
Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 1/47

Practical Principles for Computer Security1
Butler Lampson

Microsoft Research
Marktoberdorf, August, 2006

What do we want from secure computer systems? Here is a reasonable goal:
Computers are as secure as real world systems, and people believe it.

Most real world systems are not very secure by the absolute standard suggested above.
It’s easy to break into someone’s house. In fact, in many places people don’t even bother
to lock their houses, although in Manhattan they may use two or three locks on the front
door. It’s fairly easy to steal something from a store. You need very little technology to
forge a credit card, and it’s quite safe to use a forged card at least a few times.

Real security is about punishment, not about locks; about accountability, not access
control

Why do people live with such poor security in real world systems? The reason is that real
world security is not about perfect defenses against determined attackers. Instead, it’s
about
• value,
• locks, and
• punishment.

The bad guys balances the value of what they gain against the risk of punishment, which
is the cost of punishment times the probability of getting punished. The main thing that
makes real world systems sufficiently secure is that bad guys who do break in are caught
and punished often enough to make a life of crime unattractive. The purpose of locks is
not to provide absolute security, but to prevent casual intrusion by raising the threshold
for a break-in.

Security is about risk management

Well, what’s wrong with perfect defenses? The answer is simple: they cost too much.
There is a good way to protect personal belongings against determined attackers: put
them in a safe deposit box. After 100 years of experience, banks have learned how to use
steel and concrete, time locks, alarms, and multiple keys to make these boxes quite se-
cure. But they are both expensive and inconvenient. As a result, people use them only for
things that are seldom needed and either expensive or hard to replace.

Practical security balances the cost of protection and the risk of loss, which is the cost of
recovering from a loss times its probability. Usually the probability is fairly small (be-

1 My colleagues Martin Abadi, Carl Ellison, Charlie Kaufman, and Paul Leach made many suggestions for
improvement and clarification. Some of these ideas originated in the Taos authentication system [4, 6].

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 2/47

cause the risk of punishment is high enough), and therefore the risk of loss is also small.
When the risk is less than the cost of recovering, it’s better to accept it as a cost of doing
business (or a cost of daily living) than to pay for better security. People and credit card
companies make these decisions every day.

With computers, on the other hand, security is only a matter of software, which is cheap
to manufacture, never wears out, and can’t be attacked with drills or explosives. This
makes it easy to drift into thinking that computer security can be perfect, or nearly so.
The fact that work on computer security has been dominated by the needs of national se-
curity has made this problem worse. In this context the stakes are much higher and there
are no police or courts available to punish attackers, so it’s more important not to make
mistakes. Furthermore, computer security has been regarded as an offshoot of communi-
cation security, which is based on cryptography. Since cryptography can be nearly per-
fect, it’s natural to think that computer security can be as well.

What’s wrong with this reasoning? It ignores two critical facts:
• Secure systems are complicated, hence imperfect.
• Security gets in the way of other things you want.

The end result should not be surprising. We don’t have “real” security that guarantees to
stop bad things from happening, and the main reason is that people don’t buy it. They
don’t buy it because the danger is small, and because security is a pain.
• Since the danger is small, people prefer to buy features. A secure system has fewer

features because it has to be implemented correctly. This means that it takes more
time to build, so naturally it lacks the latest features.

• Security is a pain because it stops you from doing things, and you have to do work
to authenticate yourself and to set it up.

A secondary reason we don’t have “real” security is that systems are complicated, and
therefore both the code and the setup have bugs that an attacker can exploit. This is the
reason that gets all the attention, but it is not the heart of the problem.

1 Implementing security

The job of computer security is to defend against vulnerabilities. These take three main
forms:
1) Bad (buggy or hostile) programs.
2) Bad (careless or hostile) agents, either programs or people, giving bad instructions to

good but gullible programs.
3) Bad agents tapping or spoofing communications.
Case (2) can be cascaded through several levels of gullible agents. Clearly agents that
might get instructions from bad agents must be prudent, or even paranoid, rather than gul-
lible.

