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Abstract: 

We propose a new distributed security infrastructure, called SDSI (pronounced “Sudsy”). 
SDSI combines a simple public-key infrastructure design with a means of defining 
groups and issuing group-membership certificates. SDSI’s groups provides simple, clear 
terminology for defining access-control lists and security policies. SDSI’s design 
emphasizes linked local name spaces rather than a hierarchical global name space.  
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Introduction 

This paper was motivated by the perception that the existing proposals for a public-key 
infrastructure (such as X.509-based schemes that require global certificate hierarchies 
[4]) are both excessively complex and incomplete. Their complexity arises from a 
dependence on global name spaces and an attempt to formalize too many things. Their 
incompleteness can be immediately perceived if one tries to define a security policy (e.g. 
write a ACL) based on the scheme.  

We were also motivated by similar corresponding design efforts, such as that of the IETF 
“SPKI” (Simple Public-Key Infrastructure) working group (in particular, Carl Ellison’s 
work), the work of Blaze, Feigenbaum, and Lacy [1], and work within the World-Wide 
Web Consortium’s security group. Our proposal borrows freely from these sources, and 
has benefited greatly from them.  



Our goal is to provide ideas and techniques that facilitate the construction of secure 
systems. Issues regarding the liabilities and/or the legal interpretation of certificates are 
not addressed here. Because we feel security is enhanced by simple clear data structures, 
we emphasize clarity and readability at the expense of economical encodings, although 
SDSI includes means for efficiently representing its data structures.  

Overview 

We first give an “executive summary” of our proposal here, and then flesh it out in the 
following sections. A detailed specification suitable for as an implementation guide will 
appear in a companion paper.  

Principals are public keys. Our system is “key-centric”: SDSI principals are public 
digital signature verification keys. These public keys are central; everything is based 
around them. The notion of an “individual” (e.g. person, corporation, process, or 
machine) is not required. Of course, such individuals will actually control the associated 
private keys, so that the public/private keys can be viewed as “proxies” for those 
individuals. In this paper, one should think of a “principal” as a public key, and 
concurrently as “one who speaks” (by signing statements that can be verified with that 
public key). Each principal is represented by a data structure that can be passed around, 
such as:  

      ( Public-Key: 
        ( RSA-with-SHA1: 
          ( N: =Gt802Tbz9HKm067= ) 
          ( E: &11 ) ) ) 

so a principal can also be the “value” of some name.  

Egalitarian design-no global hierarchy necessary. Our proposal is egalitarian: each 
principal can make (signed) statements and requests on the same basis as any other 
principal. No hierarchical global infrastructure is required. Of course, in practice some 
principals would be more important than others, and SDSI allows for some principals to 
have special status as “special roots,” allowing SDSI to accomodate “global names.” But 
that is for convenience rather than necessity.  

Each principal is a “certification authority.”  In SDSI, certificates can be created and 
signed by anyone: everyone can be a “CA.” Which policies and procedures (if any) a 
principal follows when issuing certificates is up to that principal to choose: he may 
declare that he is following some industry-standard procedure, or he may issue 
certificates arbitrarily or capriciously.  

Local name spaces. Each principal can create his own local names with which he can 
refer to other principals. These local names arbitrarily chosen; they may be derived from 
nicknames, email addresses, account numbers, etc.:  
        jim  
        "Bob Jones, Jr." 
        account-314568901387 



        WebCo-Vice-President-John-Smith 
        joe@penguin.lcs.mit.edu 
        ( Accounting Bob-Smith ) 
 

There is no fixed “global” name space giving a unique name for principals. The principal 
you call alice-smith may be different from the principal I call alice-smith. An 
exception is made for a small set of “special root” principals, whom everyone calls by the 
same name.  

Simple data structures. SDSI objects are represented by “S-expressions” (octet-strings 
and lists of simpler S-expressions) having a clean human-readable ASCII representation. 
“Presentation hints,” based on MIME content-types, enable octet-strings to be presented 
in italics, or as Unicode characters, or as photos, etc. There are also ways to transmit S-
expressions efficiently.  

Flexible signatures. SDSI signatures are exceptionally flexible: signatures may be 
appended to the objects being signed, or they may be detached from the signed objects. 
Objects may be co-signed by several signers. Signers may sign on behalf of someone 
else. Signatures may contain collections of relevant certificates. Signatures may have 
expiration dates, and may also require periodic re-confirmation.  

Identity certificates have human-readable content. The term “certificate” is often used 
to denote a digitally signed statement. The best-known type of certificate is the “identity 
certificate” that attempts to assert a binding between an individual and his public key.  

Identity certificates are often problematic, because it can be difficult to specify a name or 
other attributes that uniquely identify the desired individual. We feel that because of this 
difficulty, identity certificates must typically in the end be examined by people, to see if 
the name and other attributes given are consistent with the attributes known to the human 
reader. As a typical example, consider the problem of a security administrator who is 
trying to decide if a given certificate should be trusted as establishing the desired binding 
between some public key and some individual. We feel that human judgment is a 
necessary component in this process, and thus we feel that the function of an identity 
certificate can best be served by having the individual described by some free-form text 
(accompanied perhaps by a photo, and perhaps including some descriptive text describing 
how the given information was verified). For this reason, SDSI identity certificates may 
contain as little as a public key and some free-form text about the individual.  

Manual process for creating identity certificates. We feel that the process of accepting 
another individual’s public key(s) and associating it with a local name is very important, 
and that it must therefore be a manual process. Judgment is required to evaluate the 
proposed evidence for the public-key’s owner, and to choose a meaningful local name. A 
typical user will not have to perform this operation very often (perhaps 5-20 times), as we 
shall see, because of the way name spaces can be linked.  

Certificates also give name/value bindings and assert membership. SDSI certificates 
can also be used to bind a (local) name to a value (typically a principal), and to assert that 



a given principal belongs to some group. The three certificate types (identity certificate, 
name/value certificate, and membership certificate) have similar syntax and procedures; 
indeed, sometimes a single SDSI certificate can perform more than one function. SDSI 
certificates are also “extensible;” additional application-dependent data can be included 
in a certificate.  

On-line Internet orientation. We assume that principals who issue certificates can 
provide on-line Internet service, or can arrange to provide such via a designated server. A 
SDSI principal may sign certificates off-line, and have a server distribute them upon 
request. Having such on-line capability permits considerable simplifications-for example, 
we eliminate “certificate revocation lists” in favor of on-line “reconfirmation.”  

Linked local name spaces. SDSI does not utilize a global name space, but rather 
provides means for conveniently linking local name spaces. Each principal can “export” 
his name/value bindings to others, by issuing name/value certificates. Thus, if my local 
name bob refers to some principal, then I can refer to the principal that bob calls alice as  
        ( ref: bob alice ) . 

We suggest that the user interface supply a bit of syntactic sugar to represent this as  
        bob’s alice 

Bob exports his binding by issuing a signed name/value certificate binding his local name 
alice  to that particular principal. Bob’s server can distribute this certificate on demand.  

It is not necessary to have a symbolic reference as the first argument to ref:; one can 
have an expression such as  
        ( ref: <principal> alice ) 

where <principal> is an explicit principal (i.e., a public key, etc.). The syntactically 
sugared version of the above would be:  
        <principal>‘s alice . 

However, we generally prefer the symbolic form, for clarity.  

One can also have longer references, such as  
        bob’s alice’s mother , 

which is the syntactically sugared version of  
        ( ref: bob alice mother ) . 

This reference is well-defined (for me) if I have bound bob  to some principal, who in turn 
has bound alice  to some second principal, who in turn has bound mother  to some third 
principal. Other examples of extended references (with syntactic sugar) are:  
        Visa’s account-314568901387 
        mit’s lcs’s rivest 
        cmu’s eecs-dept’s search-committee’s chairman 
        GE’s lighting-division’s vp-of-sales’s secretary’s assistant 

As a detail, we note that ( ref: bob )  is equivalent to bob , since the first argument to 
ref:  is always interpreted in the current name-space.  

One can also give “symbolic definitions.” For example, my local name tim might denote 
mit’s Tim-Black . This means that my tim  is defined to be the same principal as the one 
mit  refers to as Tim-Black . If MIT changes the principal it calls Tim-Black  then the 



principal I call tim changes as well. The pragmatics of how this works are described 
below.  

To ensure that the object referenced is the intended one, one can wrap the ref: in an 
Assert-Hash:  

      ( Assert-Hash: ( ref: Microsoft employee-list ) 
                     ( SHA1 =hP+73N2Zr50/89jpio== ) ) 

This is equivalent to ref:, except that the retrieved value is hashed and compared to the 
given hash. An error occurs if they are not equal.  

Accommodation for “standard roots” and global name spaces. We recognize that 
there are likely to be a set of standard “special root” principals that are “universally” 
recognized. These principals have SDSI reserved names ending with double exclamation 
marks (!!):  
        VeriSign!! 
        IAPR!! 
        USPS!! 
        DNS!! 

There will be very few of these special roots, and their names are bound to the same 
principal in every name space. This is arranged with suitable procedures (appropriate 
publicity, manual installation, cross-checking, etc.); we do not try to describe this in more 
detail. This gives SDSI access to “standard” name spaces:  
        VeriSign!!’s MicroSoft’s Encarta-Division’s Susan-Smith 
        DNS!!’s edu’s mit’s lcs’s theory’s Silvio-Micali 
        USPS!!’s USA’s DOD’s DCI 
        IAPR!!’s PCA-commerce’s DEC’s SRC’s abadi 
        VeriSign!!’s Visa’s account-234156742 

Each of these should be viewed as a global name that evaluates to the same principal in 
every name space, since the first name (e.g. VeriSign!! ) always evaluates to the same 
principal, and all of the subsequent names are relative.  

Although SDSI provides for special roots within a set of linked name spaces, this does 
not imply that each principal has a unique “global name.” A principal will have multiple 
global names if there are multiple paths from special roots to that principal. Thus,  
        VeriSign!!’s MicroSoft’s CEO 
        DNS!!’s com’s microsoft’s "Bill Gates" 

may refer to the same principal. (Of course, one can check whether these two names 
evaluate to give the same public key, if one wishes.)  

DNS names have a special status. By special dispensation from its designers, SDSI 
includes custom treatment for DNS (Internet email) names, so that  
        Bob.Smith@penguin.microsoft.com 

is equivalent to:  
        DNS!!’s com’s microsoft’s penguin’s Bob.Smith 

-that is, to:  
        ( ref: DNS!! com microsoft penguin Bob.Smith ) . 

How this works is described later on.  



Groups. A SDSI group is typically a set of principals. (The full notion is more general, 
and easily extends to sets of programs or web pages or other things.) Each group has a 
name and a set of members. The name is local to some principal, who is the “owner” of 
the group. The owner is the only one who may change the group definition. The 
definition may explicitly list the group’s members, or may define the group in terms of 
other groups (which may even belong to someone else).  

