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Abstract1 
We explain how consensus is used to implement replicated state 
machines, the general mechanism for fault-tolerance. We describe 
an abstract version of Lamport’s Paxos algorithm for asynchro-
nous consensus. Then we derive the Byzantine, classic, and disk 
versions of Paxos from the abstract one, show how they are re-
lated to each other, discuss the safety, liveness, and performance 
of each one, and give the abstraction functions and invariants for 
simulation proofs of safety. 

Categories and Subject Descriptors 
D.2.4 [Software] Correctness Proofs—abstraction function, in-
variant, simulation; Fault Tolerance—Byzantine, Paxos, repli-
cated state machine, view change. 
[Theory]—consensus, liveness, safety. 

General Terms 
Algorithms, Reliability, Security, Theory 

Keywords 
Paxos, asynchronous consensus, fault-tolerant, replication, Lam-
port, Byzantine, state machine 

1 Introduction 
We give an abstract version AP of Lamport’s Paxos algorithm for 
asynchronous consensus that captures its idea, but is not directly 
implementable because some of the actions are non-local. Then 
we give three implementations of AP that solve this problem in 
different ways, together with the abstractions and invariants of 
their simulation proofs:  

Classic Paxos, CP, from Lamport’s original paper  [10] and 
from Liskov and Oki  [14], tolerates n/2 stopped processes 
and requires conditional write (compare and swap) opera-
tions on persistent state variables. 
Disk Paxos, DP, from Gafni and Lamport’s recent paper  [6], 
is a generalization of AP and CP that requires only read and 
write operations on persistent state variables. 
Byzantine Paxos, BP, from Castro and Liskov  [1],  [2] toler-
ates n/3 processes with arbitrary faults. Their papers also de-
scribe a replicated state machine implementation, based on 
BP, that has good performance and the same fault tolerance. 

AP, CP, and BP are summarized in the appendix. 
I’ve tried to answer all the questions I had when I read these pa-

pers, about how simple the algorithms can be made, the minimum 
conditions for them to work, and how they are related. The role 

                                                                          
1 This paper was presented as an invited talk at the 2001 Principles of 
Distributed Computing Conference. It has not been published. 

that General Λαμπσων played in the original Paxos paper makes it 
especially appropriate for me to write about a Byzantine version. 

I don’t know whether a practical algorithm could be developed 
in this top-down fashion. Certainly the three that we give were not 
invented in this way, but our exposition does clarify the relation-
ships among them and perhaps will suggest other variations.2 

1.1 Replicated state machines 
The main application for fault-tolerant consensus is replicated 
state machines. This is the fundamental technique for general 
fault-tolerance, first described by Lamport  [8]. It goes like this: 

Cast your problem as a deterministic state machine that takes 
input requests for state transitions, called steps, from the cli-
ent, performs the steps, and returns the output to the client. 
Any computation can be done this way. 
Make n copies or ‘replicas’ of the state machine. 
Using consensus, feed all the replicas the same input se-
quence. Then they all generate the same output sequence. 

If a replica fails, it can recover by starting in the initial state and 
replaying all the inputs. Like a transaction system  [7], it can speed 
up this complete replay by starting with a previous state instead of 
at the beginning.  

The steps of the state machine can be arbitrarily complicated as 
long as they are deterministic, atomic, and strictly local to one 
replica. To make a big step atomic, use transactions  [7]. Of course 
a replica can involve more than one physical machine; in fact, like 
any good idea in computer science, the entire method can be ap-
plied recursively. 

Even reading the state must be done with a step, unless the cli-
ent is willing to accept output based on an old state. If a read also 
returns the sequence number of the last step that affected it, the 
client can pay for better read performance with complexity by 
doing an occasional step to learn the current step, and then accept-
ing read outputs that are not too far out of date. With a sloppy 
notion of real time the state machine can give the client a bound 
on number of seconds a read might be out of date. 

Since fault-tolerant consensus makes all the inputs persistent, 
exactly-once semantics needs no extra persistent writes. The state 
machine does have to check that an input hasn’t been accepted 
already, which it can do by remembering the most recent input 
from each client, or just its hash, sequence number, or time-stamp. 

The most common application is to data storage systems such as 
a file system  [14]. The method is much more general, however. 
For instance, state machine actions can be used to change the sets 
of processes that form the various quorums on which consensus 
depends, so that no special algorithms are needed to deal with 
processes that arrive and depart in an orderly way. 

                                                                          
2 There is a similar treatment of reliable messages in  [11] and  [12]. 
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Many applications combine a replicated state machine with 
leases, which are locks on portions of the state. A lease differs 
from a lock because it times out, so the system doesn’t block in-
definitely if the leaseholder fails. To keep the lock the holder 
must renew the lease. There is an obvious tradeoff between the 
cost of frequent renewals and the cost of waiting for the lease to 
expire when the leaseholder fails. A client (or a subordinate state 
machine) with a lease can do arbitrary reads and writes of the 
leased state without taking any steps of the main state machine, 
except for a single step that combines all the writes. The most 
important use of leases is to allow holders to cache part of the 
state.  

Like locks, leases can have different modes such as shared and 
exclusive, and they can be hierarchical. A parent leaseholder can 
issue child leases for sub-portions of its state without using con-
sensus; of course the child’s lease must expire no later than the 
parent’s. 

Consensus is also useful for group membership and transaction 
commit, if a full replicated state machine is not needed. 

1.2 The idea of Paxos 
A consensus algorithm decides on one from a set of input values 
(such as the state machine inputs). It uses a set of processes, 
called agents in this paper. The simplest form of fault-tolerant 
consensus decides when a majority of agents choose the same 
value. This is not very fault-tolerant for two reasons: there may 
never be a majority, and even when there is, it may remain per-
manently invisible if some of its agents stop. Since we can’t dis-
tinguish a stopped agent from a slow one, we can’t tell whether 
the invisible majority will reappear, so we can’t ignore it. 

To avoid these problems, Paxos uses a sequence of views.3 A 
majority in any view decides (or more generally, a decision quo-
rum; see section  4.2), but if a view doesn’t work out, a later view 
can supersede it. This makes the algorithm fault-tolerant, but in-
troduces a new problem: decisions in all views must agree. 

The key idea of Paxos is that a later view v need not know that 
an earlier view decided in order to agree with it. Instead, it’s 
enough to classify each earlier view u into one of two buckets: 
either it can never decide, in which case we say that it’s out, or it 
has made a choice and it must decide for that choice if it decides 
at all. In the latter case v just needs to know u’s choice. 

Thus a view chooses and then decides. The choice can be super-
seded, but the decision cannot. On the other hand, the choice must 
be visible unless the view is visibly out, but the decision need not 
be visible because we can run another view to get a visible deci-
sion. This separation between decision and visibility is the heart 
of the algorithm.  

A decision will be unique as long as every later choice agrees 
with it. We ensure this by anchoring the choice: if all previous 
views are out, v can choose any input value; if not, it can take the 
choice of the latest previous view that isn’t known to be out. By 
induction, this ensures that v will agree with any previous decision. 
To keep the algorithm from blocking, each previous view must be 
visibly out or have a visible choice. See section  4.3 for a picture 
of the anchor-choose-decide sequence. 

In each view a primary process initiates the choice. A view 
eventually decides unless the primary fails or a later view starts. 
A later view may be necessary if the primary fails. Since asyn-

                                                                          
3 Views are ‘ballots’ in Lamport’s original paper, and ‘rounds’ in other 
papers. ‘View’ suggests a view of the state or a view of the membership of 
a group, although these are only applications of consensus. 

chronous consensus with faults cannot be live  [5], there is no 
reliable way to decide when to start another view. Paxos uses 
some unreliable way based on timeouts. Thus views may run 
concurrently. 

1.3 Design methodology 
Our description of the algorithms is based on a methodology for 
designing fault-tolerant systems. There are five principles: 

Use only stable predicates to communicate state among 
processes. A predicate is stable if once true, it never becomes 
false. Hence information about non-local state can never be-
come false. This makes it much easier to reason about the ef-
fects of failures and other concurrent actions. We say that a 
variable is stable if its non-nil value doesn’t change: y is sta-
ble if (y = constant ∧ y ≠ nil) is stable. Often variables that are 
not stable encode stable predicates; see section  4.8 for an ex-
ample. 
Structure the program as a set of separate atomic actions. 
This simplifies reasoning about failures. If sequencing is 
necessary, code it into the state; the actions of the primary in 
CP below are an example of this. This avoids having a pro-
gram counter and invariants that connect it to the state. State 
should be either persistent, or local to a sequence of actions 
that can be abandoned. 
Make the actions as non-deterministic as possible, with the 
weakest possible guards. This allows more implementations, 
and also makes it clearer why the algorithm works. 
Separate safety, liveness, and performance. Start with an al-
gorithm that satisfies a safety property expressed as a state 
machine specification. Then strengthen the guards on some 
of the actions to ensure liveness or to schedule the actions; 
this reduces the number of possible state transitions and 
therefore cannot affect safety. 
Use an abstraction function and a simulation proof to show 
that an algorithm satisfies its safety specification.4 Put all the 
relationships between actions into invariants; it should never 
be necessary to do an explicit induction on the number of ac-
tions. Liveness proofs are more ad hoc.  

The top-down development often works by introducing new 
variables that are related to the abstract variables by an invariant, 
and modifying the actions so that they depend only on the new 
variables and not on the abstract ones. The abstract variables thus 
become history variables in the proof.  

1.4 Related work 
Classic Paxos was invented independently by Lamport  [10] and 
by Liskov and Oki  [14]. This version of Paxos tolerates only stop-
ping faults. 

Lamport’s work was neglected because of the complicated 
Paxon fiction he used to describe it. He calls an agent a ‘priest’ 
and a view a ‘ballot’, and describes the application to replicated 
state machines in detail. A recent extension called Disk Paxos 
allows read-write memory such as a disk to be used as an agent 
 [6]. My previous exposition of Classic Paxos and state machines 
calls a view a ‘round’ and a primary a ‘leader’  [13]. 

Liskov and Oki’s work is embedded in an algorithm for data 
replication, so the fact that they describe a consensus algorithm 

                                                                          
4 See  [9] and  [13] for informal explanations of simulation proofs, and  [15] 
for a thorough account. 
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was overlooked. Not surprisingly, they call an agent a ‘replica’; 
they also use the terms ‘primary’ and ‘backup’. 

Castro and Liskov introduced Byzantine Paxos, which tolerates 
arbitrary faults  [1] [2]. They present it as Liskov and Oki do.  

There is an extensive literature on consensus problems, thor-
oughly surveyed by Lynch  [15]. Dwork et al  [4] give consensus 
algorithms that, like Paxos, have a sequence of views (called 
‘rounds’) and are guaranteed safe but are live only if views are 
started prudently. Malkhi and Reiter treat Byzantine quorums  [16]. 

1.5 Organization 
Section 2 gives the background: notation, failure model, and quo-
rums. Section 3 is the specification for consensus, followed by AP 
in section 4 and its DP generalization in section 5. Section 6 ex-
plains how we abstract communication, and sections 7 and 8 use 
this abstraction for CP and BP. Section 9 concludes. An appendix 
summarizes the notation and the main actions of AP, CP, and BP. 

2 Background 
2.1 Notation 
To avoid a clutter of parentheses, we usually write subscripts and 
superscripts for function arguments, so g(v, a) becomes gv

a. We 
use subscripts for views and superscripts for processes. Other 
subscripts are part of the name, as in v0 or Qout. 

Lower-case letters denote variables and upper-case letters de-
note sets and predicates (except that q and z denote sets of proc-
esses, so that Q and Z can denote sets of sets). A type is a set, but 
also overloads functions and operators. Names starting with t 
denote variables of type T. 