Broadly speaking, there are five defensive strategies:
4) Coarse: Isolate—keep everybody out. It provides the best security, but it keeps you

from using information or services from others, and from providing them to others.
This is impractical for all but a few applications.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 3/47

5) Medium: Exclude—keep the bad guys out. It’s all right for programs inside this de-
fense to be gullible. Code signing and firewalls do this.

6) Fine: Restrict—Let the bad guys in, but keep them from doing damage. Sandboxing
does this, whether the traditional kind provided by an operating system process, or the
modern kind in a Java virtual machine. Sandboxing typically involves access control
on resources to define the holes in the sandbox. Programs accessible from the sand-
box must be paranoid; it’s hard to get this right.

7) Recover—Undo the damage. Backup systems and restore points are examples. This
doesn’t help with secrecy, but it helps a lot with integrity and availability.

8) Punish—Catch the bad guys and prosecute them. Auditing and police do this.

The well-known access control model shown in Figure 1 provides the framework for
these strategies. In this model, a guard controls the access of requests for service to val-
ued resources, which are usually encapsulated in objects. The guard’s job is to decide
whether the source of the request, called a principal, is allowed to do the operation on the
object. To decide, it uses two kinds of information: authentication information from the
left, which identifies the principal who made the request, and authorization information
from the right, which says who is allowed to do what to the object. There are many ways
to make this division. The reason for separating the guard from the object is to keep it
simple.

Of course security still depends on the object to implement its methods correctly. For in-
stance, if a file’s read method changes its data, or the write method fails to debit the
quota, or either one touches data in other files, the system is insecure in spite of the
guard.

Another model is sometimes used when secrecy in the face of bad programs is a primary
concern: the information flow control model shown in Figure 2 [5]. This is roughly a dual
of the access control model, in which the guard decides whether information can flow to
a principal.

ObjectGuardRequestPrincipal

Audit logPolicy

Channel

Authenticate Authorize

Isolation boundary

Execution environment

Host (CLR, kernel, hardware, VMM, ...)

Figure 1: Access control model

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 4/47

In either model, there are three basic mechanisms for implementing security. Together,
they form the gold standard for security (since they all begin with Au):
• Authenticating principals, answering the question “Who said that?” or “Who is

getting that information?”. Usually principals are people, but they may also be
groups, machines, or programs.

• Authorizing access, answering the question “Who is trusted to do which operations
on this object?”.

• Auditing the decisions of the guard, so that later it’s possible to figure out what
happened and why.

2 Access control

Figure 1 shows the overall model for access control. It says that principals make requests
on objects; this is the basic paradigm of object-oriented programming or of services. The
job of security is to decide whether a particular request is allowed; this is done by the
guard, which needs to know who is making the request (the principal), what the request
is, and what the target of the request is (the object). The guard is often called the relying
party, since it relies on the information in the request and in policy to make its decision.
Because all trust is local, the guard has the final say about how to interpret all the incom-
ing information. For the guard to do its job it needs to see every request on the object; to
ensure this the object is protected by an isolation boundary that blocks all access to the
object except over a channel that passes through the guard. There are many ways to im-
plement principals, requests, objects and isolation, but this abstraction works for all of
them.

The model has three primary elements:
1. Isolation: This constrains the attacker to enter the protected execution environ-

ment via access-controlled channels.
2. Access Control: Access control is broken down into authentication, authoriza-

tion, and auditing.
3. Policy and User Model: Access control policy is set by human beings—

sometimes trained, sometimes not.

This paper addresses one piece of the security model: access control. It gives an overview
that extends from setting authentication policy through authenticating a request to the

Reference

monitor
Principal

Sink

Information

Guard Source Transmit

Audit
Log

 Send

Figure 2: Information flow model

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 5/47

mechanics of checking access. It then discusses the major elements of authentication and
authorization in turn.

2.1 What is access control

Every action that requires a security decision, whether it is a user command, a system
call, or the processing of a message from the net, is represented in the model of as a re-
quest from a principal over a channel. Each request must pass through a guard or relying
party that makes an access control decision. That decision consists of a series of steps:

1. Do direct authentication, which establishes the principal directly making the re-
quest. The most common example of this is verifying a cryptographic signature
on a message; in this case the principal is the cryptographic key that verifies the
signature. Another example is accepting input from the keyboard, which is the
principal directly making the request.2

2. (optionally) Associate one or more other principals with the principal of step 1.
These could be groups or attributes.

