore, and hence the performance of the system will decrease.

In general fault tolerance requires timeouts, since otherwise you wait indefinitely
for a response from a faulty component. Timeouts in turn require knowledge of how
long things should take. When this knowledge is precise timeouts can be short and
failure detection rapid, conditions that are usually met at low levels in a system. It's
common to design a snoopy cache, for instance, on the assumption that every proces-
sor will respond in the same cycle so that the responses can be combined with an or
gate. Higher up there is a need for compatibility with several implementations, and
each lower level with caching adds uncertainty to the timing. It becomes more difficult
to set timeouts appropriately; often this is the biggest problem in building a fault-toler-
ant system. Perhaps we should specify the real-time performance of systems more

carefully, and give up the use of caches such as virtual memory that can cause large
variations in response time.

All these methods have been used at every level from processor chips to dis-
tributed systems. In general, however, below the level of the LAN most systems are
synchronous and not very fault-tolerant: any permanent failure causes a crash and
restart. Above that level most systems make few assumptions about timing and are de-
signed to keep working in spite of several failures. From this difference in require-
ments follow many differencesin design.

11 Conclusion

We have seen that both interfaces and implementations for interconnecting computing
elements are quite uniform at many different scales. The storage and message inter-
faces work both inside processor chips and in the World Wide Web. Links, converters,
and switches can be composed by concatenation, routing, and layering to build com-
munication systems over the same range. Bandwidth, latency, and connectivity are
always the important performance parameters, and issues of congestion, flow control,
and buffering arise again and again.

This uniformity arises partly because the ideas are powerful ones. The rapid im-
provement in silicon and fiber optics technology, which double in cost/performance
every two years, also plays a major role in making similar designs appropriate across
the board. Computer scientists and engineers should be grateful, because a little
knowledge will go along way.

References

1. R.Barton: A new approach to the functional design of adigital computer. Proc . Western Joint
Computer Conference (1961)

2. A.Birrell and B. Nelson: Implementing remote procedure calls. ACM Transactions on Computer
Systems 2, 39-59 (1984)

3. D.Cullereta.: Fine-grain parallelism with minimal hardware support: A compiler-controlled
threaded abstract machine. 4th ACM Conference on Architectural Support for Programming
Languages and Operating Systems, 164-175 (1991)

4. W. Dally: A universal parallel computer architecture. New Generation Computing 11, 227-249
(1993)

5. P. Green: The future of fiber-optic computer networks. |IEEE Computer 24, 78-87 (1991)

6. J. Hennessy and N. Jouppi: Computer technology and architecture: An evolving interaction. |EEE
Computer 24, 18-29 (1991)

7. C.Hoare: Communicating sequential processes. Communications of the ACM 21, 666-677 (1978)

V. Jacobsen: Congestion avoidance and control. ACM SgComm Conference, 1988, 314-329

9. L. Lamport: How to make a multiprocessor computer that correctly executes multiprocess
programs. |EEE Trans. Computers C-28, 241-248 (1979)

10. B. Lampson: Reliable messages and connection establishment. In S. Mullender (ed.) Distributed
Systems, Addison-Wesley, 1993, 251-282

11. D. Lenkosi et a.: The Stanford Dash multiprocessor. |EEE Computer 25, 63-79 (1992)

12. K. Li and P. Hudak: Memory coherence in shared virtual memory systems. ACM Transactions on
Computer Systems 7, 321-359 (1989)

13. C. Mead and L. Conway: Introduction to VLS Systems. Addison-Wesley, 1980

©

14

15.

16.
17.

18.

10.

20.

21.

22.

23

. R. Metcalfe and D. Boggs: Ethernet: Distributed packet switching for local computer networks.
Communications of the ACM 19, 395-404 (1976)

L. Ni and P. McKinley: A survey of wormhole routing techniques in direct networks. |EEE
Computer 26, 62-76 (1993)

R. Pike et a.: The use of name spacesin Plan 9. ACM Operating Systems Review 27, 72-76 (1993)
R. Rettberg et a.: The Monarch parallel processor hardware design. |EEE Computer 23, 18-30
(1990)

F. Ross: An overview of FDDI: The fiber distributed data interface. |[EEE Journal on Selected
Areasin Communication 7 (1989)

J. Saltzer, D. Reed, and D. Clark: End-to-end arguments in system design. ACM Transactions on
Computer Systems 2, 277-288 (1984)

M. Satyanarayanan: Distributed file systems. In S. Mullender (ed.) Distributed Systems, Addison-
Wesley, 1993, 353-384

M. Schroeder and M. Burrows: Performance of Firefly RPC. ACM Transactions on Computer
Systems 8, 1-17 (1990)

M. Schroeder et a.: Autonet: A high-speed, self-configuring local area network using point-to-
point links. IEEE Journal on Selected Areasin Communication 9, 1318-1335 (1991)

. C. Seitz: The cosmic cube. Communications of the ACM 28, 22-33 (1985)