No-argument functions on the state are ‘state functions’, used 
like variables except that we don’t assign to them. Rather than 
recompute such an r each time it’s used, a real program might 
have a variable r′ and maintain the invariant r = r′.  

We use g for a predicate on the state, and G for a process predi-
cate, a function from a process to a predicate. F and S denote spe-
cific process predicates; see section  2.2. We lift logical operators 
to process predicates, writing G1 ∧ G2 for (λ m | G1

m ∧ G2
m).  

We write {x ∈ X | G(x)} in the usual way to describe a set: the 
elements of X that satisfy G. This extends to {x , y | G(x, y) | f(x, y)} 
for {z | (∃x , y | G(x, y) ∧ z = f(x, y)}. 

The following schema describes actions: 
Name Guard     State change  
Closev cv = nil ∧ x ∈ anchorv →cv := x  

The name of the action is in bold. The guard is a predicate that 
must be true for the action to happen. The last column describes 
how the state changes; read “guard → state change” as “if guard 
then state change”. A free variable in an action can take on any 
value of its type. An action is atomic. 

A variable declaration 
var y : Y := nil  

gives the variable’s name y, type Y, and initial value nil. 
When an action or formula derives from a previous version, 

boxes highlight the parts that change, except for process super-
scripts. Shading highlights non-local information. Underlines 
mark the abstract variables in a simulation proof of refinement. 

The appendix has a summary of the notation in table 3, and the 
variables and main actions of the various algorithms in table 4. 

2.2 Failure model 
We have a set M (for Machine) of processes, and write m or k for a 
process, and later a or p for an agent or primary process. 

We admit faulty processes that can send any messages, and 
stopped processes that do nothing. A failed process is faulty or 
stopped; a process that isn’t failed is OK. Our model is asynchro-
nous, which means that you can’t tell a stopped process from a 
slow one (after all, both begin with ‘s’). A process that crashes 
and restarts without losing its state is not stopped, but only slow. 
A primary process may have a crash or reset action that does lose 
some state; this is also not a failure. 

We define predicates on processes: Fm is true when m is faulty, 
Sm when m is stopped. These are stable, since a process that fails 
stays failed. OK = ~(F ∨ S). When a process fails its state stops 
changing, since failed processes don’t do actions. Thus every 
action at m has ∧ OKm in its guard, except a send from a faulty 
process. To reduce clutter we don’t write this conjunct explicitly.  

A faulty process can send arbitrary messages. For reasoning 
from the contents of messages to be sound, any g inferred from a 
message from m must therefore be weaker than Fm, that is, equal 
to g ∨ Fm. You might think that the state of a faulty process should 
change arbitrarily, but this is unnecessary. It does all its damage 
by sending arbitrary messages. Those are its external actions, and 
they are the same for arbitrary state and for frozen state.  

The reason for distinguishing faulty from stopped processes is 
that faulty processes compromise safety: the system does the 
wrong thing. Stopped processes can only compromise liveness: 
the system does nothing. Often safety is much more important 
than liveness. This is like the distinction in security between in-
tegrity and availability (preventing denial of service). 

We limit the extent of failures with sets ZF, the set of all sets of 
processes that can be faulty simultaneously, ZS the same for 
stopped, and ZFS the same for failed. Clearly ZF ⊆ ZFS and ZS ⊆ ZFS.  

2.2.1 Examples 
The simplest example is bounds f and s on the number of faulty 

and stopped processes. We define Z≤i = {z | |z| ≤ i}. Then ZF = Z≤f, 
any set of size ≤ f, and ZS = Z≤s, any set of size ≤ s. If f = 0 there 
are no faulty processes and only {} is in ZF. 

A different example for faults is mutual mistrust. Each process 
belongs either to Intel or to Microsoft, and both an Intel and a 
Microsoft process cannot be faulty: 
ZF = {z | z ⊆ zIntel ∨ z ⊆ zMicrosoft}.  

Similarly, for stops we might use geographical separation. All 
the processes in Boston or in Seattle can stop (perhaps because of 
an earthquake), but at most one in the other place:  
ZS = {zb ⊆ zBoston, zs ⊆ zSeattle | |zb| ≤1 ∨ |zs| ≤ 1 | zb ∪ zs} 

It seems natural to assume that F ⇒ S, since a faulty process 
might appear stopped by sending no messages. This implies ZF ⊆ 
ZS = ZFS. For the bounded case, it implies f ≤ s. It’s not essential, 
however, that faulty imply stopped. The important thing about a 
faulty process is that it can send a false message, which can affect 
safety, while a stopped process can only affect liveness.  

For example, F ⇒ S implies that Intel-Microsoft has no live 
quorums (see below), since all the Intel processes can be faulty, 
but if they can all be stopped then none are left to form the Intel 
part of a quorum. We could, however, configure such a system on 
the assumption that no more than two processes will stop; then 
any three processes from each side is a live quorum. This makes 
sense if each side insists that no decision can depend entirely on 
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the other side, but is willing to wait for a decision if the other side 
is completely stopped. 

2.3 Quorums: Good, exclusive, and live 
A quorum set Q is a set of sets of processes. Define Q#G = 
{m | Gm ∨ Fm} ∈ Q, that is, G ∨ F holds at every process in some 
quorum in Q. F is there to make the predicate a sound conclusion 
from a message. We write Q[rv*=x] for Q#(λ m | rv

m = x); here rv
m=x 

stands for any expression. 
We require Q to be monotonic (q ∈Q ∧ q ⊆ q′ ⇒ q′ ∈ Q), so that 

making G true at more processes doesn’t falsify Q#G. Thus if G is 
stable, so is Q#G. If G1 ⇒ G2 then Q#G1 ⇒ Q#G2.  

It’s natural to define Q~F = {q | q ∉ ZF}; these are good quorums, 
with at least one non-faulty process. 

Quorum sets Q and Q′ are (mutually) exclusive if we can’t have 
both a Q quorum for G and a Q′ quorum for its negation: 
(∀G | Q#G ⇒ ~Q′#~G). This holds if every Q quorum intersects 
every Q′ quorum in a set of processes that can’t all be faulty: 
     ∀q ∈ Q, q′ ∈ Q′ | q ∩ q′  ∈ Q~F 
This is how we lift local exclusion G1 ⇒ ~G2 to global exclusion 
Q#G1 ⇒ ~Q′#G2. Exclusion is what we need for safety. 

For liveness we need to relate various quorums to the sets of 
possibly faulty or stopped processes.  

To ensure G holds at some non-faulty process, we need to 
hear it from a good quorum, one that can’t be all faulty, that 
is, one in Q~F. If g = Gm is independent of m, then Q~F#G ⇒ g; 
this is how we establish g by hearing from some processes.  
To ensure that henceforth there’s a visible Q quorum satisfy-
ing a predicate G, we need a quorum Q+ satisfying G that still 
leaves a Q quorum after losing any set that can fail: 
 Q+ = {q′ | (∀z ∈ ZFS | q′ – z ∈ Q}.  
If Q+ ≠ {} then Q is live: there’s always some quorum of OK 
processes in Q.  

2.3.1 Examples 
The most popular quorum sets are based only on the size of the 

quorums: Q≥i = {q | |q| ≥ i}. If there are n processes, then for Q≥i 
and Q≥j to be exclusive, we need i + j > n + f. If ZF = Z≤f then 
Q~F = Q≥f+1. If ZFS = Z≤s then Q≥i

+ = Q≥s+i and Q≥i live requires 
i ≤ n – s, since Q>n = {}. So we get n + f < i + j ≤ 2(n – s), or 
n > f + 2s. Also i > n + f – j ≥ n + f – (n – s), or i > f + s. With the 
minimum n = f + 2s + 1, f + s < i ≤ f + s + 1, so we must have i = 
f + s + 1. If s = f, we get the familiar n = 3f + 1 and i = 2f + 1. 

With f = 0 there are exclusive ‘grid’ quorum sets: arrange the 
processes in a rectangular grid and take Q to be the rows and Q′ 
the columns. If Q must exclude itself, take a quorum to be a row 
and a column, minus the intersection if both have more than two 
processes. The advantage: a quorum is only √n or 2(√n – 1) proc-
esses, not n/2. This generalizes to f > 0 because quorums of i rows 
and j columns intersect in ij processes  [16].  

For the Intel-Microsoft example, an exclusive quorum must be 
the union of an exclusive quorum on each of the two sides. 

3 The specification for consensus 
The external actions are Input, which provides an input value from 
the client, and Decision, which returns the decision, waiting until 
there is one.5 Consensus collects the inputs in the input set, and the 
internal Decide action picks one from the set.  

                                                                          
5 A different spec would allow it to return nil if there’s no decision, but 
then it must be able to return nil even if there has already been a decision, 

type X = … values to agree on 

var d : (X ∪ {nil})  := nil Decision 
 input : set X := {} 

Name Guard    State change  
Input(x)      input := input  ∪ {x}  
Decision: X d ≠ nil  →ret d  
Decide d = nil ∧  x ∈ input →d := x  

For replicated state machines, the inputs are requests from the 
clients. Typically there is more than one at a time; those that don’t 
win are carried over to input for the next step. 

It’s interesting to observe that there is a simpler spec with iden-
tical behavior.6 It has the same d and Decision, but drops input and 
Decide, doing the work in Input. 
var d  : (X ∪ {nil})  := nil Decision 

Input(x)      if d = nil then optionally d := x  
Decision: X d ≠ nil  →ret d  

A simulation proof that the first spec implements the second, 
however, requires a prophecy variable or backward simulation. 

This spec says nothing about liveness, because there is no live 
algorithm for asynchronous consensus  [5]. 

4 Abstract Paxos 
As we said in section  1.2, the idea of Paxos is to have a sequence 
of views until one of them forms a quorum that is noticed. So 
each view has three stages:  

Choose an input value that is anchored: guaranteed to be the 
same as any previous decision. 
Try to get a decision quorum of agents to accept the value. 
If successful, finish by recording the decision at the agents.  

This section describes AP, an abstract version of Paxos. AP 
can’t run on your computers because some of the actions refer to 
non-local state (marked like this so you can easily see where the 
implementation must differ). In particular, Choose and cv are com-
pletely non-local in AP. Later we will see different ways to im-
plement AP with actions that are entirely local; the key problem is 
implementing Choose. 

AP has external actions with the same names as the spec, of 
course. They are almost identical to the actions of the spec. 
Name Guard     State change  
Input(x)      input := input  ∪ {x}  
Decisiona: X d a ≠ nil  →ret d a  

4.1 State variables 

type  V = ... View; totally ordered 
 Y = X ∪ {out, nil} 
 A ⊆ M = … Agent 
 Q = set A Quorum 

const Qdec : set Q := ... decision Quorum set 
 Qout : set Q := ... out Quorum set 
 v0 : V := ... smallest V 

The views must be totally ordered, with a first view v0. Qdec and 
Qout must be exclusive.  
var rv

a : Y := nil, but rv0
a := out Result 

 d a : X ∪ {nil} := nil Decision 
                                                                                                          

since a client may do the Decision action at a process that hasn’t yet heard 
about the decision. For this paper it makes no difference. 
6 I am indebted to Michael Jackson for a remark that led to this idea. 
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 cv : X ∪ {nil}  := nil Choice 
 input : set X := {} 
 activev : Bool  := false 

Each agent has a decision d a, and a result rv
a for each view; we 

take rv0
a = out for every a. AP doesn’t say where the other vari-

ables live. 