There are good reasons why “groups” are a fundamental SDSI notion. For describing 
who is authorized to access certain data or to perform certain operations, it is usually 
simplest to define the group of authorized principals in one step, and then to place the 
group name on the appropriate access-control list(s) as a second step. This provides 
efficiency and reliability when the same group of principals is authorized on many 
different ACL’s. The group definition can be updated with a single modification without 
having to update many ACL’s. Also, the group can be given a meaningful name, so that 
auditing group definitions and ACL’s becomes simpler. For writing clear security 
implementations, it is extremely useful to refer to an authorized group of principals by an 
appropriate group name. Each principal can define his own groups, and export his 
definitions to others. Access-control lists for some resources might contain the following 
group names, for example.  
        friends  
        mit’s biology-department’s faculty 
        Massachusetts’s DMV’s drivers-96 
        john’s search-committee-members 
        USA’s over-18 

One can define a group by listing its members:  
      ( Group: Tom Sam "Bill Gates" ) 

or by giving an algebraic expression in terms of the other groups or principals:  
      ( Group: ( OR: faculty staff Bob-Smith ) ) 

We feel that the auditability of ACL’s specified in terms of simple group names, and the 
auditability of the group definitions, is very important when trying to implement an 
appropriate security policy.  

Group membership assertions can play the roles of credentials, licenses, or ordinary paper 
certificates.  

• An organization such as ACM can create a group members that I might refer to as 
acm’s members . A statement signed by acm might say that a given principal (i.e. 
a particular public key, not a name for that key) is a member of the group 
members. The “meaning” of this statement is entirely up to ACM, since it is 
ACM’s prerogative to define its groups any way it pleases. The definition of the 
group members, and the assertion that some principal is a member of it, are things 
that ACM may export.  

• The Department of Motor Vehicles may issue certificates asserting that (the 
individual controlling) a specified public-key is over 18 and has a valid 
Massachusetts driver’s license for 1996 by issuing a signed statement that the 
principal is a member of DMV’s group called adult-drivers-1996.  



Each such certificate also has an expiration date and other information. Membership 
certificates are very useful for dealing with large groups, where it is not reasonable to 
export the entire group definition.  

Clean support for “roles”.  Access control is often conveniently organized around 
“roles” (see Sandhu et al. [7]). SDSI supports roles in two different ways.  

In the first method, an individual creates a public-key for each role he plays. Bob may 
create new principals (public keys) and give them appropriate names:  
        faculty-role  
        bob-jones-travel-key 
        "FudgeCo President" 
        "Biology Department Search Committee Chair" 

Bob can sign statements as the principal I call bob, or he can sign statements as the 
principal I would call bob’s faculty-role , and so on. I can distinguish these cases, and 
recognize when Bob is acting in his faculty role, as opposed to acting as Bob.  

A second method by which SDSI can support roles is by having a group created for each 
role. The owner of the group is the principal who decides who should occupy that role. 
For example, a hospital administrator create a group for each role. The principal who is 
currently acting in that role can be made a member of that group. A hospital administrator 
can implement the role of head-nurse by creating a group with that name, and defining its 
(sole) member to be the principal of the head nurse.  

These two methods differ according to who controls who is acting in the role. Also, there 
is no public-key for a group, so that the second method has the slight disadvantage that 
the principal playing that role signs with his full authority, rather than with the authority 
restricted to the permissions of his role.  

Delegation certificates. SDSI includes the ability to delegate authority in two ways: by 
using groups, and by using “delegation certificates”. A delegation certificate gives the 
delegee the authority to sign statements of certain types on behalf of the delegator. For 
example, a server might have a delegation certificate allowing him to sign membership 
certificates on behalf of the delegator.  

This concludes our brief overview of SDSI.  

Outline of the rest of the paper 

The following sections give some suggested details.  

• Section 3 describes the common underlying data structures and syntax for SDSI, 
including the S-expression data structure and their representation as ASCII 
strings, hash values of an S-expression, dates, numbers, compression techniques, 
and the representation of object and message types.  



• Section 4 describes some standard SDSI data types: cryptographic keys, 
principals (made from a public signature verification key and an internet address), 
encrypted objects, and signed objects (in three formats)  

• Section 5 explains how each principal establishes his own local name space and 
how he can use certificates to export name/value bindings to other parties.  

• Section 6 discusses protocols, gives the basic “query” protocol, gives the 
“reconfirmation” protocol, and discusses autocertificates (which can be viewed as 
the reply to a cryptographic “finger” operation).  

• Section 7 explains the notion of a “group,” and shows how to use groups to 
specify authorization, how to define a group, how to determine whether a given 
principal is a member of some group, using the group definition and any available 
credentials, how to query a server to find out if a principal is a member of some 
remotely-defined group, and how to write ACLs in a simple manner.  

• Section 8 gives examples of some typical application scenarios.  

A companion paper will give precise specifications. This paper contains many suggestive 
details, but a fully worked-out proposal would be much lengthier. Although the first “S” 
in SDSI stands for “simple,” this proposal may appear complex. However, given the 
rather ambitious scope of its aims, we feel that it is remarkably simple.  

Data structures and Syntax 

S-expressions 

This section presents a general syntax for representing octet-strings and lists, the data 
structures used by SDSI.  

Our data structures are “S-expressions,” which may be:  

• An octet-string: a sequence of zero or more 8-bit bytes. Each octet string may be 
preceded by an associated “presentation hint,” which is a sequence of 8-bit bytes 
surrounded by brackets. Examples of octet strings are:  

     "Digital Soup Kitchen" 
 Tom-Hanks 

 An example of a presentation hint is  
 [image/gif] 

• A list of zero or more simpler S-expressions. An example of a list is  
     ( Algorithm: RSA-with-SHA1 ) . 

This section describes how SDSI data structures can be represented in US-ASCII for 
transmission or storage purposes.  

Each S-expression has ASCII “external” representations for transmission or storage. 
Their readability may help diagnosis and auditing. These representations are not unique; 
one can choose maximum economy or maximum legibility. For high efficiency, there is a 



“verbatim” representation of octet strings, and short forms for common symbols (see 
Section 3.3).  

Character Sets. 

SDSI representations use the US-ASCII character set; they may use alphanumeric 
characters, “special” printing characters:  

      ~ ‘ ! @ # $ % ^ & * - _ + = { } ; : ‘ " < > [ ] , . / ? \ | 

and whitespace (non-printing) characters (blanks, tabs, newlines, carriage-returns, etc). 
SDSI is case-sensitive. In general, the amount of whitespace between portions of the 
representation, and their arrangement on different lines, is immaterial. We show nicely 
indented structures for readability only; the indentation is not significant, and parentheses 
are used for grouping.  

Octet-strings. 

Octet-strings are used for a variety of purposes:  

• Object type names, such as Cert:  .  
• Attribute names, such as Date:  .  
• Dates, such as 1996-02-14T11:46:05.046-0500 .  
• Context-specific flags, such as optional .  
• Names (such as Mary-Jones  or "Bob Smith" ) that may denote principals, groups, 

or other SDSI objects). A name need not be an octet-string; it may be an S-
expression, such as 
( ( Digital ) ( Accounting ) ( Robert Smith ) ) .  

• Big numbers.  

There are five external representations for variable-length octet-strings. There is no limit 
on the length of an octet string.  

• Hexadecimal (e.g. &45facd57 ); this is an ampersand (&) followed by an even 
number of hex digits; each consecutive pair of hex digits represents one octet.  

• Base-64 (e.g. =Ac0+Thj390== ); this is an equals sign (=) followed by the base-64 
encoding as defined in RFC-1521. This technique encodes each triple of octets 
with a block of four characters from the 64-character set A-Z a-z 0-9 + / . 
Octet-strings whose length is not a multiple of three have a representation whose 
last four-character block contains two or three base-64 characters and two or one 
equals signs as padding. The length of a base-64 encoding is thus always a 
multiple of four.  

• A token (e.g. athena-server ) is a sequence of printable (non-whitespace) 
characters other than parentheses, single or double quotes, square brackets, 



ampersands or hash marks, and which does not end with a minus sign. Decimal 
numbers (e.g. 45) are a subset of the tokens. A token that begins with a special 
character is called a “special token;” SDSI gives special treatment to some special 
tokens; they may not represent octet-strings at all, or may represent a different 
octet-string. (An example of such a case is the base-64 encodings, which start 
with an equals sign.)  

Special tokens do not (necessarily) represent octet strings, but have special 
functions. At present, the only use SDSI makes of special tokens is for macros:  

o Special tokens may represent macros, such as *S . Macros always start 
with a star * . A macro expands to an ordinary token. Note that "*S" is not 
a macro, and thus isn’t expanded; a macro must be represented as a special 
token and not as some other form of an octet string.  

• Quoted strings (e.g. "Mary P. O’Connor" ) represent octet strings containing 
blanks and printable characters other than double-quotes. On input, a consecutive 
sequence of whitespace characters within the quotes is converted to a single 
blank. On output, a single blank may be converted to an arbitrary sequence of 
whitespace characters (e.g. carriage returns may be freely added at word breaks-
these are “word-wrap strings”).  

• Verbatim octet-strings, are used to transmit large octet-string most efficiently, at 
the cost of abandoning ASCII and human readability. They are represented by a 
length field, a colon, and then the octet-string verbatim. The length-field is 
represented as a sequence of base-256 digits, most significant digit first, with each 
digit preceded by a pound sign (#), and no unnecessary leading zero length digits. 
The result is may look something like #L:aaa or #L#L#L:aaaaaaaaaaaaa.  

Fragments. 

An octet-string may be written as a sequence of “fragments” by following each fragment 
but the last with a minus sign. Thus &0123- "b"- c- &0876 is the same as 
&012362630876. (Note that ASCII "b" is hexadecimal &62.) A long octet string can thus 
be fragmented for robust email transmission.  

The various ways of expressing an octet-string are fully equivalent, as in the following 
example:  
      abc 
      "abc" 
      &616263 
      =YWJj 
      &^C:abc  (Here ^C denotes a single octet with value 3.) 
      a- b- "c" 

Presentation Hints. 



A presentation hint (discussed further below) is represented as an octet string surrounded 
by square brackets. An example is [image/gif]. A presentation hint is a modifier or tag 
for the following octet string; it does not itself represent an octet string, but rather 
describes how the following octet string might best be presented to the user.  

SDSI data structures may be sometimes be shown to people. In some cases, the rules 
above (such as those for “maximum legibility”) may be inappropriate or inadequate. For 
example, some data may be text in Unicode, or may represent a photo. SDSI provides 
“presentation hints” for handling such cases.  