3. Do authorization, which determines whether any of these principals is allowed to
have the request fulfilled on that object.

The boundary between authentication and authorization, however, is not clear. Different
experts draw it in different places. It is also not particularly relevant, since it makes little
sense to do one without the other.

3 Examples: Logon and cross-organization access control

This section gives two examples to introduce the basic ideas of access control.

3.1 Example: User and network logon

Figure 3 shows the basic elements of authentication and how they are used to log on a
user, access a resource, and then do a network logon to another host. Note the distinction
between the elements that are part of a single host and external token sources such as
domain controllers and STS’s. For concreteness, the figure describes the process of au-
thenticating a user as logon to Windows, that is, as creating a Windows session that can
speak for the user; in Windows a SID is a 128-bit binary identifier for a principal. How-
ever, exactly the same mechanisms can be used to log onto an application such as SQL
Server, or to authenticate a single message, so it covers these cases equally well.

See the appendix for a sketch of what you need to know about cryptography.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 6/47

The numbers in the figure label the steps of the logon, which are as follows:
1. The user provides some input for logon (for example, user name and password).
2. The logon agent sends a logon validation request with the input (or something derived

from it) to the domain controller (labeled “token source” in the figure),
3. which replies with the user’s SID and a session key if logon succeeded, and an error

if it didn’t.
4. The token source provides the user’s SID,
5. and uses it to provide the group SIDs.
6. The trust root says that the token source should be trusted to logon anyone, so
7. all the SIDs go into the NT token,
8. and the session key is saved in the transient key store.
9. When the process accesses some local resource the NT token is checked against the

ACL, and with luck the access is granted.
10. When the process wants to access a remote resource, the NT token
11. and the session key are needed
12. to ask the token source to
13. issue a token that can be sent out
14. to the remote host,
15. which receives it (back on the left side of the figure) and does a net logon.

3.2 Example: Cross-organization access control

A distributed system may involve systems (and people) that belong to different organiza-
tions and are managed differently. To do access control cleanly in such a system (as op-
posed to the local systems that are well supported by Windows domains, as in the previ-
ous example) we need a way to treat uniformly all the information that contributes to the
decision to grant or deny access. Consider the following example, illustrated in Figure 4:

Host

NTToken

Speaks-for
engine

Logon
(in)

Trust root
store

To other
hostsLogon

(out)

Access
Check

ACL
Resourceauthorization

Transient
key store

Token Source

Token
issue

User
AuthN

Claims
(groups)

Confidential & TP
Tamper-Proof (TP)

p

1

2

3

4

5

6

8

7

9
10

11

12

13

1415

Figure 3: Core logon example

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 7/47

Alice at Intel is part of a team working on a joint Intel-Microsoft project called Atom. She
logs in to her Intel workstation, using a smart card to authenticate herself, and connects
using SSL to a project web page called Spectra at Microsoft. The web page grants her
access because:
1) The request comes over an SSL connection secured with a connection key KSSL cre-

ated using the Diffie-Hellman key exchange protocol.
2) To authenticate the SSL connection, Alice’s workstation uses its temporary logon key

Klogon to sign a statement certifying that requests secured by the connection key KSSL
come from the logon session.3

3) At logon time, Alice’s smart card uses her key KAlice certifies that requests signed by
the logon session key Klogon come from Alice.

4) Intel certifies that KAlice is the key for Alice@Intel.com.4
5) Microsoft’s group database says that Alice@Intel.com is in the Atom group.
6) The ACL on the Spectra page says that Atom has read/write access.

In the figure, Alice’s requests to Spectra travel over the SSL channel (represented by the
fat arrow), which is secured by the key KSSL. In contrast, the reasoning about trust that
allows Spectra to conclude that it should grant the requests runs clockwise around the
circle of double arrows; note that requests never travel on this path.