4.2 State functions and invariants 
We define a state function rv that is a summary of the rv

a: the 
view’s choice if there’s a decision quorum for that among the 
agents, or out if there’s an out quorum for that, or nil otherwise. 
sfunc rv: Y = if 

 elseif 
 else  

Qdec[rv*=x]  
Qout[rv*=out] 

then x 
then out 
nil 

view v decided x
view v is out 
view can stay nil

(A1)

According to the main idea of Paxos, there should be a decision 
if there’s a decision quorum in some view. Thus 
abstract d   = if rv ∈X then rv else nil   
 input  = input   

Figure 1 summarizes the state variables and functions. 
 Non-local Agents  State functions View is 
   rv d 
cv 1: rv

1  
  d 1 Qdec[rv

*=x]  x x decided 
 
input 2: rv

2  
  d 2 
   Qout[rv

*=out]  out nil out 
activev 3: rv

3  
  d 3  
  else nil nil open  

Figure 1: AP state variables and functions 
All the variables with short names are stable: rv

a, d a, rv, cv. In 
addition, activev, x ∈ input, and x ∈ anchorv are stable, although the 
sets are not because they can grow: 

input grows in Input;  
anchorv is empty until every earlier view is out or has a 
choice, and then becomes X or that choice; see (A8) below. 

AP maintains the following plausible invariants. All but (A3) 
are summarized in figure 2. 
invariant d a ≠ nil ⇒ (∃v | rv = d a) decision is a result (A2)
 rv = x ∧ ru = x′ ⇒ x = x′ all results agree (A3)
 rv

a = x ⇒ rv
a = cv agent’s result is view’s cv (A4)

 cv=x ⇒ cv ∈ input ∩ anchorv cv is input and anchored (A5)
 rv

a ≠ nil ∧ u < v ⇒ ru
a ≠ nil Close/Acceptv do all u<v (A6)

  to later views 
 

ru
a=nil 

Closev x∈anchorv 
Choosev cv 

Acceptv rv=cv 
Finishv da=rv 

 ru
a:=out  cv:=x  rv

a:=cv   da:=rv 
 for u < v     
  Each value is nil or = the previous one 

Client 
INPUT x

 x∈input 

Figure 2: AP data flow 
Invariant (A3) ensures a unique decision. To see how to main-

tain it, we rewrite it with some of the universal quantifiers made 
explicit so that we can push them around: 
    ∀ x′, u | rv = x ∧ ru = x′ ⇒ x = x′  

By symmetry, we can assume u < v. Symbol-pushing and substi-
tuting the definition of ru = x′ yields 
    rv = x ⇒ (∀ u < v, x′ ≠ x | ~ Qdec[ru*=x′]) (A7) 

How can we exclude Qdec[ru*=x′]? In the scope of x′ ≠ x,  
ru

a ∈ {x, out} ⇒ ~(ru
a = x′) 

Lifting this exclusion to the exclusive decision and out quorums 
(see section  2.3), we get Qout[ru*∈{x,out}] ⇒ ~Qdec[ru*=x′]. In addi-
tion, cu = x ⇒ ~Qdec[ru*=x′] by (A4), since a decision quorum can’t 
be all faulty. Substituting the stronger predicates, we see that (A7) 
is implied by 
    rv = x ⇒  (∀ u < v | cu = x ∨ Qout[ru*∈{x,out}])  

where we drop the quantifier over x′ since x′ no longer appears. 
You might think that by (A4) Qout[ru*=out] would be just as good 
as Qout[ru*∈{x,out}], but in fact it’s too strong if there are faults, 
since we can get x from a faulty agent in the quorum even though 
cu ≠ x. 

If we limit rv
a to values of X that satisfy the right hand side, this 

will be an invariant. With this in mind, we define 
sfunc anchorv : set X = {x | (∀ u < v | cu = x ∨ Qout[ru*∈{x,out}])} (A8)

This says that x is in anchorv if each view less than v chose x or has 
an out quorum for (out or x). If all the earlier views are out, 
anchorv is all of X. If we make cv anchored and set rv

a only to cv, 
then (A3) will hold. 

Note that this definition does not require every previous view to 
be decided or out (that would be ... Qdec[ru*=x] ∨ Qout[ru*=out], 
which is ru ≠ nil). It’s strong enough, however, to ensure that if 
there is a previous decision it is the only element of anchor, be-
cause a decision excludes an out quorum for anything else. 

To compute anchor directly from the definition (A8), we need to 
know a choice or out for each previous view. We can, however,  
compute it recursively by splitting the quantifier’s domain at u: 
          anchorv 
=       {x | (∀ w | v0 ≤ w < v ⇒ cw = x ∨ Qout[rw*∈{x,out}])}  
=       {x | (∀ w | v0 ≤ w < u ⇒ cw = x ∨ Qout[rw*∈{x,out}])} 
     ∩ {x |                                  cu  = x ∨ Qout[ru*∈{x,out}]} 
     ∩ {x | (∀ w | u0 < w < v ⇒ cw = x ∨ Qout[rw*∈{x,out}])} 

We define outu,v = (∀ w | u < w < v ⇒ rw = out): all views between u 
and v are out. If this is true, then the third term is just X, so since 
cu ∈ anchoru by (A5): 
anchorv = {x | cu = x} ∪ (anchoru ∩ {x | Qout[ru*∈{x,out}]})    

if outu,v 

(A9)

If ru
a = x is the latest visible x, then cu = x by (A4), and the Closev 

action below makes all views later than u out and ensures that x is 
in anchorv; note that this x is not necessarily unique. If all the 
views earlier than v are out, anchorv = X. Thus we have 
anchorv ⊇ if outu,v ∧ ru

a = x then {x}  
elseif outv0,v         then X  else {} 

(A10)

In BP, however, ru
a may not be visible, so we need the more in-

clusive (A9) to ensure that Choose can happen; see section  8.3. 

4.3 The algorithm 
With this machinery the algorithm is straightforward. We Choose 
an anchored input and then Accept (which can’t happen until after 
Choose, since it needs cv ≠ nil). That leads to a decision, which 
Finish records for posterity. This is the whole story for safety. 
Name Guard     State change  
Choosev cv

a = nil ∧ x ∈ input ∩ anchorv  →cv := x  
Acceptv

a rv
a = nil ∧  cv ≠ nil →rv

a := cv; Closev
a  
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Finishv
a rv ∈ X →d a

  := rv  

For the safety proof, Input and Decisiona simulate Input and 
Decision in the spec. All the other actions do not change the ab-
stract state and therefore simulate skip in the spec, except for the 
Accept that forms a decision quorum of agents for cv. This Accept 
simulates Decide. However, the agent whose Accept simulates 
Decide has no way of knowing this. In fact, if some agent in the 
quorum fails before anyone else finds out that it accepted cv, 
there’s no way for anyone to know that there’s been a decision. 
There will be another view, and by the magic of anchoring it will 
choose the value already decided. This can happen repeatedly, 
until finally there’s a view in which the agents in a decision quo-
rum stay up long enough that others can find out about it; see 
section  4.4 for an example. 

For liveness, however, this is not enough, because Choose needs 
a non-empty anchor, which we get by doing Close on enough 
agents to ensure that every previous view either is out or has 
made a choice. An out quorum is definitely enough. Anchor hap-
pens when an out quorum has done Close; it marks the end of a 
view change (see section  4.9) even though there’s no state change. 
Startv u<v too slow→activev := true  
Closev

a activev  →for all u < v do 
       if  ru

a = nil then ru
a := out 

post u<v ⇒ru
a≠nil

Anchorv anchorv ≠{} →none  

Note that we do not need, and do not necessarily get, ru ≠ nil, 
since some agents may never close, and even closing all the 
agents may yield a view that’s neither decided or out. 

Agents are just memories; they don’t do anything complicated. 
They cannot be simple read-write memories, however, since they 
must do the conditional-write or compare-and-swap operations of 
Close and Accept. Disk Paxos (section  5) implements AP without 
conditional writes. 

With these actions AP finishes provided there are quorums of 
OK agents and a final view that is the last one in which Close 
actions occur; see section  4.5 for details. 
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Figure 3: Abstract Paxos 

Figure 3 shows the actions of AP for one complete view. It 
shows communication with vague wavy arrows, since AP ab-
stracts away from that, but the “transmit” part says what informa-
tion needs to flow to enable the next action. Capitalized items 
refer to the state machine application of Paxos: the client (boxed 
in the figure) provides an input request, the machine takes a step, 
and it sends the client some output. If there are no faults, any 
agent could send the output.  

4.4 Example 
An example may help your intuition about why this works when 
there are no faults. The table shows views 1-3 in two runs of AP 
with agents a, b, c, two agents in a quorum, and input  = {7, 8, 9}.  

   cv      rv
a      rv

b    rv
c  cv     rv

a      rv
b    rv

c 
View 1 
View 2 
View 3     

 7        7         out      out 
 8        8         out      out 
 9        out        out      9   

  8       8          out     out 
  9       9          out     9 
  9       out        out     9 

input ∩  
anchor4 

= {7, 8, 9} seeing a, b, c 
⊇{8} seeing a, b  
⊇{9} seeing a, c or b, c 

  {9} no matter what  
        quorum we see 

In the left run all three views are out, so if we compute anchor4 
by seeing all three agents, we can choose any input value. If we 
see only a and b, view 3 appears out but view 2 does not, and 
hence we must choose 8. If we see only a and c or b and c, view 3 
doesn’t appear out and hence we must choose 9. 

In the right run, view 2 is decided, but we don’t see that if either 
a or c is stopped. Nonetheless, we must choose 9, since we see 
that value in a non-out view no matter what out quorum we see. 
Thus a decided view such as 2 acts as a barrier which keeps any 
later view from choosing another value. 

The reason there were three views in both runs is that each view 
was interrupted by Close in a later one before it had a chance to 
finish. Otherwise view 1 would have succeeded. If new views 
keep starting, the algorithm can continue indefinitely. 

4.5 Liveness 
We want AP to finish in a final view v if there’s no Close action in 
any later view. It will do so if the actions can see certain things: 
• Finishv must see a decision d (that is, must see Qdec[rv*=d]). This 

means that Qdec must be live. Since there are no later views to 
mess with rv

a, if Qdec is live Accept will eventually run at 
enough agents to make d visible. However, d need not be visi-
ble in the view that made it. In fact, it’s fundamental to Paxos 
that until Finish has run at a live quorum, you may have to run 
another view to make d visible. This can’t happen in a final 
view, since it can only happen in u if a later view does Close 
and sets some ru

a to out.  
• Acceptv must see the choice cv, though again perhaps not in 

every view if processes fail at bad times. This depends on the 
implementation of cv, which varies. It is trivial with no faults: 
one process, called a primary, chooses cv and announces it, 
which works if there’s only one primary for v and it doesn’t 
stop. With faults, BP uses a quorum to get a unique and visible 
cv, which works if all OK processes choose the same cv and the 
quorum is live. 

• Choosev must see at least one element of anchor. Since this 
doesn’t get easier when you run another view, we insist that it 
be true in every view. This means that every previous view w 
must become visibly out (Qout[rw*=out] is visible) back to a 
view u that has a visible choice (A10) or at least is visibly an-
chored (A9). Hence Qout must be live. Since anchor involves the 
choice, this also depends on the implementation. 
Some element x of anchor that Choosev sees must also be in 
input. But either anchor = X, in which case input ⊆ anchor, or 
x = cu for some u, in which case x ∈input by (A5). 

If Qout is live, Closev always leads eventually to a visible out 
quorum of OK agents in every u < v. In this quorum either every 
agent is out, in which case u is out, or some ru

a = cu by (A4). So if 
no faults are allowed, we get a non-empty anchorv immediately 
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from this out quorum by (A10). If there are faults, there may be 
other out quorums as well, in which we see ru

a = x ≠ cu if a is 
faulty. Since we can’t tell which out quorum is OK, (A10) isn’t 
enough to anchor v. We need (A9) and some delicate reasoning; 
see section  8.3. 