These hints apply to the following S-expression, which must be an octet-string. (Each 
octet string may be preceded by at most one such presentation hint.) Presentation hints 
are octet-strings surrounded by square brackets, as in:  
        [charset=unicode-1-1] &34518976aabcde 

specifies that the hexadecimal string &345... represents Unicode text (see RFC 1641). In 
general, we propose that one can use simple MIME Content-Types, such as  
        [text/richtext] 
        [image/gif] 
        [audio/basic] 
        [application/postscript] 
        [text/plain;charset=unicode-1-1] 

The SDSI specification will say which presentation hints must be supported. Multipart 
MIME types are not supported. Other security-related types may be supported, such as  
        [application/X.509v3] 

for including X.509v3 certificates within SDSI data structures. (Note that this is just a 
presentation hint for an octet string; SDSI does not parse or give any meaning to such a 
certificate, and such a certificate could be included as an octet string without any such 
presentation hint.)  

Presentation hints are only hints. A presentation program may ignore the hint, and present 
the data in some default mode. If used, the hint itself should be suppressed in the 
presentation; if ignored, the hint should be displayed.  

A hint may be placed before any octet string. For other purposes they are effectively 
invisible or ignored. They should be considered as a “tag” for the following octet string, 
and carried around with that string. However, they do participate in hash computations.  

Lists.  

An S-expression list can be represented in ASCII as an optional length field, a left 
parenthesis, an optional blank, the representations of the list elements separated by 
blanks, an optional final blank, and a right parenthesis. The optional length field gives the 
number of elements in the list in base-256, in the same format as for verbatim octet-
strings (each base-256 digit preceded by a pound sign). A blank is required between two 
list elements only if both elements are octet-strings where the first is represented as a 
token, a hexadecimal value, or a base-64 value, and the second represented as a token; 
otherwise the separating blank is optional. On input, any sequence of white-space or non-



printable characters not inside a verbatim octet-string is equivalent to a single blank. As 
an example of an S-expression:  

    ( Get.Query: 
       ( Template: ( Auto-Cert: ) ) 
       ( Signed: 
         ( Object-Hash: ( SHA1 &345678 ) ) 
         ( Date: 1996-02-14T11:46:05.046-0500 ) 
         ( Signature: &8dff4123 ) ) ) 

One can choose the representation of an S-expression according to the purpose being 
served:  

• For maximum legibility, optional blanks are always used, and octet-strings are 
printed in the first manner that works of: token, quoted string, or hexadecimal, 
and appropriate indentation is used.  

• For maximum efficiency, optional blanks are never used, and the shortest possible 
representation of each octet string is chosen.  

• For bullet-proof email transmission, fragmented base-64 encodings can be used, 
with line lengths limited to 76 characters.  

• The “canonical” ASCII encoding of a SDSI object represents all octet-strings 
(including those within presentation hints) in verbatim mode. If an octet string has 
an associated presentation hint then the presentation hint precedes the octet-string. 
Lists are represented with no blanks next to parentheses or between items.  

Numbers, Hash Values, and Dates 

This section describes how (big) numbers, hash-values, and dates are represented as 
octet-strings.  

Numbers. Integers are represented as an octet-string in two’s complement notation with 
the most-significant byte first. A number may be of any length.  

Hash Values. The hash value H(S) of an S-expression S is obtained by applying a 
cryptographic hash algorithm, such as MD5 [6] or SHA1 [5], to S’s canonical ASCII 
representation. SDSI’s default hash algorithm is SHA1. A hash value is represented as a 
list containing the hash algorithm name and the hash value.  
    ( SHA1 =67adhNPs8Y+/Uy34NhWp77CvULm= ) 

Dates and Time. Dates/times are represented as UTC time to the millisecond, with a 
time-zone designation, as an octet-string in the following format:  
    yyyy-mm-ddThh.mm.ss.mmm-xxzz 
    1996-02-14T11:46:05.046-0500 

for February 14th, 1996 at 11:46:05 AM in Eastern Standard Time. Here yyyy is the year, 
mm is the month, dd is the day, hh is the hour, mm is the minutes, ss is the seconds, mmm is 
milliseconds, and xxzz is the time zone expressed as a difference (either + or -) of local 
time to UTC time in hours (xx) and minutes (zz). This format follows the ISO 8601:1988 
conventions. (However, the described format is required, with none of the variations 



possible within that standard, except that the last n fields (n < 6) and their preceding 
separators, may be omitted with the understanding that the omitted items are understood 
to have a zero value. Nonetheless, the full format is recommended, and signers should try 
to give a distinct time to each message signed.)  

Compression 

This section (which should be skipped at first reading) describes compression techniques 
for sending SDSI data structures efficiently.  

SDSI has a fairly expansive, human-readable syntax. For greater economy in 
transmission, SDSI has a simple “macro” capability, as well as “verbatim” encodings for 
octet-strings.  

Quote macro  

The form ‘<S> , for any S-expression <S>, is equivalent to the form ( Quote: <S> ) .  

Star macros 

If a special token begins with a star, then it is looked up in a fixed published standard 
table of substitutions. Each such special token can have some token as its defined value. 
For example,  

    *C  ==> Cert: 
    *G  ==> Get.Query: 
    *P  ==> Principal: 
    *Sg ==> Signature: 
    ... 

All common SDSI tokens have such a “short form.”  

Within a protocol message, the reserved macros *SENDER and *RECEIVER refer to the 
principal for the sender and the principal for the receiver. Thus, ( ref: *SENDER bob ) 
refers to the sender’s bob, while ( ref: *RECEIVER bob ) refers to receiver’s bob.  

Star macros are only used for transmission. They are used to compress a message before 
transmission, and to decompress upon receipt. They only exist “on the wire”; they are not 
used for storage or presentation, and are never present when a hash computation is 
performed.  

Object and message types 

This section describes how lists are used to represent SDSI objects, and a particularly 
important kind of object: messages.  



Nonempty lists are used to represent most SDSI objects. The first element (the head) of 
each list indicates the type of that object. The form of the rest of the list (its body), is 
determined by the object’s type.  

SDSI has a simple type system. Basic types are indicated by a simple token. (SDSI 
normally ends these tokens with a colon, as in Date:). A (super-)type can also be defined 
as the union of other types: the type HASH-ALGORITHM might be defined as the union 
of types SHA1:, MD5, and RIPEMD-160, for example. Super-types are not used explicitly in 
SDSI, but help define its syntax. Some standard super-types are OCTET-STRING, 
TOKEN, ANY, PUBLIC-KEY-ALGORITHM.  

The form of the body is one of three types, depending on the object type. The allowed 
forms are:  

• An attribute/value pair. An object of this type has length exactly two. The head 
(the object type) can be thought of as the “attribute,” and the body contains just 
one element, which is the associate “value.” Here are some examples:  

      ( Date: 1996-02-14T11:46 ) 
      ( Ciphertext: &3487FFAB3C1022 ) 
      ( Period: P1M ) 
      ( SDSI-version: 1.1 ) 

Many SDSI objects will contain a SDSI-version; we don’t show this attribute in 
our examples.  

• A sequence has as a body a variable-length sequence of one or more elements, all 
of the same type (or super-type). Changing the order of the elements in the 
sequence may change the meaning of the object. Here are some examples:  

      ( ref: tom bill mother ) 
      ( OR: faculty staff students ) 
      ( ACL: Ian.Fleming Q 007 Moneypenny ) 

• A set has as a body of variable number of lists representing objects of distinct 
basic types. That is, there may be at most one subobject of any given type, with 
the exception of the subobject type Signed: which may appear multiple times. 
The order of the subobjects within the object does not affect the meaning of the 
object. (However, re-ordering the subobjects will affect how its hash is 
computed.) Certificates are set-type objects:  

      ( Cert: 
        ( Signed:  
          ( Object-Hash: ( SHA1: =78gBVKl8+94D/1QA ) ) 
          ( Date: 1996-05-06T12:00:00 ) 
          ( Signature: &FB47AC89001DA57798 ) ) 
        ( Local-Name: grumpy ) 
        ( Value: [image/gif] =3fGtHy781QhuNiVC ) ) 



Here the Cert: contains an subobject of type Signed:, which is also a set-type 
object. The other object types illustrate (Object-Hash:, Date:, Signature:, 
Local-Name:, and Value:) are all attribute/value object types.  

In general, the subobject types that may (or must) appear in the body of an object are 
constrained by the type of the object itself. SDSI programs should check that syntactic 
validity of the objects they are dealing with.  

Messages are set-type objects; the type is representable as a token of the form  
    protocol-name.message-type: 

that identifies the type of the message transmitted during some two-party protocol. Each 
protocol has a unique name, such as Get or Electronic-Payment. Each protocol consists 
of a back-forth exchange of messages, and each message has its own name within the 
protocol, such as Query, Reply, or Receipt. Thus, a message type may be representable 
by a token such as:  
    Get.Reply: 
    Electronic-Payment.Receipt: 

A commonly used attribute in a message might be the hash of the last message received 
from the other party:  
    ( Your-Last-Message-Hash: ( SHA1 =YnK82Ab+Om0i/uBx+9ikHjdF9NV= ) ) 

All SDSI object-type names are “global.” Users who wish to coin new SDSI object types 
are encouraged to use URL’s as unique names, to avoid conflicting with names used by 
other users. The resource named may specify information about the object type.  

Standard SDSI Object Types 

This section describes four standard SDSI object types: cryptographic keys, principals, 
encrypted objects, and signed objects.  

Keys and encryption parameters 

Cryptographic keys are represented by an attribute/value object that gives the key type 
(one of Public-Key:, Private-Key: or Shared-Secret-Key:) with a sub set-type 
object whose type is the algorithm specified, and whose parts give associated parameters.  

    ( Public-Key: 
       ( RSA-with-SHA1: 
         ( N: =Hi7KugV013Tv978d00vCpQ== ) 
         ( E: &11 ) ) ) 
    ( Private-Key: 
       ( RSA-with-SHA1: 
         ( N: =Hi7KugV013Tv978d00vCpQ== ) 
         ( D: &43 ) ) ) 
    ( Shared-Secret-Key:  
       ( RC5-32/12/16-CBC: 
         ( K: "ossifrage" ) ) ) 



Public keys are for signature verification and/or encryption (depending on the algorithm), 
while private keys are for the corresponding operations of signing and/or decryption. A 
public-key algorithm used for signing or signature verification must specify a hash 
algorithm.  

Shared secret keys can be used for encryption, decryption, or for computing MAC’s 
(message authentication codes). A shared secret key could be a shared password, for 
example. A shared secret key might also be a time-varying password (as obtained, say, 
from a Security Dynamics SecurID card).  

Principals as public keys, and their servers 

This section describes the fundamental notion of a “principal,” defined in terms of a 
public signature verification key, and talks about simple interactions with a principal.  

A SDSI principal is defined as a public signature verification key, one or more optional 
global names, and one or more optional internet addresses. The most important thing 
about a principal is its ability to verify signed statements; that is why a principal is 
defined in terms of its public key. We say that the principal “makes” the signed 
statements, even if its key is only verifying signatures made by the corresponding private 
key.  