From this example we can see that many different kinds of information contribute to the
access control decision:
• Authenticated session keys
• User passwords or public keys
• Delegations from one system to another
• Group memberships

3 Saying that the workstation signs with the public key Klogon means that it encrypts with the corresponding
private key. Through the magic of public-key cryptography, anyone who knows the public key can verify
this signature. This is not the only way to authenticate an SSL connection, but it is the simplest to explain.
4 Intel can do this with an X.509 certificate, or by responding to a query “Is KAlice the key for Alice@In-
tel.com?”, or in some other secure way.

says

Spectra
ACL

KSSL

says

says

Alice’s
smart card

Alice’s login
system

Spectra
web page

Klogin KAlice

Alice@Intel Atom@Microsoft

MicrosoftIntel

Figure 4: Speaks-for example

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 8/47

• ACL entries.

We want to do a number of things with this information:
• Keep track of how secure channels are authenticated, whether by passwords, smart

cards, or systems.
• Make it secure for Microsoft to accept Intel’s authentication of Alice.
• Handle delegation of authority to a system, for example, Alice’s logon system.
• Handle authorization via ACLs like the one on the Spectra page.
• Record the reasons for an access control decision so that it can be audited later.

4 Basic concepts

This section describes the basic concepts, informally but in considerable detail: principals
and identifiers; speaks-for and trust; tokens; paths, security domains, attributes, and
groups; global identifiers; how to choose identifiers and names, and freshness or consis-
tency. Sections 5 and 6 describe the components of the architecture and how they use
these concepts.

4.1 Principals and identifiers

A principal is the source of a request in the model of ; it is the answer to the questions:
• “Who made this request?” (authentication)
• “Who is trusted for this request?” (authorization—for example, who is on the ACL)
We say that the principal says the request, as in P says do read report.doc. In addition
to saying requests, principals can also say speaks-for statements or claims, as explained
in section 4.2.

Principals are not only people and devices. Executable code is a principal. An in-
put/output channel and a cryptographic signing key are principals. So are groups such as
Microsoft-FTE and attributes such as age=32. We treat all these uniformly because they
can all be answers to the question “Who is trusted for this request?”. Furthermore, if we
interpret the question “Who made this request?” broadly, they can all be answers to this
question as well: a request can be made directly only by a channel or key, but it can be
made indirectly by a person (or device) that controls the key, or by a group that such a
person is a member of.

It turns out to be convenient to treat objects or resources as principals too, even though
they don’t make requests.

Principals can be either simple or compound. Simple principals are denoted by identifi-
ers, which are strings. Intuitively, identifiers are labels used for people, computers and
other devices, applications, attributes, channels, resources, etc., or groups of these.5
Compound principals are explained in section 5.8.

5 Programs usually can deal only with identifiers, not with the real-world principals that they denote. In this
paper we will ignore this distinction for the most part.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 9/47

Channels are special because they are the only direct principals: a computer can tell di-
rectly that a request comes from a channel, without any other information. Thus any au-
thentication of a request must start with a channel. A cryptographic signing key is the
most important kind of channel.

An identifier is a string; often the string encodes a path, as explained below. The string
can be meaningful (to humans), or it can be meaningless; for example, it can encode a
binary number (Occasionally an identifier is something that is meaningful, but not as a
string of characters, such as a picture.). This distinction is important because access con-
trol policy must be expressed in terms of meaningful identifiers so that people can under-
stand it, and also because people care about the meanings of a meaningful identifier such
as coke.com, but no one cares about the bit pattern of a binary identifier. Of course there
are gray areas in this taxonomy; a name such as davcdata.exe is not meaningful to most
people, and a phone number might be very meaningful. But the taxonomy is useful none
the less.

Meaningless identifiers in turn can be direct or not. This leads to a three-way classifica-
tion of identifiers:

• name: an identifier that is meaningful to humans.

• ID: a meaningless identifier that is not direct. In this taxonomy an identifier such as
xpz5914@hotmail.com is probably an ID, not a name, since it probably isn’t mean-
ingful.