A view can finish by seeing only an out quorum (for x ∈ anchorv, 
which Choose needs) and a decision quorum (for rv = x, which 
Finish needs). Thus the requirement is Qout and Qdec both live. 
With no faults and equal size-based quorums, for example, both 
quorums are the same: more than n/2 agents.  

4.6 Scheduling 
Doing Close in views later than v may keep Acceptv from happen-
ing, by setting too many rv

a to out before Acceptv has a chance to 
set them to cv; of course this can’t happen in the final view be-
cause there are no later views. To get a final view, activev controls 
the scheduling of Closev. Since asynchronous consensus can’t be 
guaranteed to terminate, there is no foolproof way to do this 
scheduling.  

Schedulers either randomize or estimate the longest time RT for 
a round-trip from one process to another and back; note that RT 
includes the time for the processes to run as well as the time for 
the messages to travel. The idea is that if a view doesn’t complete 
within 2RT, you multicast a new view v. If v is smaller than any 
other view you hear about within another RT, v becomes active. 
Obviously this can fail in an asynchronous system, where there is 
no guarantee that the RT estimate is correct. 

Castro and Liskov  [1] use the Ethernet’s exponential backoff 
technique to estimate RT; a process backs off whenever it fails to 
hear from a quorum within its current RT estimate. This works as 
long as RT does not increase without bound. The estimate can be 
as much as b times the actual RT, where b is the backoff multiplier, 
commonly 2. More serious is that if processes stop and then re-
cover, the estimate may be much too large. 

Summing this up, with proper scheduling AP finishes as soon as 
there are Qdec and Qout quorums of processes that haven’t failed. 
We can’t implement proper scheduling in general, but it’s not 
hard in most practical situations. 

4.7 Cleanup 
Once a Q~F

+ quorum knows a decision all the other state can be 
discarded, since no matter what failures occur there will be a good 
quorum to report d.  

Cleanupa     Q~F
+[d ≠ nil] →for all v do rv

a := nil; input := {}  

The decision itself can be discarded once the client knows about 
it. In the state machine application the decision must be kept until 
the state change it causes has been recorded in a sufficiently per-
sistent way; this is the same as the rule for truncating the log in a 
transaction system. 

4.8 Optimizing agent state 
Closev

a leaves ru
a out or cu for all u < v, and by (A10) anchor only 

depends on the latest view with ru
a = x. Hence an agent a only 

needs to keep track of the latest view u for which ru
a = x and the 

range (maybe empty) of later views w for which rw
a = out. The 

following variables do this: 
vXlast

a the latest u for which ru
a = x (v0 if there is no such u) 

xlast
a x (arbitrary if there’s no such u), and 

vlast
a the earliest v ≥ u for which ru

a ≠ out.  

For views w between vXlast
a and vlast

a, rw
a = out; for views past vlast

a, 
rw

a = nil. Thus vXlast
a = u ≠ v0 and xlast

a = x encode the predicate 
ru

a = x, and vXlast
a = u and vlast

a = v encode  
   ∀ w | (u<w<v ⇒ rw

a = out) ∧ (v<w ⇒ rw
a = nil) ∧ (u ≠ v ⇒ rv

a = nil). 
These predicates are stable, although the variables of course are 
not. Here is the picture. 
rw

a  don’t know xlast
a out  nil 

 |  |  | 
view v0 vXlast

a vlast
a 

This encoding uses space logarithmic rather than linear in the 
number of views, which makes it cheaper both to store and to 
transmit the agent state. In practice, of course, we use a fixed 
amount of space for a view. Close and Accept become 
Closev

a activev  ∧ vlast
a < v →vlast

a := v 
Acceptv

a cv ≠ nil ∧ vlast
a = v →vXlast

a := v; xlast
a:= cv; vlast

a := v 

4.9 Multi-step optimizations 
When we use Paxos (or any other consensus algorithm) to imple-
ment a replicated state machine, we need to reach consensus on a 
sequence of values: the first step of the state machine, the second 
step, etc. By observing that anchorv does not depend on cv, we can 
compute it in parallel for any number of steps. For most of these, 
of course, there will have been no previous activity, so the agent 
states for all the steps can be represented in the same way. We 
only need to keep track of the last step for which this is not true, 
and keep separate last triples just for this and any preceding steps 
that are not decided. To bound this storage, we don’t start a step if 
too many previous steps are not known to be decided. 

With this optimization we do Close and compute anchor only 
when the view changes, and we can use one view for a whole 
sequence of steps. Each step then requires Choose and Accept to 
reach a decision, and Finish to tell everyone. Finish can be piggy-
backed on the next accept, so this halves the number of messages. 

It’s possible to run several steps in parallel. However, in the 
state machine application the ordering of steps is important: to 
maintain external consistency a step should not decide an input x 
that arrives after a later step decided y and sent its output. Other-
wise the clients will see that the inputs execute in the order x; y 
even though they also see that x was not submitted until after y 
completed; this is generally considered to be bad. To avoid this 
problem, fill any gaps in the sequence of steps with a special skip 
step. Of course there shouldn’t be nothing but skips. 

If there are lots of state machine steps they can be batched, so 
one run of AP decides on many steps. This is like group commit 
for transactions  [7], with the same tradeoffs: more bandwidth but 
greater latency, since the client gets no output until a batch runs. 

4.10 Other optimizations 
An agent can send its rv

a directly to the client as well as to the 
other agents, reducing the client’s latency by one message delay. 
Of course the client must see the same result from a decision quo-
rum of agents; otherwise it retransmits the request. A state ma-
chine agent can tentatively do a step and send the output to the 
client, which again must wait for a decision quorum. In this case 
the agent must be able to undo the step in case v doesn’t reach a 
decision and a later view decides on a different step. Castro and 
Liskov call this ‘tentative execution’  [1]. 

If a step is read-only (doesn’t change the state of the state ma-
chine), an agent can do it immediately and send the client the 
output. The client still needs a decision quorum, which it may not 
get if different agents order the read-only step differently with 
respect to concurrent write steps that affect the read-only result. In 
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this case, the client must try the step again without the read-only 
optimization. 

If the only reason for running AP is to issue a lease, the agents 
don’t need persistent state. An agent that fails can recover with 
empty state after waiting long enough that any previous lease has 
expired. This means that you can’t reliably tell the owner of such 
a lease, but you don’t care because it has expired anyway. 
Schemes for electing a leader usually depend on this observation 
to avoid disk writes. 

It’s convenient to describe an algorithm in terms of the persis-
tent variables. In practice we don’t keep each one in its own disk 
block, but instead log all the writes to them in a persistent log. In 
some applications this log can be combined with the log used for 
local transactions. 

5 Disk Paxos 
We would like to implement the agent with memory that has only 
read and write operations, rather than the conditional writes that 
AP does in Close and Accept. The main motivation for this is to use 
commodity disks as agents; hence the name Disk Paxos (DP)  [6]. 
These disks implement block read and write operations, but not 
the conditional-write operations that AP agents use. 

 To this end we add separate state variables rxv
a and rov

a in the 
agent for x and out, and change Close and Accept to unconditionally 
write out into ro and cv into rx. We want the code to look only at 
the values of rx and ro, so that rv

a becomes a history variable, that 
is, the behavior of the algorithm is unchanged when we remove it.  

What makes this work is an invariant that allows us to infer a lot 
about rv

a from rxv
a and rov

a: 
invariant  relates state to history (D1) 

rxv
a =   ∧ rov

a = ⇒ rv
a  

nil  nil  = nil 
nil  out  = out 
x  nil  = x 
x  out  ≠ nil 

In particular, if anchor is non-empty we can still always com-
pute at least one of its elements, because the only information lost 
is some cases in which the view is out, and in those cases we get 
rv

a instead, which is enough by (A10). We may miss anchor = X, 
but we only need a non-empty anchor (and this can happen in AP 
as well if we don’t hear from some agents that are out). We may 
also sometimes miss a decision because we only know rv

a ≠ nil 
when actually rv

a = x, but this only costs another view (and this 
too can happen in AP if we don’t hear from some agents that ac-
cept). In the final view rov

a = nil and we don’t lose any informa-
tion, so liveness is unaffected. 
var rxv

a  : X ∪ {nil} := nil Result X  
 rov

a  : {out, nil} := nil Result out 
 rv

a :  Y := nil history 

Closev
a     activev →for all u < v do 

       rou
a := out;  

       if  ru
a = nil then ru

a := out 

post u < v  
     ⇒ ru

a ≠ nil

 
Choosev    cv = nil  

∧ x ∈    input  
         ∩ anchorv  

→cv := x  

Acceptv
a     cv ≠ nil →rxv

a := cv; Closev
a; 

    if  rv
a = nil then rv

a := cv 
 

  

invariant rxv
a = x ⇒ rxv

a = cv  (D2)

With the abstraction rv
a = rv

a, DP simulates AP. 

A more general version encompasses both AP and DP, by al-
lowing either a conditional or an unconditional write in Close and 
Accept. It replaces the boxed sections with the following: 
Closev

a   … if rxu
a = nil, or optionally anyway, rou

a := out   

Acceptv
a … if rou

a = nil, or optionally anyway, rxv
a := cv  

Liveness and scheduling are the same as for AP. The last-triple 
optimization needs special handling; it is discussed in section  7.2. 

6 Communication 
For the algorithm to progress, the processes must communicate. 
We abstract away from messages by adding to m’s state a stable 
predicate T m called its ‘truth’ that includes everything m knows to 
be true from others; T also stands for ‘transmitted’. If g is a stable 
predicate, we write g@m for T m ⇒ g, and read it “m knows g” or “m 
sees g” or “g is visible at m”. The safety invariant is 
invariant g@m ⇒ g  (T1)

In other words, everything a process knows is actually true. 
This invariant allows us to replace a non-local guard g in an ac-
tion at m with the stronger local g@m. The resulting code makes 
fewer transitions and therefore satisfies all the safety properties of 
the original, non-local code. Liveness may be a challenge.  

We lift @ to process predicates: G@m = (λ k | Gk
@m). Then 

(Q#G)@m = Q#(G@m): seeing G from a quorum is the same as see-
ing a quorum for G. Read Q[g@*] as “a Q quorum knows g”, where 
g is a predicate, not a function from processes to predicates. 

Note that m can’t communicate g@m if m might be faulty. This is 
not an issue when we use g@m in a guard at m, but we can only get 
(g@m ∨ Fm)@k rather than (g@m)@k. 

6.1 Messages 
The implementation, of course, is that g@m becomes true when 

m receives a message from k asserting g; recall that g is stable and 
therefore cannot become false if k fails. We model the message 
channel as a set ch of terms gk→m (read “g from k to m”). Here are 
all the actions that affect ch or T: 
Name Guard     State change  
Localk(g) g →T k := T k ∧ (g ∨ F k ) post (g ∨ Fk)@k 
Sendk,m(g) g@k   →ch := ch ∪ {gk→m} post gk→m ∈ ch 
SendFk,m(g) Fk    →ch := ch ∪ {gk→m} post gk→m ∈ ch 
Receivem(g) gk→m ∈ ch→T m := T m ∧ (g@k ∨ Fk) post(g@k ∨ Fk)@m 
Drop(g) gk→m ∈ ch→ch := ch − {gk→m}  

So k can use Local to add to T k any true predicate g; presumably 
g will only mention k’s local state, since otherwise it would be in 
T k already.7 Then k can send gk→m to any process m if either k 
knows g or k is faulty. We separate the two send actions because 
SendF is not fair: there’s no guarantee that a faulty process will 
send any messages. 
invariant gk→m ∈ ch ⇒ g@k ∨ Fk  (T2)
 (g@k ∨ Fk)@m ⇒ g@k ∨ Fk  (T3)

From the two send actions we have (T2) since g is stable and 
therefore g@k ∨ Fk is stable. Receivem(g) adds g@k ∨ Fk to m’s truth. 
Since this is the only way to establish (g@k ∨ Fk)@m, (T3) follows 
from (T2). (T1) follows from this and Local, since they are the 
only ways to establish g@m. 