    ( Principal: 
      ( Public-Key: ... ) 
      ( Global-Name: ( ref: VeriSign!! WebMaster Bob-Jones ) ) 
      ( Principal-At: "http://abc.webmaster.com/cgi-bin/sdsi-server/" ) 
      ( Server-At: "http://xyz.webmaster.com/cgi-bin/sdsi-server/" ) 
      ) 

The optional Global-Name: field (a sequence) suggests one or more “global names” for 
the principal, each starting from a SDSI special root. These names are merely suggestions 
as to how one might obtain the relevant certificates if one wants to verify that the global 
names are indeed correct.  

The optional Principal-At: field (attribute/value) specifies an Internet address 
(typically as a partial URL) for the principal. Queries to the principal can be addressed 
there, although the principal’s servers (if any) should normally be tried first.  

The optional Server-At: field (a sequence) specifies the Internet addresses of one or 
more “servers” who can distribute certificates and other signed statements on behalf of 
the principal. If more than one server is specified, it is understood that the servers are 
equivalent, and that a query could be addressed to any one of them. The servers should 
have high reliability and high on-line availability, whereas the principal may be 
frequently or even permanently off-line.  

A server also distributes the principal’s “auto-certificate,” an object signed by the 
principal that gives additional information about that principal. Auto-cert service is 



similar to the standard “finger” service, except that the reply is a SDSI auto-certificate. 
We also imagine that there could be standard services similar to Alta Vista that might 
also be able locate an auto-cert given the public key.  

Information in the principal other than the public key is considered as merely “advisory”; 
two principals are taken as being “the same” if and only if they have the same public key.  

There are two reasons for keeping the object of type Principal: as short as possible by 
pushing as much information as possible into the auto-certificate:  

• Information that may change should not be included in the Principal:, since a 
change would require re-issuing any certificates about that principal. Putting such 
information in the auto-cert enables it to be modified without changing any 
certificates other than the auto-cert itself.  

• The Principal: object normally appears in every object signed by that principal, 
and so it is desirable to economize. Including a large GIF photo of oneself is 
reasonable in an auto-cert, but not in every message one signs.  

Individuals who expect to utilize their Principal: object for a long time should choose 
their servers carefully, since reliability and longevity are critical. One needn’t specify 
one’s own machine as one’s server; indeed, this may be a poor choice. Organizations may 
provide servers for their members, or commercial services may provide servers for a fee. 
For short-term principals, such as many “roles”, using one’s own machine may be 
satisfactory.  

Encrypted objects 

This section describes how to represent an encrypted object within SDSI, as a list 
containing both a key indicator and the ciphertext.  

The encryption of an object X is a set-type object whose parts indicate the encryption key 
(either a public key or a shared-secret key) used to encrypt the object and give the 
ciphertext resulting from encrypting an ASCII representation of X.  

The ciphertext may be an arbitrary sequence of S-expressions; some encryption 
algorithms may find this convenient. For example, the IV and ciphertext can be 
represented as separate octet-strings.  

The object type for an encrypted object is Encrypted:. An Encrypted: object should 
only be decrypted “as necessary” during other processing.  

The encryption key is indicated by  

• Giving it explicitly in a Key: (attribute/value) field:  
    ( Encrypted: 
      ( Key: ( Shared-Secret-Key: ... ) ) 



      ( Ciphertext: =Yh87oKlqpBv8iY55+n== ... ) ) 

• Giving its hash in a Key-Hash: (attribute/value) field:  
    ( Encrypted: 
      ( Key-Hash: ( SHA1 &241dc... ) ) 
      ( Ciphertext: =Yh87oKlqpBv8iY55+n== ... ) ) 

• Representing it explicitly as an encrypted object itself:  
    ( Encrypted: 
      ( Key: ( Encrypted: 
                ( Key-Hash: ( SHA1 &548... ) ) 
                ( Ciphertext:  &765... ) ) ) 
      ( Ciphertext: &345... ) ) 

Here &765... denotes the encryption of the message key by an encryption key 
(public or shared-secret) with hash &548..., and &345... is the encryption of the 
message object with the message key.  

• Giving a ( ref: ... ) expression that evaluates to the key.  
    ( Encrypted: 
      ( Key: ( ref: *SENDER key-49 ) ) 
      ( Ciphertext: ... ) ) 

Here the *SENDER macro is used.  

In the last example, one way that the receiver might know what value the sender has for 
key49 is that the sender might previously have sent him an Encrypted: certificate 
including the definition:  

    ( Cert:  
       ( Local-Name: key-49 ) 
       ( Value: ( Shared-Secret-Key: RC5 ... ) ) 
       ( Signed: ... ) ) 

Signed objects 

This section describes how to represent signed objects with three signature formats 
(wrapped-hash, wrapped-object, and signature appendix), and shows how to transform 
between these formats without performing cryptographic operations. It also shows 
objects can be “co-signed;” with either parallel co-signatures or cascaded co-signatures.  

A signed object can be signed in either “wrapped” mode (where the signed-object 
contains the object being signed or its hash) or in “appendix” mode (where the signature 
is typically appended to the end of the signed object). One can creat cascaded co-
signatures (in either mode) and parallel co-signatures (in appendix mode only).  

In any case a signature is represented by a set-type object of type Signed:. An example 
of a minimal object of type Signed: is shown below:  



    ( Signed: 
      ( Object-Hash: ( SHA1: =7Yhd0mNcGFE071QTzXsap+q/uhb= ) ) 
      ( Date: 1996-02-14T11:46:05.046-0500 ) 
      ( Signature: &3421197655f0021cdd8acb21866b ) ) 

Such an object, by itself, is said to be a signature in “wrapped-hash” format.  

The mandatory Object-Hash: (attribute/value) field specifies the hash of the object 
being signed. An arbitrary set-type object may be signed, although this paper only talks 
about signed certificates or messages.  

The mandatory Date: (attribute/value) field gives the (effective) date of signing. There is 
of course nothing to prevent a signer from pre-dating or post-dating his signatures.  

The mandatory Signature: field (a sequence) gives the output produced by the signature 
algorithm, which can be an arbitrary sequence of S-expressions, obtained by hashing the 
entire Signed object, except for any subobjects of type Signature: or Object:, and then 
applying the signature algorithm to the result.  

We now describe the optional fields for a Signed: object.  

      ( Object: ... ) 

The optional Object: (attribute/value) field explicitly gives the object being signed, 
whose hash is given in the Object-Hash: field. (The signature verification procedure 
must check this.) When this field is included, the Signed: object is said to be in 
“wrapped-object” format. This field is not hashed by the signature algorithm, since its 
hash is already given in the (mandatory) Object-Hash: field, which is hashed by the 
signature algorithm. This convention also enables transforming between different 
signature formats, as described below, because the Object: field can be removed while 
leaving the signature valid.  

      ( Expiration-Date: 2000-01-01-00:00:00.000-0500 ) 

The optional Expiration-Date: (attribute/value) field gives the date after which the 
signature is no longer valid (even if reconfirmed by a server).  

      ( Signer: ( Principal: ... ) ) 

This optional Signer: (attribute/value) field specifies the signing principal. This field 
must be included whenever the signed object might later be used in a context where it is 
not obvious who the signer is, or if the signature requires periodic reconfirmation. This 
field should be in the first signed message sent by each party in a protocol, and may be 
omitted thereafter except for messages (such as membership certificates) that will be kept 
around after the protocol.  

      ( Signing-Key-Hash: ( SHA1: &7613445... ) ) 



The optional Signing-Key-Hash: (attribute/value) field is used when the signature (here 
a MAC) is created with a shared secret authentication key; it specifies the hash of the 
shared secret key.  

      ( Credentials: ... ) 

The optional Credentials: field (a sequence) lists various “credentials” of the signer. 
These take the form of certificates that may help to establish that the signer has the 
appropriate authorizations, such as what might be needed to access data that is restricted 
by an access-control list.  

      ( Signing-For: ( Principal: ... ) ) 

The optional Signing-For: (attribute/value) field is used when the signer is signing on 
behalf of someone else. The most common situation occurs when a server is signing 
something (such as a membership certificate) on behalf of a principal. When this field is 
present there must also be a Credentials: field present that demonstrates that the signer 
indeed has the authorization necessary to sign for the other party.  

      ( Re-confirm:  
          ( Period: P1M )  
          ( Principal: ... ) ) 

The optional Re-confirm: (set-type) field specifies that reconfirmation is required, and 
gives details. In this example, this field says that one must periodically “re-confirm” the 
signature every month. The period is specified according to ISO 8601:1988 format for 
periods without start or end. This begins with a P, followed by an optional time-period 
indicated as so many years (Y), months (M), weeks (W), days (D), optionally followed 
by a T, followed by so many hours (H), minutes (M), and/or seconds (S). Thus, PT8H says 
that reconfirmation is required every 8 hours, and P6WT4H3M says that reconfirmation is 
required after 6 weeks, 4 hours, and 3 minutes. A signature needs to be reconfirmed if its 
date (or the date of its last reconfirmation) is more than re-confirmation period old.  

The next optional value within the Re-confirm: field is the “reconfirmation principal,” 
given if different than the signing principal. (It might typically be a server.) Section 6.2 
describes reconfirmation procedures.  

Wrapped-hash, wrapped-object, and appendix signature formats.  

An object of type Signed: by itself is a “wrapped” form of the signed object. It may or 
may not explicitly contain the object X being signed. In either case the hash of X is given. 
If X is also explicitly given, we say that the signature is in “wrapped-object” form. If only 
the hash of X is given, we say that it is in “wrapped-hash” form.  

A signature in wrapped-object form can be “unwrapped” and converted into two objects: 
the object X itself and a Signed: object in wrapped-hash form that contains only the hash 
of X. Because the signature algorithm produces the same result whether or not the 



Object: field is present, this unwrapping operation does not require any cryptographic 
operations.  

An object of type Signed: can be therefore be detached and managed separately (in 
wrapped-hash form) from the object itself. Many applications require this capability.  

An S-expression that is a set-type object admits another signature format, which we call 
an appendix-mode signature. To create such a format the Signed: object in wrapped-
hash form is added as an appendix to the end of the set-type object being signed, as in:  

    ( Get.Query: 
       ( Template: ( Auto-Cert: ) ) 
       ( Signed: 
         ( Object-Hash: ( SHA1: &345678 ) ) 
         ( Date: 1996-02-14T11:46:05.046-0500 ) 
         ( Signature: &8dff4123 ) ) ) 

Verifying the signature thus requires first removing the Signed: field in order to 
compute the hash of the original list. (We note that the signature need not actually be at 
the end, because a set-type object can have its subobjects in arbitrary order.)  

Appendix mode is the “standard” signature mode for SDSI objects and messages because 
it is the only mode that also allows co-signatures. However, there there is no appendix 
format for signing octet-strings, so wrapped mode is mandatory for applications that must 
sign octet-strings representing word-processing documents, executable binary files, etc.  