• direct: a meaningless identifier that identifies a channel. There are three kinds of di-
rect identifiers:

• key: a cryptographic key (most simply, a public key) that can verify a signature on
a request. We view a signing key as a channel, and say that messages signed by
the key arrive on the channel named by that key.6

• hash: a cryptographic collision-free hash of data (code, other files, keys, etc.): dif-
ferent data is guaranteed to have different hashes. A hash H can say X if a suitable
encoding of “This data says X” appears in the data of which H is the hash. For
code we usually hash a manifest that includes the hash of each member file. This
has the same collision-free property as a hash of the contents of all the files.

• handle: an identifier provided by the host for some channel, such as the keyboard
(Strictly speaking, the wire from the keyboard.) or a pipe.

An identifier can be a path, which is a sequence of strings, just like a path name for a file
such as C:\program files\Adobe\Acrobat6. It can be encoded as a single string using
some syntactic convention. There are a number of different syntactic conventions for rep-
resenting a path as a single string; the file name example uses “\” as a separator. The
canonical form is left-to-right with / as the separator. A path can be rooted in a key, such

6 For a symmetric key we can use a hash of it as the public name of the channel, though of course this is not
enough to verify a signature.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 10/47

as KVerisign/andy@intel.com (or KVerisign/com/intel/andy in the canonical form for
paths); such a path is called fully qualified. A path not rooted in a key is rooted in self,
the local environment interpreting the identifier; it is like a relative file name because its
meaning depends on the context.

4.2 Speaks-for and trust

Authentication must start with a channel, for example, with a cryptographic signature
key. But it must end up with access control policy, which has to be expressed in terms of
names so that people can understand it. To bridge the gap between channels and names
we uses the notion of “speaks-for”. We say that a channel speaks for a user, for example,
if we trust that every request that arrives on the channel comes from the user, in other
words, if the channel is trusted to speak for the user.

But the notion of speaks-for is much more general than this, as the example of section 3
illustrates. What is the common element in all the steps of the example and all the differ-
ent kinds of information? There is a chain of trust running from the request at one end to
the Spectra resource at the other. A link of this chain has the form

“Principal P speaks for principal Q about statements in set R”
For example, KSSL speaks for KAlice about everything, and Atom@Microsoft speaks for
Spectra about read and write. We write “about R” as shorthand for “about statements in
set R”. Often P is called the subject and R is called the rights.

The idea of “P speaks for Q about R” is that
if P says something about R, then Q says it too

That is, P is trusted as much as Q, at least for statements in R. Put another way, Q takes
responsibility for anything that P says about R. A third way: P is a more powerful princi-
pal than Q (at least with respect to R) since P’s statements are taken at least as seriously
as Q’s (and perhaps more seriously). Thus P has all of Q’s authority about R.

The notion of principal is very general, encompassing any entity that we can imagine
making statements or being trusted. Secure channels, people, groups, attributes, systems,
program images, and resource objects are all principals. The notion of speaks-for is also
very general; some examples are:

Binding a key to a user name.
Binding a program hash to a name for the program.
Allowing an authority to certify a set of names.
Making a user a member of a group.
Assigning a principal an attribute.
Granting a principal access to a resource by putting it on the resource’s ACL.

The idea of “about R” is that R is some way of describing a set of things that P (and
therefore Q) might say. You can think of R as a pattern or predicate that characterizes this
set of statements, or you can think of it as some rights that P can exercise as much as Q
can. In the example of section 3, R is “all statements” except for step (5), where it is
“read and write requests”. It’s up to the guard of the object that gets the request to figure
out whether the request is in R, so the interpretation of R’s encoding can be local to the
object. For example, we could refine “read and write requests” to “read and write re-

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 11/47

quests for files whose names match /users/lampson/security/*.doc”. In most ACEs
today, R is encoded as a bit vector of permissions, and you can’t say anything as compli-
cated as the previous sentence.

We can write this P ⇒R Q for short, or just P ⇒ Q without any subscript if R is “all
statements”. With this notation the chain for the example is:

KSSL ⇒ Klogon ⇒ KAlice ⇒ Alice@Intel ⇒ Atom@Microsoft ⇒r/w Spectra
A single speaks-for fact such as KAlice ⇒ Alice@Intel is called a claim. The principal on
the left is the subject.