These actions express our assumption that the only way m can 
receive g from a non-faulty k is for g to be true. In other words, 
there’s no way to fake the source of a message. Usually we get 

                                                                          
7 The “∨ F” is there to simplify the definition of Broadcastk,m in section  6.3 
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this security either by trusting the source address of a message or 
by cryptographic message authentication; see  [1] for details of 
how this works for BP. 

6.2 Transmit 

We now abstract away from the channel to actions that establish 
g@m directly:  

k can transmit g@k to all the other OK processes, even if k 
fails. This allows for messages that remain in ch after k fails. 
A faulty k can transmit anything. 

TransmitFk,m(g) g@k ∧ OKm →T m := T m ∧ (g@k ∨ Fk) post (g@k ∨ Fk)@m
TransmitFk,m(g) Fk    ∧ OKm →T m := T m ∧ (g@k ∨ Fk) post (g@k ∨ Fk)@m

We say that m hears g@k ∨ Fk from k. When there’s a quorum 
Q#G@m, we say that m hears G from a Q quorum. In the simulation 
proof Receivem(g) of gk→m simulates Transmitk,m(g) by (T2) because 
g@k is stable, and the Send actions simulate skip. 

As before, both Transmitk.m and Broadcastk,m (see below) are fair 
if k is OK, and so is Broadcastm, but TransmitF is not. This means 
that if g@k holds, and OKk and OKm continue to hold, then eventu-
ally (g@k ∨ Fk)@m or g@m will hold.  

A history variable can appear in a predicate g in T k, even though 
it can’t appear directly in a guard or in an expression assigned to 
an ordinary variable, since it’s not supposed to affect the actions 
that occur. Such a g can get into T k initially if an invariant (such 
as (C1)) says it’s implied by a g′ that doesn’t contain a history 
variable. Once it’s in T k, g can be transmitted in the usual way. 
This is just a way of encoding “g′ was true at some time in the 
past”. So if g′ has no history variables, and g and g′ ⇒ g are stable: 
Localk(g) g′ ∧ (g′ ⇒ g) →T k := T k ∧ (g ∨ F k ) post g@k ∨ Fk 

The Local, Transmit, and Broadcast actions are the only ones we 
need for the rest of the paper. 

6.3 Broadcast 
If a Q~F

+ quorum ever knows g, then henceforth there’s always a 
Q~F quorum of OK processes that knows g. Hence repeated 
Transmits will establish (Q~F[g@*])@m at every OK process m. But 
Q~F[g@*] ⇒ g, so this establishes g@m. We package this in an ac-
tion:  
Broadcastm(g) Q~F

+[g@*] ∧ OKm →T m := T m ∧ g post g@m 

If we have broadcast messages (signed by public keys) there’s a 
more direct way to broadcast a predicate. We can drop the m from 
gk→m, since any process can read the messages.8 This means that if 
Receivek establishes g@k, then g@m follows too, not simply 
(g@k ∨ Fk)@m. In other words, k can transmit a transmitted g@k 
without weakening it, by simply forwarding the messages that k 
received. If g@k follows from Localk, g@k = (g@k ∨ Fk). Thus, pro-
vided k remembers the signed evidence for g, it can do 
Broadcastk,m(g) g@k            ∧ OKm →T m := T m ∧ g post g@m 

6.4 Implementation and scheduling 
We transmit predicates, but since they take only a few forms, an 
implementation encodes a predicate as a message with a kind field 
that says what kind of predicate it is, plus one field for each part 
of the predicate that varies. For example, after doing Closev

a agent 
a sends (closed-state, a, last-triplea). 

                                                                          
8 A more careful treatment would reflect the fact that a receiver must 
remember the message and its signature in order to forward them, since 
Gk→m may disappear from ch. 

The Send actions that implement Transmit need to be scheduled 
to provide congestion and flow control, any necessary retransmis-
sion, and prudent use of network resources. How this is done 
depends on the properties of the message channel. For example, 
TCP is a standard way to do it for unicast on an IP network. For a 
multicast such as Broadcast, scheduling may be more complex. 

Since processes can fail, you may have to retransmit a message 
even after a quorum has acknowledged its delivery. 

7 Classic Paxos 
To turn AP into an implementation, we can take AP’s agent al-
most as is, since the agent’s Close, Accept, and Finish actions only 
touch its local state rv

a. We need to implement input, activev, and cv, 
which are the non-local variables of AP, and the Input, Start, and 
Choose actions that set them. We also need to tell the agents that 
they should invoke their actions, and give them activev and cv. Our 
first implementation, CP, tolerates stopped processes but no faults. 

Since CP is a real implementation, the actions refer only to local 
state. We still use shading, but now it marks state in T transmitted 
from other processes. We discuss the scheduling of these Transmit 
actions in section  7.1. Look at Table 4 to see how non-local in-
formation in AP becomes either local state or transmitted infor-
mation in CP and BP. 

CP implements AP by doing Input, Start, and Choose in a pri-
mary process. For fault tolerance there can be several primaries. 
However, for each view there is exactly one process that can be 
its primary; in other words, there is a function p(v) that maps each 
view to its primary. If in addition a primary never reuses a view 
for which it has already chosen a value, there is at most one cv for 
each v. A simple implementation of pv is to represent a view by a 
pair, with the name of its primary as the least significant part.  

An agent’s state must be persistent, but we allow a primary to 
reset, lose its state, and restart in a fixed state. Then it starts work-
ing on a new view, one for which it never chose a result before. 
We discuss later how to find such a view. 

The primary’s job is to coax the agents to a decision, by telling 
them when to close, choosing cv, and relaying information among 
them. Once it has a new view, the primary’s Choose action 
chooses an anchored value cv for the view. To do this it must col-
lect enough information from the agents to compute a non-empty 
subset of anchorv. (A10) tells us how much information suffices: 
either that all previous views are out, or that all views since u are 
out and cu. So it’s enough to trigger Closev

a at an out quorum (with 
Closep) and then collect the state from that quorum. 

Once the primary has cv, it can try (with Acceptp) to get the 
agents to accept it. They respond with their state, and if the pri-
mary sees a decision quorum for cv, then there is a decision which 
the primary can tell all the agents about (with Finishp).  

We fearlessly overload variable names, so we have cv and cp, for 
example, and v and vp. 

The agent variables of AP become agent variables of CP.  
var rv

a : Y := nil, but rv0
a := out Result 

 d a : X ∪ {nil} := nil Decision 

All the other variables of AP become primary variables of CP, 
except that activep is coded by vp: 
type  P ⊆ M = … Primary 
var vp : V := v0 Primary’s View 
 cp : X ∪ {nil} := nil Primary’s Choice 
 inputp : set X := {} 
sfunc activep =   (vp ≠ v0) 
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These are not stable across resets, so we add history variables 
that are, with the obvious invariants relating them to cp and activep.  
var cv : X ∪ {nil} := nil  history 
 input : set X := {} history 
 activev : Bool  := false history 
invariant activep ∧ cp ≠ nil ⇒ cp = cvp  (C1)
 inputp ⊆ input  
 activep ≠ nil ⇒ activep = activevp  (C2)

Thus all the variables of AP are also variables of CP with the 
identity abstraction function to AP. The invariants (A2-A6) of AP 
are also invariants of CP. 

Any primary can accept an input. For a state machine, this 
means that any primary can receive requests from clients. The 
client might have to do Inputp at several primaries if some fail. 
Inputp(x)  inputp := inputp ∪ {x}; input := input ∪ {x}  

We define the primary’s estimates of rv and anchorv in the obvi-
ous way. We define rev

p rather than just rep because p needs views 
earlier than vp to compute anchor. From (A1) for rv: 
sfunc rev

p = if 
 elseif 
 else 

(Qdec[rv*=x]   )@p 
(Qout[rv*=out])@p 

then x 
then out 
nil 

view v decided x
view v is out 
view can stay nil!

(C3)

From (A10) for anchor: 
 outu,v

p = (∀w | u < w < v ⇒ rew
p = out) 

sfunc anchorp ⊇ if       outu,v
p ∧ (ru

a = x)@p then {x}  
elseif outv0,v

p                       then X 
else                                              {} 

(C4)

Two unsurprising invariants characterize the estimates: 
invariant rev

p ≠ nil ⇒ rev
p = rv  (C5)

 anchorp ⊆ anchorvp  (C6)

We avoid a program counter variable by using the variables vp 
and cp to keep track of what the primary is doing: 
vp cp p’s view of agent state  Action 

= v0 - - Startp 
≠ v0 = nil anchorp = {} Closep 
≠ v0 = nil anchorp ≠ {} Choosep 
≠ v0 ≠ nil revp

p ∉ X Acceptp 
≠ v0 ≠ nil revp

p ∈ X Finishp 

To keep cvp stable we need to know cvp = nil before setting it. 
The following invariant lets us establish this from local state: 
invariant activep ∧ cp = nil ⇒ cvp = nil  (C7)

To maintain this invariant we put a suitable guard on the Startp 
action that makes p active. This is an abstract action since it in-
volves cv; section  7.3 discusses how to implement it. 
Startv

p     u < v too slow 
∧ pv = p ∧ cv = nil 

→ activev := true; vp := v; cp := nil  

With this machinery, we can define Choosep as a copy of AP’s 
Choosev, with activep added to the guard and the primary’s versions 
of c, input, and anchor replacing the truth. (C3) and (C7) ensure 
that Choosev’s guard is not weakened.  
Choosep     activep ∧ cp = nil  

∧ x ∈ inputp ∩ anchorp 
→cp := x; cvp := x  

The agent’s actions are the same as in AP (see section  4.3) with 
cv@a and rev

p
@a for cv and rv. With these actions it’s easy to show 

that CP simulates AP, using (A2-A6) and (C5-C6). 
We can use the last optimization in CP just as in AP, and of 

course the view change optimization works the same way. 

7.1 Communicating with agents 
As we saw above, the definitions of rev

p and anchorp imply that the 
agents tell the primary their state after Closea and Accepta. In addi-
tion, the primary tells the agents when to close, and what values 
to use for accept and finish. It implements these actions by send-
ing trigger messages to the agents, using the invariants shown; 
since we are abstracting away from messages, we describe them 
informally. The agents respond by returning their state.  
Closep activep ∧ cp = nil →trigger Closev

a at all agents, send-
    ing vp, activep as v, activev (C2) 

Anchorp anchorp ≠ {} →none 
Acceptp cp ≠ nil ∧ revp

p = nil →trigger Acceptv
a at all agents, 

    sending vp, cp as v, cv (C1) 
Finishp revp

p ∈ X →trigger Finishv
a at all agents, 

    sending vp, revp
p as v, rv (C5) 

p 

 c  
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STEPa  
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rev
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normal operation view change 

Choosep ; Start p ; 
Inputp ; 

 

Figure 4: Classic Paxos 
Figure 4 shows the actions of CP for one complete view, with 

n = 3 agents; compare figure 3. The arrows show the flow of mes-
sages, and the “transmit” part shows their contents and whether 
they are unicast or multicast. An n* means that if the primary is 
also an agent, only n – 1 messages need to flow. To finish, of 
course, only a quorum of agents is needed, and only the corre-
sponding messages. In normal operation, however, when no proc-
esses are stopped, it’s desirable to keep all n of them up to date, so 
they should all get at least the Finish message. 