Because of the way the signature algorithm is defined, one can also transform easily 
between a wrapped-object form of a signed set-type object X and the appendix form of 
the signed object X. This requires only simple re-arrangement; no cryptographic 
operations are required. Thus  

    ( Signed: 
      ( Object-Hash: ( SHA1: &345678 ) ) 
      ( Object: ( Get.Query: ( Template: ( Auto-Cert: ) ) ) ) 
      ( Date: 1996-02-14T11:46:05.046-0500 ) 
      ( Signature: &8dff4123 ) ) 

is equivalent to the previous example.  

Co-signatures: Parallel and cascaded.  

A set-type object can have more than one signature appendix; these are “parallel co-
signatures” that sign everything except the other signature(s). Parallel co-signatures are 
the result of two or more signers independently signing an object, and appending their 
independent signatures to the end of the object.  

    ( Get.Query: 
       ( Template: ( Auto-Cert: ) ) 
       ( Signed:  



         ( Object-Hash: ( SHA1: &345678 ) )  
         ( Date: 1996-02-14T11:46:05.046-0500 ) 
         ( Signer: ( Principal: ( Global-Name: VeriSign!!’s "Bob" ) ... ) ) 
         ( Signature: &8dff4123 ) ) 
       ( Signed:  
         ( Object-Hash: ( SHA1: &345678 ) )  
         ( Date: 1996-03-19T07:00:11.341-0500 ) 
         ( Signer: ( Principal: ( Global-Name: VeriSign!!’s "Alice" ) ... ) ) 
         ( Signature: &a78300b3 ) ) ) 

Another form of multiple signature is the “cascaded co-signature” obtained by adding a 
signature to the end of a Signed: object. Cascaded co-signatures are cumulative; they 
effectively sign all previous material. A cascaded co-signature is what you get if you sign 
the Signed: object at the end of a previously signed list.  

    ( Get.Query: 
       ( Template: ( Auto-Cert: ) ) 
       ( Signed:  
         ( Object-Hash: ( SHA1: &345678 ) )  
         ( Date: 1996-02-14T11:46:05.046-0500 ) 
         ( Signer: ( Principal: ( Global-Name: VeriSign!!’s "Bob" ) ... ) ) 
         ( Signature: &8dff4123 ) 
         ( Signed:  
           ( Object-Hash: ( SHA1: &86731b ) )  
           ( Date: 1996-03-19T07:00:11.341-0500 ) 
           ( Signer: ( Principal: ( Global-Name: VeriSign!!’s "Alice" ) ... ) ) 
           ( Signature: &7830ca12 ) ) ) 

Because the second Signed:  object contains the hash ( SHA1 &86731b )  of the first 
Signed:  object, and the first Signed:  object contains the hash ( SHA1: &345678 )  of 
the enclosing S-expression, Alice’s second signature effectively signs both the original S-
expression ( Get.Query: ... ) and Bob’s first signature. One can have cascaded co-
signatures in either wrapped or appendix mode.  

An application of cascaded co-signatures is digital time-stamping, where the second 
signature provides evidence that the first signature had already been created at the time 
the second signature was applied.  

Another use would be where an application program running on behalf of a principal 
signs the signature created by the principal, so that the server knows that the request not 
only came from an authorized principal, but from an authorized principal running the 
correct program.  

Local Names, Certificates, and Name/Value Bindings 

This section describes how each principal may define his own local name space, and how 
he may issue certificates to export his local name/value bindings.  



Names 

Each principal has its own local name-space.  

A name may be represented in one of two ways:  

• As an octet string that does not begin with any special character. Examples: 
"abc", mary-sue, tom@nsf.gov, &61 .  

• As an arbitrary S-expression n, enclosed in the form ( Local-Name: n ). 
Example:  

      ( Local-Name: ( Accounting ( Bob Smith ) ) ) 

An octet-string name n can be thought of as equivalent to the form ( Local-Name: n ); 
they evaluate to the same thing. We expect that most names will be represented as octet-
strings written as tokens.  

S-expressions of the forms:  
      ( Principal: ... ) 
      ( Group: ... ) 
      ( Quote: ... ) 

may not be used as local names; these expressions are always treated as constants (they 
evaluate to themselves).  

Although SDSI allows arbitary S-expressions as names, we suspect this feature will not 
be used much. However, one reason we have included this capability in SDSI is that its 
flexibility provides a path for attempting to accommodate X.509 distinguished names 
within SDSI.  

The principal can choose names arbitrarily. He may also partition his name space with 
multi-part tokens (group:joggers), hierarchical tokens (fs:/sys/bin/foo.exe), or 
lists.  

We call names in SDSI “local-names” to emphasize the fact that they are in a name space 
local to some principal, rather than in some global name space.  

Name/Value Bindings 

A local name can be undefined, or it can be bound to some value (i.e., some object). The 
principal may assign a value to a local name by issuing a corresponding certificate. If the 
local name already has a valid name/value certificate, the new certificate augments the 
old one, in the sense that a SDSI application is deemed to act correctly if it uses the 
name/value binding given in either certificate.  

The binding can be “symbolic”; bob can bind his local name lawyer to ted’s lawyer .  



Recall that DNS names are treated in a special manner. The mapping from DNS names to 
ref: expressions works as follows, when attempting to interpret any octet-string:  

• If the octet-string has locally defined value, then that value is taken as the desired 
value. A principal can, for example, define “bob@fudgeco.com” to have the 
desired value directly.  

• Otherwise, if the octet string is of the form name@ak...a2.a1 for some k >= 1, 
then the string is interpreted as equivalent to the first form of the following list 
that has its first component defined in the local name space:  

        ( ref: ak...a2.a1.DNS!! name ) 
        ( ref: a(k-1)...a2.a1.DNS!! ak name ) 
        ( ref: a(k-2)...a2.a1.DNS!! a(k-1) ak name ) 
        ... 
        ( ref: a1.DNS!! a2 ... ak name ) 
        ( ref: DNS!! a1 a2 ... ak name ) 

This mechanism allows one to write ordinary email addresses in an ACL, and get the 
correct interpretation, leveraging off the DNS security hierarchy (which is soon to appear, 
we presume; see Eastlake and Kaufman[3] for details). The name DNS!! is a SDSI 
“special root,” and may not be re-defined. The other names ending in “.DNS!!” may be 
redefined by the user to eliminate dependence on the DNS servers, as a security 
enhancement. (For example, Microsoft users can have microsoft.com.DNS!! defined 
locally, to ensure that addresses ending in microsoft.com are always resolved correctly, 
even if the DNS servers are corrupted.  

Details of ref:  

Here is some detail about how ref: works:  

      ( ref: n1 n2 ... nk ) means REF(current principal,n1,n2,...,nk) 

where 
      REF(P,n1,n2,...,nk) = 
          Q = P 
          for i = 1 to k do Q = REF2(Q, (Local-Name: ni) ) 
          return Q 

where 
      REF2(P,n) = 
          if P is not of form ( Principal: ... ) ERROR 
          if n = ( Principal: ... ) return n 
          if n = ( Group: ... ) return n 
          if n = ( Quote: y ) return n 
          if n = ( Local-Name: y ) return REF2(P,lookup-value(P,y))  
          if n = ( ref: n1 n2 ... nk ) return REF(P,n1,n2,...,nk) 
          if n = ( Encrypt: ... ) return REF2(P,decrypt(n)) 
          if n = ( Assert-Hash: s h ) 
             then let t = REF2(P,s) 
                  if hash(t) = h then return t else ERROR 
          if n has the form name@a1.a2.....ak 
             then return value of appropriate ( ref: ... ) form 
                  according to special DNS name-handling rules 



                  (This returns ERROR if P is not a local name-space.) 
          else ERROR 

where 
      lookup-value(P,y) = current value of y in P’s name space. 

Certificates 

Certificates (certs) are signed (set-type) objects. Signed messages are a special case of 
certificates.  

Most certificates contain a Local-Name:  (attribute/value) field giving a local name. The 
certificate is “about” that local name. The name may be an arbitrary S-expression.  

(As a minor point, we note that if a certificate is signed with a cascaded co-signature (as 
you can get with a re-confirmation) then the definition is understood to be only for the 
primary signer’s name space, not for the secondary principal. On the other hand, if the 
certificate has parallel co-signatures, then the certificate is effective for each signer, since 
all but any one of the co-signatures can be removed, still leaving a validly signed 
certificate.)  

The certificate may contain a Value: (attribute/value) field. If so, then this certificate 
serves to bind the given local name to that value; it is a “name/value certificate.” The 
value can be any SDSI object; typically it is a principal or a group definition. The value 
should be one of the following:  

• a Principal: object,  
• a Group: object,  
• a Quote: object.  
• a ref: object,  
• an Encrypted: object, that, when decrypted, gives one of the allowed types in 

this list,  
• an Assert-Hash: object whose first field is an object of one of the allowed types 

in this list.  

Fetching the value of the Value: field basically just takes the value as stored, except that 
encrypted objects are decrypted and Assert-Hash: wrappers are removed, until an object 
of one of the first three types is obtained. It is an error if an Encrypted: object can not be 
decrypted. Assert-Hash: checks are performed as the recursion unwinds, and it is an 
error if an Assert-Hash: check fails. It is an error if an object is obtained that is not one 
of the above types. (Fetching the value of other fields is similar in that Encrypted: and 
Assert-Hash: wrappers are removed whenever possible; these wrappers are stored with 
the certificate, but removed when these values are accessed.)  

The certificate may also contain a Description: (attribute/value) field intended for 
human consumption. If so, then this certificate can also be viewed as an “identity 
certificate.” Understanding the Description: field is not required for accepting a local 



name/value binding, but this field should be read and understood if the certificate is used 
for any other purpose.  

The intended typical use of the description item is to describe the entity controlling the 
specified principal, and to give any additional information or policies used in verifying 
his identity, so that a human can decide whether or not to place the principal into his data-
base under some local name (possibly a different name than that in the certificate).  

The certificate may contain arbitrarily many other subobjects.  

Here is a certificate defining the local name “Q” as a principal, and also acting as an 
identity certificate, since it has both a Value: field and a Description: field.  

    ( Cert: 
       ( Local-Name: Q ) 
       ( Value: ( Principal: ... ) ) 
       ( Description: 
         [text/richtext] 
         "Bob Q. Smith has worked at <bold>WebMaster International</bold> 
         as a link repairman since 3/4/95.  Bob has blond hair, is  
         25 years old, and has <italic>green</italic> eyes." )   
       ( Phone: 617-665-0923 ) 
       ( Signed: ... ) ) 

Here is a group definition for “FudgeCo-employees”:  

    ( Cert: 
       ( Local-Name: FudgeCo-employees ) 
       ( Value: ( Group: "Bill Sweet" "Candy Tooth" "Ima Nut" ) ) 
       ( Description:  
                "All current hourly and exempt employees including 
                 those on medical or parental leave." ) 
       ( ACL: ( read: FudgeCo-management ) ) 
       ( Signed: ... ) ) 

Here is a symbolic definition of “head-nurse”. (Note that it presents the Value: field 
with a bit of syntactic sugar...)  