Liveness, scheduling, and cleanup are the same as AP’s. A pri-
mary can discard all its state at any time with Reset (section  7.3). 

In practice the primary is usually one of the agents, and only 
two other agents are needed to tolerate one stopped process. It’s 
also possible to compute only at the primary and use the agents 
just to store the state of the state machine; in this case the Finish 
message contains the state changes instead of d.  

7.2 Implementing DP 
Implementing DP with CP is completely straightforward except 
for the log-space representation of the agent state. We can’t just 
use the triple of last values, because if a primary overwrites one of 
those unconditionally with an earlier view, it will change some rv

a 
back to nil. Instead, we keep a triple for each primary, so the state 
of an agent is the last triple as in AP, but each component is a 
function from p to a value (implemented, of course, as an array 
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indexed by p). Then the primary rather than the agents can enforce 
the guards on writing the agent state, since each variable has only 
one writer. We abstract vXlast and vlast as the maximum over the 
primaries, and xlast as the value that goes with vXlast. Reading an 
agent’s state thus requires reading the triples for all the primaries.  

This read operation is not atomic, however, so these abstrac-
tions are not enough to show that DP-last implements AP-last. 
Fortunately, they don’t need to be, since what we care about is 
implementing DP. For this we don’t need the last values but only 
enough information about rxu

a and rxu
a to do the actions. As we 

saw in section  4.8, each lastp
a triple encodes two predicates on ra, 

and all of them together encode the conjunction of the predicates. 
Thus setting vXlast,p

a := u and xlast,p
a := x is equivalent to setting 

rxu
a := x, and setting xlast,p

a := u and vlast,p
a := v is equivalent to set-

ting row
a := out for all w between u and v. (In addition, some in-

formation about earlier values of rxa  and roa may be lost, but 
nothing is changed.) There’s never a contradiction in these predi-
cates, because cv is the only value we write into rxv

a. By reading 
all the triples, we get a predicate that implies the facts about 
rxa and roa that would follow from: 
 vXlast

a  = max over p of vXlast,p
a  

 xlast
a   = xlast,p

a for the p for which vXlast,p
a = vXlast

a  
 vlast

a   = max over p of vlast,p
a  

It follows that DP-last implements DP. 
A primary p can write all three values at once provided it finds 

suitable values vXlast,p and xlast,p to write into vXlast,p
a and xlast,p

a in 
Close. This is useful because it allows a to keep the whole triple in 
a single disk block. The values already there are suitable; so are 
those that accompany the largest vlast,p

a in an out quorum. 
Precisely, we have: 

Closev,p
a      vlast,p

a := v;  
    xlast,p

a := xlast,p;  vXlast,p
a := vXlast,p 

 

Acceptv,p
a cv ≠ nil →vlast,p

a := v; vXlast,p
a := v; vXlast,p

a := cv  

7.3 Finding a new view 
If the primary has a little persistent state, for example a clock, it 
can use that to implement Startp, by choosing (clock, p) as a v that it 
has never used before, which ensures cv = nil.  

To get by without any persistent state at the primary, Startp que-
ries the agents and chooses a view later than some view in which 
a decision quorum of agents is not closed.  
Resetp       vp := v0; inputp := {}; cp := nil
Startv

p     u < v too slow 
∧ ~activep ∧ pv = p 
∧ (∃ u < v | Qdec[ru*=nil])@p

→vp := v; activevp:= true 

This works because before choosing a result, a primary closes 
an out quorum at all previous views, and the two quorums must 
intersect. The invariants we need are (A6) and 
invariant Qdec[ru*=nil] ∧ v > u ⇒  cv = nil  (C8)

This argument is trickier than it looks, since Qdec[ru*=nil] is not 
stable. The true, stable condition is “at some time after the pri-
mary reset, a decision quorum of agents was still open”. Then p 
can conclude cv = nil if pv = p, since only p can change cv. To es-
tablish this condition, the query must not get a reply that was 
generated before the reset. We can ensure this if there’s a known 
upper bound on how long the reply can take to arrive (which is 
true for SCSI disks, for example), or with standard techniques for 
at-most-once messages on channels with unbounded delays. Un-
fortunately, the latter require some persistent state in the primary, 

which is what we are trying to avoid. We won’t formalize this 
argument. 

If the primary sees any agent out in vp or sees any non-nil agent 
variable for a bigger view u, it restarts, since this means that a 
later view has superseded the current one. To restart, p chooses 
one of its views that is bigger than any it has seen to be out. This 
is another implementation of the abstract Startp, more efficient 
when the primary’s state hasn’t been lost. 
Restartv

p     activep ∧ vp<u<v ∧ pv = p 
∧ (∃a |    (revp

a = out)@p 
           ∨ (ru

a     ≠ nil )@p) 

→vp:= v; cp := nil  

7.4 Performance 
As figure 4 shows, a normal run of CP that doesn’t need a view 
change multicasts two messages from the primary to the agents, 
and each agent sends one reply. The output to the client can go in 
parallel with the second multicast, so that the client’s latency is 
one client-primary round-trip plus one primary-agents round trip. 
Usually the finish message piggybacks on the accept message for 
the next step, so its cost is negligible. Cleanup takes another (pig-
gybacked) agents-primary-agents round trip. See table 1 in section 
 8.7. With tentative execution (section  4.10) the primary-agents 
round-trip is reduced to one way. 

A view change adds another primary-agents round trip, and if 
the primary has to run Start, there is a third one. The last only 
happens when the primary crashes, however, in which case this 
cost is probably small compared to others. 

For a more detailed analysis see  [3]. 

8 Byzantine Paxos 
BP is a different implementation of AP, due to Castro and Liskov 
 [1], that tolerates arbitrary faults in ZF of the agents. Their de-
scription interweaves the consensus algorithm and the state ma-
chine, assumes the primary is also an agent, and distinguishes it 
from other agents (called ‘backups’) much more than we do here. 
They use different names than ours; see table 2 in the appendix 
for a translation. 

With faults it is unattractive to have separate primary processes 
for Choose or for relaying information among the agents, so we do 
Choose in the agents and use multicast for communication among 
them. Thus BP starts with AP, keeps all the agent variables rv

a and 
d a, and adds agent versions of the other variables, and a history 
variable for input as in CP.  
const Qch : set Q := … choice Quorum set 

var rv
a : Y := nil, except rv0

a := out Result 
 d a : X ∪ {nil} := nil Decision 
 cv

a : X ∪ {nil} := nil Choice 
 inputa : set X := {} 
 input : set X := {} history 
 activev

a : Bool  := false 

Thus all the variables of AP are also variables of BP with the 
identity abstraction function, except for cv. The abstraction to cv is 
a choice quorum of the agents’ choices. 
abstract cv = if Qch[cv*=x] then x else nil  

Agent a adds a value to inputa when a client transmits it; we 
don’t formalize this transmission. Since clients can also fail, other 
agents may not see this value.  
Inputa(x)      inputa := inputa ∪{x}; input := input ∪{x}  
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There’s still only one choice cv for a view, however, because Qch 
excludes itself, and the quorum must agree that the input came 
from the client. Thus any decision is still for a client input and 
still unique no matter how many faulty clients there are. For the 
effect of faulty clients on liveness, see the end of section  8.3. 

We define cev
a as a’s estimate of cv, like cv except for the “@a”: 

sfunc cev
a = if 

            else 
 (Qch[cv*=x])@a  
  

then x 
nil 

a’s estimate of cv (B1)

Similarly, a quorum of rv
as makes a result (as in AP), and rev

a is 
a’s estimate of that result, the same as CP’s rev

p: 
sfunc rev

a = if 
 elseif 
 else 

(Qdec[rv*=x] 
   )@a 

(Qout[rv*=out])@a 
 

then x 
then out  
nil 

view v decided x
view v is out 
view can stay nil 

(B2)

The state function rv is defined in AP; it’s (B2) without the “@a”. 
With these definitions, the agents’ non-nil estimates of r and c 

agree with the abstract ones, because they are all stable and (A4) 
means we see at most one rv

a from the OK agents. These invari-
ants are parallel to (C1) and (C5): 
invariant cev

a ≠ nil ⇒ cev
a = cv c estimates agree (B3)

 rev
a  ≠ nil ⇒ rev

a  = rv r estimates agree (B4)

We take AP’s anchorv as a state function of BP also. Following 
(A9) with rev

a for rv and without the cu term, we define: 
 outu,v

a = (∀w | u < w < v  ⇒ rew
a = out) 

sfunc anchorv
a = anchoru ∩ {x | Qout[ru*∈{x,out}]@a} if outu,v

a (B5)

The missing a on anchoru is not a misprint. We have the obvious 
invariant anchorv

a ⊆ anchorv  (B6)

There is still a role for a primary, however: to propose a choice 
to the agents. This is essential for liveness, since if the agents 
can’t get a quorum for some choice, the view can’t proceed. BP is 
thus roughly a merger of AP’s agents and CP’s primary. As in CP, 
the primary is usually an agent too, but we describe it separately. 

Safety cannot depend on the primary, since it may be faulty and 
propose different choices to different agents. If there’s no quorum 
for any choice, the view never does Accept and BP advances to the 
next view as discussed in section  8.4.  

The primary has a persistent stable cv
p (but see section  8.8 for an 

optimization that gets rid of this). The primary needs inputp in 
order to choose, but it doesn’t need vp since it just works on the 
last anchored view. 
var cv

p : X ∪ {nil} := nil Primary’s Choice 
 inputp : set X := {} 

An annoying complication is that when the primary chooses cv
p, 

it needs to be able to broadcast cv
p ∈ anchorv so that all the agents 

will go along with it. To broadcast, p needs Q~F
+[(cv

p ∈ anchorv)@*] 
(see the discussion of broadcast at the end of section  6), so a value 
that’s anchored at the primary had better be anchored at enough 
agents, because anchorv

a is their only approximation of anchorv. 
Then 
sfunc anchorv

p = {x | Q~F
+[x∈anchorv*]@p} (B7)

Thus to compute anchorv
p, p needs to hear from Q~F

+ agents. 

8.1 The algorithm 
The agents’ actions are essentially the same as in AP; (B3-B4) 
imply that the guards are stronger and the state change is the same. 

Closev
a activev

a  →for all u < v do 
         if  ru

a = nil then ru
a := out

 

Anchorv
a anchorv

a ≠ {}     none  
Acceptv

a  cev
a ≠ nil ∧  rv

a = nil →rv
a := cev

a; Closev
a  

Finishv
a  rev

a ∈X →d a
  := rev

a  

The primary does Input and Anchor as in CP, though the defini-
tion of anchorv

p is quite different. 
Inputp(x)      inputp := inputp ∪{x}  
Anchorv

p anchorv
p ≠ {}  →none  

Choose is like AP’s Choose, but at both agents and primary: 
The primary chooses for a view that belongs to it and is an-
chored, but where it hasn’t chosen already. 
An agent only chooses the primary’s apparent choice.  

(B5)-(B6) mean that the agents’ guards are stronger than in AP; 
this is what matters, since cv

a is what’s in the abstraction to cv.  
Choosev

p     pv = p ∧ cv
p = nil  

∧ x ∈ inputp ∩ anchorv
p 

→cv
p := x  

Choosev
a     cv

a = nil  
 ∧ x ∈ inputa ∩ anchorv

a 
 ∧ x = (cv

pv@pv ∨ Fpv)@a 

→cv
a := x    

There’s no guarantee that cv
p is in input, but this wouldn’t be 

strong enough anyway, since for liveness it must be in inputa for a 
choice quorum. 
invariant cv

p ≠ nil ⇒ cv
p ∈ inputp ∩ anchorv

p  (B8)
 cv

a ≠ nil ⇒ cv
a ∈ input ∩ anchorv

a  (B9)

A client must hear d a from a good quorum of agents. 
For safety, in addition to AP’s assumption that Qdec and Qout are 

exclusive, Qch must exclude itself. Then the invariants (A2-A6) of 
AP hold in BP, and the Closea, Accepta, and Finisha actions of BP 
simulate the same actions in AP. All the other actions simulate 
skip except the Choosea action that forms a quorum, which simu-
lates AP’s Choose. 
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Figure 5: Byzantine Paxos 

Figure 5 shows the flow of messages in BP. This is the logical 
flow. If the client-agents network is much slower than the inter-
agent network, which is common in practice, the client can send 
an input just to the primary, including message authenticators for 
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all the agents; the primary forwards the input to the agents. This 
does not change any costs or affect cryptographic authentication 
of messages. It does mean that the client may have to resend to 
another primary if the first one turns out to be faulty. 

8.2 Communicating with agents 
In BP the primary’s only job is to propose cv

p to the agents, who 
are responsible for everything else including scheduling, since 
they can’t count on the possibly faulty primary. So Transmit and 
Broadcast are all there is to say about communication. 

8.3 Liveness 
We want to show that a view with an OK primary will produce a 
decision unless a later view starts. We assume that Qdec, Qout, and 
Qch are live, and Qch ⊆ Q~F

+; if these don’t hold BP is still safe, but 
it may not decide. Suppose initially that anchorv

a ⊇ anchorv
p ≠ {} at 

a choice quorum of OK agents; this is the case after a view 
change. Then we have normal operation, which is the easy part of 
the liveness argument. If the clients are OK: 

Since anchorv
p ≠ {}, an OK primary can do Choosev

p, which 
leads to cv

p
@a at all the agents, so that they can all do 

Choosev
a by (B7) provided cv

p ∈ inputa, that is, a knows the 
client really sent cv

p. An OK client will send its input to all 
the agents, but a faulty client may fail to do so. 
This leads to an OK choice quorum for cv

p because Qch is 
live, which leads to knowing that quorum at all the agents so 
that they can all do Accepta.  
This leads to an OK decision quorum for rv

a = cv
p because 

Qdec is live, which leads to knowing that quorum at all the 
agents, so that they can all do Finisha. 
This leads to knowing a good quorum for d a = cv

p (or alterna-
tively for the output) at the client, because Q~F is live. 

Now we consider what happens in a view change. For an OK 
agent a to get anchorv

a ≠ {}, it needs x ∈ anchoru
a and 

Qout[ru*∈{x,out}]@a for some u < v, and rew
a = out for each u < w < v, 

from (B5). This is the tricky part, since these require quorums, 
and having a quorum is no guarantee that it’s visible. 

Since Qout is live, there’s an out quorum q of OK agents that will 
eventually do Closev. Hence eventually Qout[rw*∈{cw,out}]@a for 
each w < v, since this is the post-condition of Close. Either all 
these views are out at a, or there’s some largest u < v and a′ ∈ q 
with ru

a′ = cu ≠ nil. In the former case anchorv = X. In the latter case 
Qch[cu*=x], and hence Qch[(x ∈ anchoru)@*] by (A5) and (B6). 
Hence x ∈ anchoru is broadcast since Qch ⊆ Q~F

+, so eventually we 
have (x ∈ anchoru)@a, as required. 

This argument is more subtle than it looks. Note that a doesn’t 
know which of the out quorums it sees come from OK agents, so 
it doesn’t know x = cu, and in fact cu might be nil.  

To sum up, since a eventually hears from a Qout of OK agents, it 
hears, for some view u and each w between u and v,  

an out quorum for w and  
Qout[ru*∈{x,out}]@a and (x ∈ anchoru)@a, 

and this is all a needs to anchor v, by (B5). 
All that remains is the liveness of Anchorv

p: the primary must see 
a non-empty intersection of anchorv

a sets from a Q~F
+ quorum. 

Since such a quorum is live, eventually every agent in it will hear 
from the same q of OK agents and come up with the same 
x ∈ anchorv, which will thus be broadcast. 

So BP is live, except for faulty clients, although it’s hanging on 
by its fingernails. 

If the client is faulty, it can fail to deliver inputs to some agents. 
A view change that has x = cu ≠ nil and broadcasts x ∈ anchoru can 
broadcast x ∈ input as well and override the client’s failings. This 
is essential, since there might be a decision for x. During normal 
operation, however, a faulty client can cause a view change if the 
primary chooses an input that the client did not send to Qch OK 
agents.  

Agents can keep track of such clients and refuse to accept more 
input from them. If there are lots of them mounting a denial of 
service attack, however, performance can still be significantly 
affected. I don’t know any way to prevent this except for the pri-
mary to insist that each input be broadcast by getting an ack from 
Q~F

+ agents, or by public key as in section  8.6. This is expensive, 
since it happens in normal operation, not just in a view change.  

8.4 Scheduling 
A faulty primary cannot keep BP from satisfying its safety spec, 
but it can certainly prevent progress. We therefore need a way to 
ensure that there are times when there’s only a non-faulty primary. 
To do this, we let the agents become primary in round-robin order. 
That is, we use integers as views and take a view’s primary to be 
the view modulo n: pv = v mod n. 

An agent a keeps an estimate PT of the time to process a client 
input. If a gets input from a client at time t and doesn’t see some 
decision by t + PT, a assumes that the primary has failed. It ad-
vances to the next view v, does Closev

a, and multicasts its state in a 
Closev message. Other agents’ timers expire, they do the same 
thing, and when a sees enough Closev messages it does Anchorv

a 
and sends its anchorv

a set to the new primary pv; see section  8.3. 
Startv

a     v–1 too slow ∨ Q~F[activev*]@a →activev
a := true 

If a gets Closeu messages for various u > v from a good quorum, 
it changes its v to the smallest u and does Closeu. Thus the OK 
agents increase v at most n times before they agree on the next 
view, and faulty agents can’t disrupt this agreement. This is not 
quite the same as self-stabilization, since it relies on not running 
out of values for v. 

BP uses the same exponential backoff as AP to adjust PT.  

8.5 Cleanup 
This is similar to AP, but there is a lot more agent state. As in CP, 
the primary can discard its state at any time, and the extra trans-
mits for Cleanup can be piggy-backed on the next step. 

Cleanupa     Q~F
+[d * ≠ nil] → rv

a := nil; ina := {};  
     cv

a := nil; activev
a := false 

 

8.6 Public key BP 
As we saw in section  6, if messages can be broadcast securely, 
that is, signed by public keys, then a process can forward informa-
tion to other processes so that they don’t have to get it from the 
source. This does not add any new power, but it avoids the Q~F

+ 
acknowledgements otherwise needed for a broadcast.  

There are two points where BP needs a broadcast, of inputa in 
normal operation and of anchora in a view change: 
1. The primary can broadcast an input to all the agents, so a 

faulty client cannot force a view change. 
2. During a view change the Anchorv

p action is not needed. That 
is, an agent does not need to acknowledge x ∈ anchorv

a to the 
primary, since the information on which anchorv

a is based is 
broadcast. 

This does not reduce the amount of message traffic in the nor-
mal case, since we are cheating there by not broadcasting input 
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and taking some risk from faulty clients. Thus there is no per-
formance gain to balance the large loss from doing public key 
operations, except when there are lots of faulty clients. 

8.7 Performance using multicast 
We separate the client-Paxos costs from the internal costs. They 
are not really comparable, for two reasons: 

They often involve a network with very different properties. 
Internal traffic can often have much bigger batches since it 
can combine the traffic from all the clients. 

Figure 5 shows that in the normal case BP has one client-agents 
round trip (ng is a good quorum), by comparison with a client-
primary round-trip in CP. In addition, there is one 1→n message 
from the primary as in CP, and two n→n messages among the 
agents, compared with one n→1 message to the primary in CP, 
and one 1→n message from the primary that can go in parallel 
with output. Thus BP has one extra message latency before the 
client gets output. What about throughput? 

In a network that supports multicast efficiently (for example, 
any broadcast LAN or a switched LAN whose switches support 
it), the extra cost for n receivers is small. Table 1 shows the cost 
comparison on this assumption. BP is about twice as expensive as 
CP, or almost three times as expensive for the same number of 
failures (f or s). It’s not surprising that faults are much more costly.  

If there’s no efficient multicast, agents can relay their messages 
to other agents through the primary, complete with authenticators, 
so that there are 2n messages after Choosea or Accepta rather than n2. 

Table 1: Cost of a normal run of BP and CP 
Enables Message flow BP cost CP cost 

Inputp client→agents/primary 1→n 1 1→1 1 
output agents/primary→client ng→1 f + 1 1→1 1 

Total external  f + 2 2 

Choosea primary→agents 1→n-1 1   
Accept agents/primary→agents n-1→n n-1 1→n-1 1 
Finish agents→agents/primary n→n n n-1→1 n-1 
Finisha primary→agents  

(piggy-backed) 
  1→n-1 0 

Total internal 2n 
≥6f + 2 

n 
≥2s + 1 

Smallest non-trivial n 
 
Total internal for this n 

f  = 1 
n = 4 
8 

s = 1 
n = 3 
3 

8.8 Optimizations 
The optimizations of AP work in BP: compressing state with the 
last-triple, using one view change for many steps, and batching. 

BP does not have to transmit the client’s entire input in each 
message. It’s sometimes enough to just send an ‘authenticator’, a 
signature of the message implemented by hashing it with a key 
shared between sender and receiver. 

An undesirable property of BP’s view change is that the agents 
must remember all their cw

a values, since they don’t know which 
one might be needed. This means that the last-triple optimization 
is not enough to avoid storage linear in the number of views. To 
avoid this, notice that if x ∈ anchorv

p then x ∈ anchorv is broadcast 
by (B7), so if agent a is the primary for v then a can discard cw

a for 

all w < v, since these are only needed for finding an element of 
anchorw, and anchorw ⊇ anchorv. For this to work, each agent a′ 
must remember its contribution to x ∈ anchorv. If anchorv

a′ = {cv
a′}, 

remembering cv
a′ is enough. If anchorv

a′ = X, then a′ must remem-
ber that; this is a new requirement. An agent must remember at 
most n values of cw

a or anchorw
a = X before its turn as primary 

comes along. If agents don’t act as primaries, then they need to 
collect the Ancv

x,a facts themselves at regular intervals. 
An agent’s inputa need not be persistent, because of the way 

input is defined as a history variable. If an agent discards input, 
however, the clients might have to retransmit their inputs. 

It’s unfortunate that the primary has a persistent cv
p. If it’s also 

an agent, then this can be the agent’s cv
a, so the only cost is that it 

must be persisted before it’s sent to any other agent. To get a 
primary with no persistent state, follow the model of CP: intro-
duce a volatile cp, make cv

p a history variable, and maintain in-
variants corresponding to (C1) and (C8) as in section  7.3: 
invariant cpv≠ nil ⇒ cp = cvp  (B10)
 Qdec[ru*=nil] ∧ v > u ⇒  cv

p = nil  (B11)

To do Choosev
p the primary must establish cv

p = nil using (B11). 
This may require a new view; to preserve the round-robin sched-
uling of primaries, make a V a pair (i, j), where i determines the 
primary (p(i, j) = i mod n) and p can use j to start another view. 

9 Conclusion 
We started with an abstract Paxos algorithm AP that uses n agents 
and has only the agent actions Close, Accept, and Finish and an 
abstract Choose (plus the external actions Input and Decision). AP 
works by running a sequence of views until there’s one that runs 
for long enough to make a visible decision quorum for some input. 
Provided no later view starts, this will always happen as long as 
the choice is made and is visible. AP’s operation is divided into 
view change and normal operation; the latter requires one round-
trip of agent-agent communication. AP can do any number of 
successive decisions with a single view change plus one normal 
operation per decision. AP’s agents are memories that can do 
conditional writes, but DP is a generalization that works with 
read-write memories. 