    ( Cert: 
      ( Local-Name: head-nurse ) 
      ( Value: Mass-General’s head-nurse ) 
      ( Description: "The current head nurse at Mass General Hospital." ) 
      ( Signed: ... ) ) 

The “type” of a certificate need not be Cert:; it is possible to have various types of 
certificates.  

Note that one can issue a certificate with no expiration date but with monthly 
reconfirmation required. A new certificate for the same local name can be issued to 



replace it, and the reconfirmation procedure can cause appropriate queries to be made to 
get everyone up to date within one confirmation period.  

It is intended that there would typically be only one valid certificate by a signer about a 
particular local name at a time. However, if there is more than one valid certificate in 
existence, then it is perfectly valid for a server to use any one of the available valid 
certificates. In particular, it is expected that servers may have a policy of consistently 
using the most recent one available (i.e., the one with the most recent signing date), 
wherever possible. Thus a credential submitted by a client may be disregarded in favor of 
a more recent certificate known to the server. This holds as well for “computed” 
certificates such as member certificates. (In this case, the certificate is “about” the 
principal and the group collectively, so it can only be replaced by another more recent 
certificate about the same principal and group.) By having his servers implement such 
policies, and by having efficient distribution mechanisms to his servers, a principal can 
be reasonably effective about revising the binding given to a local name, even before the 
actual expiration date of the earlier definition. This is a pragmatic point of view; 
technically the older certificates are still valid until they expire.  

Protocols 

This section describes the SDSI framework for two-party communication protocols. It 
discusses the standard “Get” protocol for obtaining information from a server, the 
protocol for reconfirming a signature, and the protocol for obtaining an auto-certificate. It 
also discusses delegation certificates and transport mechanisms.  

Communication in SDSI takes place as a sequence of protocols between two parties. 
Typically one party is called the “client” or “requestor,” and the other party is called the 
“server.”  

In a protocol the client typically initiates the protocol by sending a first message to the 
server, and then the server and client alternately send messages to each other until the 
protocol is finished. However, a party may send two or more messages in a row to the 
other party without waiting for a reply, and the parties may even send messages to each 
other simultaneously, if the protocol allows it.  

We make no assumptions about how the messages in a protocol are transported, nor 
about the confidentiality, authenticity, integrity, or reliability of the transport mechanism. 
Some discussion of transport mechanisms is given in Section 6.5.  

Each protocol defines standard message types and patterns of interaction. A typical 
protocol might be a query/response protocol wherein the client asks a server for some 
information. Although we only define a few protocols in this paper, a SDSI design goal is 
to provide a convenient framework for incorporating other protocols.  



When a message is transmitted, it may be sent in compressed form, using the 
compression techniques of Section 3.3. When it is received, it is immediately 
decompressed before further processing.  

After decompression, the recipient decrypts the message if it is of type Encrypted:. 
(Encrypted sub-objects are not decrypted until necessary.)  

Many messages are signed. If a signature fails to verify, the recipient sends back an error 
message.  

Queries with the “Get” protocol 

A server holds a database of certificates, and can be queried to return collections of 
certificates that satisfy some criteria. The SDSI protocol for this is called Get.  

The Get query always contains a To: (attribute/value) field specifying a principal. The 
certs returned must have that principal as a primary signer.  

A query specifies a “template” for the desired certificates, giving the object type of the 
desired certificates (such as Cert: or Auto-Cert: or ...), and a set of subobject 
templates. For example, the search criteria  
    ( Template: ( Cert: ( Local-Name: bob ) ) ) 

is a request for all objects of type Cert: that contain an attribute/value pair that is equal 
to ( Local-Name: bob ). (In testing for equality, no evaluation of names is done, so 
that one is comparing to see if the local name is literally the octet-string bob.) A search 
criteria of the form:  
    ( Template: ( Cert: ( Value: ‘&23 ) ( Color: Red ) ) ) 

asks for all certs with the given Value:  and Color:  fields.  

More generally, the ( Template: <form>)  field may have an arbitrary S-expression 
<form>  as its value. That is, the <form>  is a template; a matching object must contain 
components matching with each component of the specified template. More precisely: the 
form matches an object if and only if:  

• the form and the object are equal octet-strings, or  
• the form and the object are both nonempty lists, and  

o the first element of the form matches the first element of the object, and  
o each element of the form other than the first matches some element of the 

object other than the first.  

The server replies with a list of certs satisfying the query or with an error message.  

Here are some sample queries. The first asks for the current certificate about jim :  
    ( Get.Query: 
      ( To: ( Principal: ... ) ) 
      ( Template: ( Cert: ( Local-Name: jim ) ) ) 
      ( Signed: ... ) ) 



The second asks for all certificates that have a specified principal as the given value.  
    ( Get.Query: 
      ( To: ( Principal: ... ) ) 
      ( Template: ( Cert: ( Value: ( Principal: ... ) ) ) ) 
      ( Signed: ... ) ) 

The query may also contain the optional  
      ( Encrypt-Reply:  
          ( Strength: <flag> )  
          ( Key: <key-indicator> ) ) 

set-type object if the reply may have to be encrypted. The <flag> is either mandatory or 
optional. If mandatory, the client insists that the reply be encrypted with that key. If 
optional, the reply need only be encrypted if the server finds it necessary (say if the 
reply includes material whose distribution is restricted by an ACL). If the Encrypt-
Reply: field is absent, the server may return an error, or use an encryption key from the 
client’s auto-certificate. After the flag comes the encryption <key-indicator>, which 
may be a public encryption key, or the hash of a public encryption key, or an encrypted 
key.  

Similarly, the query may contain an optional Sign-Reply: field indicating whether or 
not the reply should be signed:  
      ( Sign-Reply: <flag> ) 

The <flag> field can be mandatory or optional. A missing Sign-Reply: field is 
equivalent to a mandatory flag. Some protocols may dictate that the reply be signed, in 
which case the server has no choice but to sign. In other protocols, the reply is only 
optionally signed, and the server can be forced to sign his reply by having a Sign-Reply: 
with mandatory flag in the query. The server generally signs error replies, but need not 
sign replies with content that is already signed (e.g. a certificate), unless the client 
demands it. The server may refuse to honor a request for a signature if it is too busy, but 
in this case the server’s auto-certificate must state that it might do so. If the server gives a 
signature, it will typically include a Credentials: field in its reply, giving the 
Delegation-Cert: authorizing it to act as a server for the principal.  

The reply to a Get.Query: has the following format:  

    ( Get.Reply: 
      ( Your-Last-Message-Hash: ( SHA1: =tGbi0+dc...= ) 
      ( Reply:  
         ( Cert: ... ) 
         ( Cert: ... ) 
         ... ) 
      ( Signed: ... ) ) 

The Your-Last-Message-Hash: (attribute/value) field gives the hash of the query being 
responded to (including all of its signatures). This should uniquely identify the query, 
assuming that no two queries are identical (due to their having different signing times, for 
example).  



The Reply: (a sequence) may contain more than one cert. The reply message may be 
signed to prevent an adversary from deleting some of the certs. Various error messages 
can be generated, such as might happen if the reply exceeds some pre-specified size.  

A reply or error message does not need to repeat the addressee or the query, since it is 
included implicitly in the Your-Last-Message-Hash: field.  

    ( Get.Error: 
      ( Your-Last-Message-Hash: ( SHA1: =tGbi0+dc...= ) 
      ( Error: ... )    
      ( Signed: ... ) ) 

The error message may be signed by the principal’s server, instead of by the principal 
queried.  

Reconfirmation Queries 

SDSI does not have “certificate-revocation lists” as a means of revoking the signature on 
a previously signed object. Instead, signatures may be designated as needing periodic 
reconfirmation. The signer can specify the reconfirmation period that is appropriate for 
that signature; some signatures might only need to be re-confirmed yearly, while others 
might need reconfirmation hourly.  

A signature with reconfirmation specified is considered valid if it has been reconfirmed 
by either the original signer or the reconfirmation principal within the most recent 
reconfirmation period, and the reconfirmation signature has not expired.  

A reconfirmation query takes the form:  

    ( Reconfirm.Query: 
      ( To: ( Principal: ... ) ) 
      ( Signed-Object:  
         ( Signed:  
            ( Object-Hash: ( SHA1: &5128 ) )  
            ( Date: 1999-12-25-08:00.000-0500 ) 
            ( Signature: &333111 ) ) ) 

The Signed-Object: field gives the wrapped-hash form of the signed object whose 
signature is to be reconfirmed.  

A successful reconfirmation is either:  

• A new wrapped-hash signature of the original object by the original signer, or  
• A new wrapped-hash signature that is a cascaded signature for the wrapped-hash 

signature of the original object, signed by the reconfirmation principal. (The 
added signature does not itself contain any Reconfirm: field, although it may 
contain an expiration date.)  



    ( Reconfirm.Reply: 
      ( Your-Last-Message-Hash: ( SHA1: =Ac8wE1...= ) ) 
      ( Signed-Object:  
         ( Signed:  
            ( Object-Hash: ( SHA1: &5128 ) )  
            ( Date: 1999-12-25-08:00.000-0500 ) 
            ( Signature: &333111 )  
            ( Signed:  
               ( Object-Hash: ( SHA1: &a783b0 ) )  
               ( Date: 2000-01-25-12:10.000-0500 ) 
               ( Signature: &86723 ) ) ) 

The Your-Last-Message-Hash: field gives the hash of the reconfirmation query 
(including all of its signatures). No signature is necessary on the message itself, since the 
object itself has been effectively (re-)signed.  

If the signed object is a certificate, and that certificate is still valid, but has been 
superseded by another certificate with the same name, then the new certificate is returned 
with a signature.  

A failure of reconfirmation takes the form  

    ( Reconfirm.Reply: 
      ( Your-Last-Message-Hash: ( SHA1: =Ac8wE1... ) ) 
      ( Failure: <reason> )  
      ( Signed: ... ) ) 

The failure reply is signed by either the reconfirmation principal or the original signing 
principal.  

Auto-Certs 

An auto-certificate is a special kind of certificate. It is distinguished by having been 
signed by the principal whom it is about, and by having the object type Auto-Cert:.  

Each principal must have an auto-certificate. The auto-cert may give additional 
information not given in the Principal: object. This auto-certificate is signed by the 
principal itself. This information may expire or be changed without changing the 
Principal: object. The Principal: object specifies one or more auto-cert servers that 
can respond to a query with the auto-cert.  

Since this information is signed by the principal itself, it has no third party vouching for 
it, and should not be trusted without suitable corroboration.  