AP can’t be implemented directly because it has actions that 
touch state at more than one process, in particular the Choosev 
action. We showed two implementations in which the processes 
communicate stable predicates about their state that are strong 
enough to convey all the information that AP’s actions need. Both 
CP and BP have essentially the same agent actions as AP. Both 
implement AP’s Anchor and Choose actions in a primary process 
that is logically separate, though it practice it is combined with an 
agent unless the agents are disks. 

CP also uses the primary to relay information among the 
agents. It doesn’t tolerate any faults. It needs Qout and Qdec 
exclusive for safety, and live for liveness. For size-based 
quorums we have f = 0, s < n/2 and Qout = Qdec = Q≥s+1. In 
normal operation there are n internal messages if a multicast 
counts as 1, and the client latency is one client-primary 
round-trip plus one primary-agent round trip. 
BP does tolerate faults, so it needs Anchor and Choose actions 
at both agents and primary, and uses multicast to share in-
formation among agents. In addition to CP’s requirements on 
quorums, it also needs Qch exclusive with itself for safety, 
and Qch live and Qch ⊆ Q~F

+ for liveness. For size-based quo-
rums and F ⇒ S we have Q~F = Q≥f+1 and Q~F

+ = Qout = Qdec = 
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Qch = Q≥2f+1. In normal operation there are 2n internal mes-
sages, and CP’s primary-agent round-trip is replaced by a 
primary-agent multicast plus an agent-agent round trip. 

The main application for Paxos is replicated state machines. 
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Appendix 
Table 2 gives some correspondences between the terminology of 
this paper and that of Castro and Liskov. 

Table 3 lists all the names for variables and constants in alpha-
betical order, followed by the @, #, [], and Q+ notation and the 
names of the actions for communication. 

Table 4 collects the variables, abstractions, state functions, ac-
tions, and invariants of AP, CP, and BP to help you see how they 
are related. To save space, we shorten the names of actions to two 
characters, and shorten input, active, and anchor to in, act, and anc.  

The external actions are first, then the internal ones in the order 
of a complete run. Changes from the item to the left are marked 
by boxes except for p and a superscripts. A ditto mark " means 
that the entry is a copy of the corresponding entry to the left.  

The legend in the lower left corner summarizes the way we 
mark non-local, changed, and abstract variables. We mark as non-
local anything in an action that came from other processes, even 
though in CP and BP it is of course local when the action occurs. 

Figure 6 collects from figures 3-5 the pictures for the flow of 
actions and messages in AP, CP, and BP. Notice the fact that they 
start slightly differently, the extra Choose action in BP, and the 
extra Finisha action in CP. 

Table 2: Our terminology for BP vs. Castro and Liskov’s 
Action→ C-L state  Our state  C-L msg Our msg 
Closep   view-change ra, ca 
Anchorv

a in view v anchorv
a ≠ {} view-ack anchorv

a 
Anchorv

p in view v anchorv
p ≠ {} new-view  

Choosep pre-prepared cv
p ≠ nil pre-prepare cv

p 
Choosea pre-prepared cv

a ≠ nil prepare cv
a 

Accept prepared rv
a ≠ nil commit rv

a 
Finish committed d a ≠ nil   

 

Q~F weak certificate    
Q~F

+ quorum certificate    

Table 3: Variables, constants, notation, and communication 
       

  Spec, AP DP CP BP 
  failure, 

quorum
 Δ from 

AP 
Δ from 
AP 

Δ from CP 

in section  § 2, 3 § 4 § 5 § 7 § 8 
Agent a  a    
Choice  c  cv  cp cv

a, cev
a, cv

p

Decision d d d a    
Faulty  f, Fm     
predicate g, G      
Integer i, j      
process k, m      
|A|  n     
Primary p    p, pv  
Quorum Q, q Q~F, Q+ Qdec, Qout   Qch 
Result  r  rv

a, rv rxv
a, rov

a rev
p rev

a, rev
p 

Stopped  s, Sm     
Truth T T (§6)     
View  u, v, w  v  vp vp 
value x, y      
failures Z, z ZF, ZS, ZFS 

    
 

g@m T m ⇒ g Communication  
G@m (λ k | Gk

@m)  
Q#G {m | Gm ∨ Fm} ∈Q Localk(g) 
Q[rv*=x] Q#(λ m | rv

m=x) Transmit   k,m(g) 
Q+ {q′ | (∀z ∈ ZFS | q′ – z ∈ Q} TransmitFk,m(g) 
Q~F {q | q ∉ ZF} Broadcast m   (g) 
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a 

a 

a 

c 

a 

a 

a 

a 

a 

Closea 
Input; 

Accepta  Finisha; 

ra cv
 rv

a OUTPUTINPUT 

a 

a 

a 

Choose 
STEPa  

c 

Anchor 
Start; 

a a 

a 

a 

AP

 
 

p 

c 

a 

a 

a 

a 

a 

Closea Accepta  Finish p ; 

activev
 ra cp  rv

a 

OUTPUT
INPUT 

1→n* n*→1 1→n* 
1→1

1→1 

a 

a 

a 

a 

a 

a 

Acceptp  
STEP p  

c 

Anchor p  

a 

a 

a 

Closep  

 

a 

p p p 

a 

a 

a 

Finisha;
STEP a  

1→n*

rev
p  

Choosep ; Start p ; 

n*→1

CP

Inputp ; 

 
 

a 

a 

a 

c 

a 

a 

a 

a 

a 

Closea 
Inputa; 

Choosea Accept a  Finisha; 

ra, ca cv
p cv

a rv
a OUTPUT INPUT 

n→n 1→n* n*→n n→n ng→1 1g→n    

a 

a 

a 

a 

a 

a 

Choose p  
STEP a  

c 

a 

a 

a 

a 

p 

a 

a 

a 

p 

n*→1

anchorv
a 

 

Start a ; 
Anchora Anchor p  

normal operation 
view change 

BP

 
Figure 6: Summary of actions 
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Table 4: Summary of declarations, actions, and invariants 

 AP implements spec  CP implements AP  BP implements AP 
 

var rv
a, d a result, decision rv

a, d a  = rv
a, d a rv

a, d a  = rv
a, d a 

 cv choice cv  history, = cv cv
a   

   vp, cp  view, choice cv
p   

   inp   ina   
input in  in  history, = in in  history, = in 
active actv  actv  history, = actv actv

a   
 

abstract d  = if rv ∈X then rv else nil    cv =  if Qch[cv*=x] then x else nil   
 in =  in    actv =  (∃a | actv

a)  
 

sfunc  actp = (vp ≠ v0) cev
a = if (Qch[cv*=x])@a then x else nil (B1)

rv =  ifelse Qdec[rv*=x]    then x 
elseif Qout[rv*=out] then out  
elseif                                nil 

(A1) rev
p = 

 
 

ifelse (Qdec[rv*=x]   )@p then x 
elseif (Qout[rv*=out])@p then out 
else                                  if nil 

(C3) rev
a = ifelse (Qdec[rv*=x] 

   )@a then x 
elseif (Qout[rv*=out])@a then out 
elsei                                  f nil 

(B2)

anchorv = {x |(∀u<v |    cu = x  
                  ∨ Qout[ru*∈{x,out}])} 

(A8)   " = "  

anchorv = ancu ∩ {x | Qout[ru*∈{x,out}]}  
if outu,v 

(A9)   ancv
a   = ancu ∩ {x | Qout[ru*∈{x,out}]@a} 

if outu,v
a 

(B5)

anchorv ⊇ if outu,v ∧ ru
a= x then {x}  

elseif outv0,v then X else {}   
(A10) ancp ⊇ if  outu,v

p ∧ (ru
a = x)@p then {x}

elseif outv0,v
p then X  else {} 

(C4)   

     ancv
p   = {x | Q~F

+[x∈anchorv*]@p} (B7)

outu,v = (∀w | u<w<v ⇒ rw = out)  outu,v
p= (∀w | u<w<v ⇒ rew

p = out) outu,v
a = (∀w | u<w<v ⇒ rew

a = out) 
 

Actions         
Name Guard State change Name Guard State change Name Guard State change 
Input(x)      in := in ∪ {x} Inp      inp := inp ∪ {x};

    in   := in   ∪ {x} 
Ina 

Inp 
     " 

    inp := inp ∪ {x}
Decisiona    d a ≠ nil  →ret d a " "  " "  
Startv     u<v too slow →actv := true Stv

p     u < v too slow
∧ pv=p ∧ cv=nil

→actv := true; 
    vp := v; cp := nil;

Stv
a     v–1 too slow  

∨ Q~F[activev*]@a 
→actv

a := true 

Closev
a     actv 

 
→for all u<v do 
       if      ru

a  = nil 
       then ru

a := out  

"     "  "     actv
a " 

Anchorv     ancv ≠ {} →none Anp     ancp ≠ {} →none Anv
a     ancv

a ≠ {} →none 
      Anv

p      ancv
p ≠ {} →none 

Choosev     cv = nil  
∧ x ∈ in ∩ ancv  

→cv := x Chp     actp ∧ cp = nil
∧ x ∈ inp ∩ ancp

→cp := x;  
    cvp := x 

Chv
p     pv = p ∧ cv

p = nil   
∧ x ∈ inp ∩ ancv

p 
→cv

p := x 

      Chv
a     cv

a = nil  
∧ x ∈ ina ∩ ancv

a  
∧ x = (cv

pv@pv ∨ Fpv)@a  

→cv
a := x 

Acceptv
a     cv ≠ nil  

∧ rv
a = nil 

→rv
a := cv;  

    Closev
a 

"     cv@a ≠ nil  
∧ rv

a    = nil 
→rv

a := cv@a; 
    Closev

a 
"      cev

a ≠ nil  
∧  rv

a   = nil 
→rv

a := cev
a; 

    Closev
a 

Finishv
a     rv ∈ X →d a := rv "     rev

p
@a ∈ X →d a

  := rev
p

@a "      rev
a ∈ X →d a

  := rev
a 

Cleanupa     Q~F
+[d * ≠ nil] →rv

a:=nil; in:={} "     "  " " →rv
a:=nil; … 

 

invariant d a ≠ nil ⇒ (∃v | rv = d a) (A2)  " " 
 rv = x ∧ ru = x′ ⇒ x = x′ (A3)  " " 
 rv

a = x ⇒ rv
a = cv (A4)  " " 

 cv  = x ⇒ cv ∈ in ∩ ancv (A5)  " " 
 rv

a ≠ nil ∧ u < v ⇒ ru
a ≠ nil (A6)  " " 

   actp ∧ cpv≠ nil ⇒ cp = cvp (C1) cev
a ≠ nil ⇒ cev

a = cv (B3)
Legend   rev

p ≠ nil ⇒ rev
p = rv (C5) rev

a  ≠ nil ⇒ rev
a  = rv (B4)

ancv non-local   ancp ⊆ ancvp (C6) ancv
a ⊆ ancv (B6)

in abstract variable   Qdec[ru*=nil] ∧ v>u ⇒  cv = nil (C8) Qdec[ru*=nil] ∧ v>u ⇒  cv
p = nil (B11)

actp∧ changed from item on left   actp ⇒ actvp; inp ⊆ in (C2) cv
p ≠ nil ⇒ cv

p ∈ inp ∩ ancv
p (B8)

" copy of item on left   actp ∧ cp = nil ⇒ cvp = nil (C7) cv
a ≠ nil ⇒ cv

a ∈ ina ∩ ancv
a (B9)

 