    ( Auto-Cert: 
      ( Public-Key: ... ) 
      ( Principal-At: ... ) 
      ( Server: ... ) 
      ( Local-Name: ... ) 
      ( Global-Name: VeriSign!!’s Wonderland’s "Alice McNamee") 



      ( Name: [charset=unicode-1-1] &764511fcc... ) 
      ( Description: ... ) 
      ( Encryption-Key: ( Public-Key: ... ) ) 
      ( Postal-Address: ... ) 
      ( Phone: ... ) 
      ( Fax: ... ) 
      ( Photo: [image/gif] =Yu7gj9D+zX2C... ) 
      ( VeriSign-Cert: [application/X.509v3] =GvC492Sq... ) 
      ( Email-address: AliceMcNamee@wonderland.com ) 
      ( Signed: ... ) ) 

The Public-Key:, Principal-At:, and Global-Name: fields duplicate the 
corresponding fields (or define the latter fields if they are missing) in the Principal: 
whom this auto-certificate is about.  

None of the fields, except the Public-Key: and Signed: field, are required. The only 
fields that are intended to be machine-readable are the Principal-At:, Server:, 
Email:, Global-Name:, and Signed: fields. The other fields are there primarily for 
human consumption, and can be added at one’s discretion, following whatever standard 
coding conventions exist.  

A Server: field (a sequence) must be supplied if the principal wishes to export any 
bindings, or group information. A Server: field specifies one or more “servers” for the 
principal: an entity that can respond to arbitrary queries on behalf of that principal. A 
server for a principal can be viewed primarily as an agent with a database of statements 
signed by that principal. The server will produce these statements upon request, assuming 
that the client has adequate permission. A principal may specify itself as a server. The 
principal may designate more than one server; they are equivalent, and a client may 
address a query to any one of them.  

The separation of the functions of “principal” and “server” affords flexible design 
permitting high availability of signed statements while offering the opportunity of 
keeping the principal’s private keys off the server machines.  

In many cases, a server is merely distributing statements previously signed by the 
principal. However, error messages will always be signed by the server.  

The Local-Name: (attribute/value) field gives the principal’s favorite nickname for 
himself. One can consider using this nickname in one’s own space for this principal, but 
it is not required.  

The Description: (attribute/value) field gives arbitrary free-form text by the entity 
controlling the key about himself.  

The optional Email-Name: field (a sequence) gives a list of one or more names by which 
this principal can be called, starting from one of the SDSI special roots. (In the example 
shown, the implicit root is DNS!!, by the special rules for handling such names.) This 
address can also be used for sending email to the principal.  



The standard Get protocol can be used to request auto-certificates:  

    ( Get.Query: 
      ( To: ( Principal: ... ) ) 
      ( Template: ( Auto-Cert: ) ) 
      ( Signed: ... ) ) 

Delegation Certificates 

The Delegation-Cert: is used to authorize a group (of servers) to be able to sign on 
behalf of the signing principal. Delegation-Cert:’s may be used as credentials by the 
server, to show that their signatures are authorized by the principal.  

    ( Delegation-Cert: 
      ( Template: <form> ) 
      ( Group: <group> ) 
      ( Signed: ... ) ) 

This certificate authorizes every member of <group> to be able to sign objects matching 
<form> on behalf of the signing principal. For example, the following certificate:  

    ( Delegation-Cert: 
      ( Template: ( Membership.Cert: ( Group: fudge-lovers ) ) ) 
      ( Group: ( Principal: ... (A) ... ) ) 
      ( Signed: ... ) ) 

authorizes the specified principal (A) to be able to sign membership certificates for the 
group fudge-lovers.  

The matching routine is the same as for the Template: field in a Get.Query: object.  

Although Delegation-Certs: are intended primarily for principals to delegate signature 
authority to their servers for specific purposes, it is easy to imagine other possible uses 
for them, as well.  

Transport mechanisms 

We envision that a separate SDSI transport protocol can be designed on top of TCP/IP. 
Ultimately, this would be the preferred solution.  

In the meantime, SDSI can also take advantage of other protocols, such as email, http, or 
gopher, for transport. For example, a Get.Query: object can be given as the content of an 
email message addressed to a SDSI server. Or, one could have an http URL of the form:  
    http://server.address.edu/cgi-bin/sdsi-server?GQ 

where GQ is an ASCII representation of the Get-Query: object (with appropriate re-
encodings of special characters, as usual). The replies can be given in a corresponding 
manner.  



We omit further suggested details here.  

Groups and ACLs 

This section describes SDSI groups, shows how groups can be defined, how membership 
in groups can be determined, how one can query a server to get a membership certificate, 
and how one can create ACL’s that give permissions to members of various groups.  

Intuitively, one can think of a group as just a set of principals. It is worthwhile defining 
groups for many security purposes, since this gives a convenient local name for the set of 
principals allowed to access some data or to perform some other action.  

A group does not have an associated public key; there is no way for the group to make 
statements as such. No principal is authorized to speak for the group, although the owner 
of the group can change its definition. A member of the group can, however, offer his 
group membership certificate as a credential when he makes a query or request.  

The simplest group is just the singleton set containing just one principal. An object of 
type Principal, or a local name evaluating to such an object, suffices to denote such a 
group.  

Another simple group is the group containing everyone. This group is denoted by the 
reserved word ALL! . (This local name always has the definition ( AND: ) , which is 
always satisfied.)  

Groups can be defined by listing their members in a sequence-type object of type Group:. 
For example:  
    ( Group: tom mary bill george ( Principal: ... ) ) 

defines a group of five members, four given indirectly (by their local names), and one 
directly (as a principal).  

Groups can also be defined recursively in terms of other groups, using standard set-
theoretic operations:  

    ( Group: ( AND: friends over-18 jocks ) )  -- intersection 
    ( Group: ( OR:  faculty staff friends ) )  -- union 
    ( Group: ( NOT: staff ) )                  -- ALL! - group 
    ( Group: ( MINUS: staff friends )          -- staff that are not friends 
    ( Group: ( ANY: 2 wizards honchos bigwigs ) )   -- threshold of >= 2  
    ( Group: ( OR:    
               "Mary Smith" 
               friends 
               mit’s faculty 
               ( ref: &32 ) 
               ( Principal: ... ) ) ) ) 
    ( Group: ( OR: alpha ( AND: beta gamma ) ( NOT: delta ) ) ) 



Groups can be defined with nested expressions, as in the last example. To be a member of 
this group, one must be a member of alpha, or be a simultaneous member of beta and 
gamma, or not be a member of delta .  

Note that the notation  
    ( Group: a b c d ) 

has exactly the same meaning as:  
    ( Group: ( OR: a b c d ) ) . 

The use of NOT: can cause confusion, as can MINUS:. First, we note that ( MINUS: A B ) 
is treated as being fully equivalent to ( AND: A ( NOT: B ) ). Second, we note that to 
establish a negative (such as ( NOT: B ), which means that a principal is not a member 
of group B), it does not suffice merely to fail to find a certificate asserting that the 
principal is in group B. Rather, the owner of the group definition must have provided a 
certificate saying that the principal is NOT in group B.  

We note that groups aren’t actually restricted to being sets of principals, but can in fact be 
sets of arbitrary S-expressions. For example, a bank can have a group called expired-

accounts whose members are objects representing the expired accounts:  

      ( Group: ‘( Account: 3451-223-5624 ) 
               ‘( Account: 7621-004-6722 ) 
               ‘( Account: 9821-868-4110 ) ) 

(The quoting is necessary.) As another example, a company might have a set of approved 
software programs, the group approved-software  might contain the hashes of the 
approved programs. The notation and procedures for dealing with sets of principals 
generalize smoothly to handle these extensions.  

An algorithm for determining group membership 

This section describes how it can be determined whether some individual x is a member 
of some group g.  

A server maintaining a group definition may need to determine whether a given principal 
x is, or is not, a member of some group g. This may happen, for example, because x has 
requested information from the server, and it is necessary to determine if x is authorized. 
Or, the server may be responding to a membership query from x himself. This section 
describes how the server can determine whether or not x is a member of g.  

The server will make this determination with whatever local information it has (e.g. the 
group definition) and with whatever credentials x has supplied (e.g. other membership 
certificates). The server does not make inquiries of other servers in order to make the 
determination; it may simply “fail” if there is inadequate information available locally. 
The server is like a busy bureaucrat who says to x, “I can’t tell if you are authorized or 
not, and I’m not going to do the research myself to make this determination. You may try 
again later; it may help if you can demonstrate membership in my group mit’s 



faculty.” Note that a “fail” response may give x some information as to what sort of 
credentials are needed. If x wishes to try again it is up to him to obtain additional 
credentials, and then to repeat his request including the credentials (e.g. a certificate from 
the server’s principal mit stating that the client is a member of its faculty group).  

We now describe a procedure for determining whether or not a given S-expression x is a 
member of some group g, by recursively tracing out the group definition.  

MEMBER(x,g)  

• If this call is a recursive invocation of an earlier, still-active call with the same 
arguments x and g, then return FAIL.  

• If g is of the form ( Principal: ... ) : 
o If x=g, then return TRUE. (For comparing principals, only compare the 

Public-Key: fields.)  
o Otherwise return FALSE.  

• If g is of the form ( Quote: y ) : 
o If x=g, then return TRUE.  
o Otherwise return FALSE.  

• If g is of the form ( Group: S1 S2 ... Sk ) : 
then return MEMBER(x,( OR: S1 S2 ... Sk )). (If k=1, this is equivalent to 
returning MEMBER(x,S1).)  

• If g is of the form ( OR: S1 S2 ... Sk ) : 
evaluate MEMBER(x,Si) for i=1,2,...,k.  

o If any call returns TRUE, then return TRUE.  
o If k=0 or all calls return FALSE, then return FALSE.  
o Otherwise return FAIL.  

• If g is of the form ( AND: S1 S2 ... Sk ) : 
evaluate MEMBER(x,Si) for i=1,2,...,k.  

o If any calls return FALSE, then return FALSE.  
o If k=0 or all calls return TRUE, then return TRUE.  
o Otherwise return FAIL.  

• If g is of the form ( NOT: S ) : 
o return FAIL if x contains more than one element. (The combination of 

negation with multiply-signed requests was just too confusing, so we have 
decided to ban this combination.)  

o Otherwise evaluate MEMBER(x,S).  
� If this call returns TRUE, return FALSE.  
� If this call returns FALSE, return TRUE.  
� Otherwise return FAIL.  

• If g is of the form ( ANY: ‘d S1 S2 ... Sk )  : 
evaluate MEMBER(x,Si) for i=1,2,...,k. Here d is a token giving the decimal 
representation of the desired threshold.  

o If at least d calls return TRUE, then return TRUE.  
o If at least k-d+1 calls return FALSE then return FALSE.  
o Otherwise return FAIL.  



• If the client has supplied a set of valid credentials sufficient for establishing 
membership (resp. non-membership) in g, return TRUE (resp. FALSE).  

• If g is of the form ( ref: ... ) : 
o Determine the value V of the form g. 

If V can not be determined return FAIL.  
o Return MEMBER(x,V). (This process may utilize credentials given by the 

client.)  
• If g is an octet string, or a list of the form ( Local-Name: y ), then attempt to 

determine ( ref: g ). (Note that this process may utilize credentials supplied by 
the client.)  

o If this fails, return FAIL.  
o If this returns a value V, then return MEMBER(x,V).  

• Otherwise return FAIL.  

This algorithm thus detects circular definitions to prevent infinite looping. If friends is 
defined as  
    ( Group: associates terry ) 

and associates is defined as  
    ( Group: friends pat ) , 

then pat is successfully determined to be a member of friends, without looping.  

A principal is a member of the group defined by the threshold definition  
    ( ANY: ‘2 doctors lawyers bankers ) 

if it is a member of two or more of the groups doctors , lawyers , bankers .  

Multiply-signed requests.  

In some applications, a request will be signed by two or more clients. (Here we do not 
distinguish between cascaded and parallel co-signatures.) In this case, the same algorithm 
can be applied, where it is understood that a test succeeds anywhere during the evaluation 
process if any one of the signers passes the test. A request signed by bob  and alice  will 
pass the test of membership for the group  
    ( AND: doctors lawyers ) 

if bob  is a lawyer and alice  is a doctor, for example. There are other ways in which they 
could pass this test; for example, Bob might be both a doctor and a lawyer, and Alice 
might be neither.  

With a multiply-signed request, the effect is that the signing principals have merged, and 
their respective group memberships are combined, so that they can act with more power 
joined together than they can individually.  

Membership queries 

Membership queries are used to obtain membership certificates; an individual can query a 
server to ask whether he is a member of a particular group; the server can respond with a 
membership certificate.  



For very large groups, it may be too expensive to return the entire group definition to a 
client. In such cases, group definitions can be queried with the Membership protocol, 
which the client initiates with a Membership.Query:  

    ( Membership.Query: 
      ( To: ( Principal: ... A ...) )  
      ( Member: ( Principal: ... B ... ) ... )  
      ( Group: fudge-lovers ) 
      ( Credentials: ... ) 
      ( Signed: ... ) ) 

The Member: list specifies the principals or objects about which membership is to be 
determined. It typically gives just one principal, although it may contain more. (If so, the 
interpretation is as for the “multi-signer” interpretation given earlier.)  

The Member: list may contain arbitrary S-expressions instead of just principals, since 
groups may contain arbitrary S-expressions as members. These expressions are normally 
quoted:  
    ( Member: ‘( Account: 3451-223-5624 ) ) 

A successful reply has the form of a membership certificate:  

    ( Membership.Cert: 
      ( Member: ( Principal: ... B ...) ... )  
      ( Group: fudge-lovers ) 
      ( Reply: <answer> ) 
      ( Hint: <hint> ) 
      ( Signed: ... ) ) 

Here the principal(s) about whom the query was for are repeated in the reply, so that this 
reply can be passed around as a “membership certificate.” The Reply: field gives the 
<answer>: one of true, false, or fail. An optional Hint: may be given in the last 
(fail) case explaining to the client how he can supply additional credentials that would 
eliminate the failure.  

The hint is given only when the server could not completely evaluate the group 
definition, and so could not completely determine whether the correct answer was true 
or false. The hint is a “partially evaluated” group definition. That is, it is is a simplified 
definition of the group that is equivalent to the original definition, given what the server 
already knew and what credentials it had to work with. For example, it may be just an 
edited or simplified top-level definition of the group, with all individual principals 
deleted, non-failing group names or sub-forms removed, and thresholds decreased by the 
number of successful top-level forms contained in the original threshold form before 
editing. For example, if the original group definition was  
    ( ANY: ‘3 A B C D E F ) 

and the client presents credentials showing he is a member of A and C, and not a member 
of D, and the server fails to otherwise determine whether he is a member of groups B, E, 
or F, then the returned <hint>  could be:  
    ( ANY: ‘1 B E F ) 



Similarly, if the group definition is  
    ( OR: ( AND: A B ) ( AND: C D ) ( AND: E F ) ) 

under the same conditions, the returned hint could be  
    ( OR: B ( AND: E F ) ) 

Given such a hint, the client can attempt to obtain sufficient certificates to make the hint 
evaluate to true, which would suffice to make him a member of the group. Of course, 
the client should understand that all local names in the hint are in the server’s name 
space, not his own. To convert the definition to one that is useful to him, he would 
replace B by something like X’s B , and so on, where the server is acting on behalf of 
principal X. To find out more about the meaning of this hint, it may be necessary to query 
the server for definitions of the various names it contains.  

If the group definition is protected by an ACL, then the server tries to determine whether 
the client satisfies the ACL condition, and whether a encrypt-reply is available to encrypt 
the reply with. If so, the server can return a hint. If not, then no hint is given.  

Access-Control Lists 

The design of SDSI was motivated in part by the desire to make sure that ACL’s can be 
written in a clear and easily auditable manner, using names for principals or groups. This 
section describes how that can be done.  

Any set-type object may contain an ACL. For example, a group definition have an ACL 
so that only certain principals may read the definition. The ACL must be a top-level 
element of the object. If an ACL is present, then that list can only be accessed by 
principals that satisfy the ACL. SDSI ACLs can also be associated with other objects 
(e.g. web pages) for access control.  

An ACL is a sequence of the form ( ACL: ( type1 def1 ) ( type2 def2 ) ... ) 
where each type determines the set of operations being controlled (e.g. read) and where 
def is either the local name of a group, or an explicit group definition (such as a list of 
principals, or an algebraic definition).  

As an example, the certificate for group-23 can only be read by its members:  

    ( Cert: 
      ( Local-Name: group-23 )    
      ( Value: ( Group: friends colleagues ) ) 
      ( ACL: ( read: group-23 ) ) 
      ( Signed: ... ) ) 

Including the ACL in the list may seem to imply that having read-access to a restricted 
object implies read-access to its ACL, but this can be changing the ACL to refer to a 
different group:  
       ( ACL: ( read: group-23-readers ) ) 

where group-23-readers has a definition as a group, where the definition is itself 
protected by a different ACL:  



    ( Cert:  
       ( Name: group-23-readers ) 
       ( Value: ( Group: group-23 ) ) 
       ( ACL: ( read: group-23-honcho sam ) ) 
       ( Signed: ... ) ) 

Here only sam and group-23-honcho can access the definition of group-23-readers. 
Presumably, if mary, a member of group-23, requests access to group-23, then mary can 
access its definition, but not its ACL (i.e. not the definition of of group-23-readers).  

ACLs are relevant for Get and Membership replies.  

ACLs for Get replies. The default ACL for an object (in a Get reply) is ( ACL: ), 
which allows no access. Each object must have a non-trivial ACL specified if it is to be 
exported outside of the local domain. An ACL of the form ( ACL: ( read: ALL! ) ) 
makes the object exportable to anyone who asks.  

ACLs for Member replies. The default ACL for a Membership.Cert is ( ACL: ( 
member: ALL! ) ), so that a membership query is typically answered, even if the group 
definition is not accessible to the client(s).  

If an object has a non-trivial ACL, then the client must have supplied a encrypt-reply (or 
have a suitable key supplied in his auto-cert) so that the object can be returned in 
encrypted form.  

Application Scenarios 

This section sketches various possible applications of SDSI. Many details are omitted, 
but the kernel idea for each application is given.  

Mail Reader 

When a mail reader receives a SDSI-signed object, it can display to the user a local nick-
name for the signer, if one exists in the local data-base. This nick-name can be displayed 
in a “secure” pop-up window that can’t be spoofed by an applet or other program.  

If there is no local name for the signer, then one of the signer’s global names (from his 
auto-certificate or principal) might be displayed. Such a global name should of course be 
checked before displaying, and the signer might include appropriate credentials to allow 
such a name to be verified. Another option would be just to display the hash of the 
principal in such cases.  

World-Wide Web 

An HTML document can be extended to include an ACL, and the http protocol extended 
to handle a “get” with a dialogue that mimics the SDSI Get protocol. (Basically, you are 



doing a lookup on the URL rather than on the SDSI name.) For example, a document 
might include in its header:  
    <META NAME="SDSI-ACL" CONTENT="( ACL: ( read: mit’s employees ) )"> 

using the standard META format for including information in the header of an HTML 
document.  

Kerberos-like tickets 

A short-lived certificate stating that x is a member of a group g can be used as a 
Kerberos-like ticket; it denotes authorization to use some resource that has an ACL 
containing g.  

Distributing signed code 

Code can be signed using the two-part detached wrapped-hash form. This means that the 
executable code itself is not modified in any way.  

Corporate database access 

Each record in the corporate database can be tagged with the name of the group of 
principals allowed to access it. In some cases, the application program itself may need a 
co-signature. (Following the discussion of Clark and Wilson [2].)  

Access to medical records 

Similar to the corporate database example, except that here the hospital has the records, 
but the individual should perhaps be the one to authorize access. One might authorize 
access for a group of the form:  
    ( OR: Dr.-Ruben St-Marys-physicians emergency-access ) 

where emergency-access  is a group that is held by a trusted party, who can add a new 
member to it in an emergency.  

Shared-secret key establishment 

The techniques of this paper can be modified to handle other cryptographic protocols, 
such as shared-secret key establishment. This is relatively straightforward.  

Multi-Cast 

If I want to broadcast a confidential message to my group banana-lovers , I can proceed 
as follows. I can post a message to the banana-lovers  Usenet news-group (or otherwise 
distribute it to all members) of the form:  

    ( Encrypted: 
       ( Key: ( ref: <server>‘s banana-recipe-241 ) 
       ( Ciphertext: ... ) ) 



so that all members obtain the raw ciphertext and know to ask my server for the key 
under the name banana-recipe-241. I give my server a cert:  

    ( Cert: 
       ( Local-Name: banana-recipe-241 ) 
       ( Value: ( Shared-Secret-Key: ( Algorithm: RC5-32/12/16-CBC ) 
... ) ) 
       ( ACL: ( read: banana-lovers ) ) 
       ( Signed: ... ) ) 

so that members of my group banana-lovers can obtain the RC5 decryption key, and 
thus read the posted multi-cast announcement.  

Other more complicated protocols could be devised for this. For example, I could 
published the encrypted key with the document itself, so that a group member would 
have to ask the server to decrypt the key for him (rather than doing a name lookup).  

Key Compromise 

Although SDSI does not support CRL’s, there is nothing to prevent someone from 
offering a service supporting “hot-lists” of principals whose keys have been reported as 
“compromised.” When a user believes that his private key has been compromised, he can 
so inform the service. (His own servers can also offer this service.) His message to the 
service can be authenticated by a statement signed by the compromised key. The service 
maintains a group (called, say, compromised-principals) giving all such principals.  

Conclusions 

We have presented a simple yet powerful framework for managing security in a 
distributed environment, and hope that the perspectives and style shown here may assist 
others in building more secure systems.  
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