The way to think about it is that ⇒ is “greater than or equal”: the more powerful princi-
pal goes on the left, and the less powerful one on the right. So
role=architect ⇒ Slava means that everyone in the architect role has all the power
that Slava has. This is unlikely to be what you want. The other way,
Slava ⇒ role=architect, means that Slava has all the power that the architect role
has. This is a reasonable way to state the implications for security of making Slava an
architect.

Figure 4 shows how the chain of trust is related to the various principals. Note that the
“speaks for” arrows are quite independent of the flow of bytes: trust flows clockwise
around the loop, but no data traverses this path. The example shows that claims can ab-
stract from a wide variety of real-world facts:
• A key can speak for a person (KAlice ⇒ Alice@Intel) or for a naming authority (KIntel

⇒ Intel.com).
• A person can speak for a group (Alice@Intel ⇒ Atom@Microsoft).
• A person or group can speak for a resource, usually by being on the ACL of the re-

source (Atom@Microsoft ⇒r/w Spectra). We say that Spectra makes this claim by
putting Atom on its ACL.

4.2.1 Establishing claims: Delegation

How does a claim get established? It can be built in; such facts appear in the trust root,
discussed in section 5.1. Or it can be derived from other claims, or from statements made
by principals, according to a few simple rules:

(S1) Speaks-for is transitive: if P ⇒ Q and Q ⇒ R then P ⇒ R.

(S2) A principal speaks for any path rooted in itself: P ⇒ P/N. This is just like a file sys-
tem, where a directory controls its contents. Section 4.10 discusses paths.

(S3) Principals are trusted to delegate their authority, privileges, rights, etc.: if
Q says P ⇒ Q then P ⇒ Q. (There are restricted forms of speaks-for where this
rule doesn’t hold.)

From the definition of ⇒, if Q' says P ⇒ Q and Q' ⇒ Q then Q says P ⇒ Q, and it fol-
lows from (S3) that P ⇒ Q. So a principal is trusted to delegate the authority of any prin-
cipal it speaks for, not just its own authority. Frequently a delegation is restricted so that
the delegate P speaks for Q only for requests (this is the usual interpretation of an X.509

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 12/47

end-entity certificate, for example, or membership in a group) or only for further delega-
tion (an X.509 CA certificate, or GROUP_ADD/REMOVE_MEMBER permission on the ACL for
a group).

4.2.2 Validity period

A claim usually has a validity period, which is an interval of real time during which it is
valid. When applying the rules to derive a claim from other claims and tokens, intersect
their validity periods to get the validity period of the derived claim. This ensures that the
derived claim is only valid when all of the inputs to its derivation are valid. A claim can
be the result of a query to some authority A. For example, if the result of a query “Is P in
group G” to a database of group memberships is “Yes”, that is an encoding of the claim
P ⇒ G. The validity period of such a statement is often just the instant at which the re-
sponse is made, although the queryer might choose to cache it and believe it for a longer
time.

4.3 Tokens

A claim made by a principal is called a token (not to be confused with a user authentica-
tion token such as a SecurID device). Many tokens are called certificates, but this paper
uses the more general term except when discussing X.509 certificates specifically. The
rule (S3) tells you whether or not to believe a token; section 4.5 on global identifiers
gives the most important example of this.

Examples of tokens:
1. X.509 certificate [KI says KS ⇒ name, (optionally KI says name ⇒ attribute)]
2. Authenticode certificate [KV says H(code) ⇒ publisher/program]
3. Group memberships [KD says SU ⇒ SG]
4. Signed SAML attribute assertion [KI says name ⇒ attribute]
5. ISO REL (XrML) license

where KI is the issuer key, KS is the subject key, “name” is the certified name, KV is
Verisign’s key, H(code) is the hash value of the code being signed, “publisher” is the
name of the code’s publisher, KD is the key of the domain controller, SU is the SID of the
user and SG is the SID of the group of which the user is a member. XrML tokens can do
all of these things, and more besides.

A token can be signed in several different ways, which don’t change the meaning of a
token to its intended recipient, but do affect how difficult it is to forward:
• A token signed by a public key, like a X.509 certificate, can be forwarded to anyone

without the cooperation of the third party. From a security point of view it is like a
broadcast.

• A token signed by a symmetric key, like a Kerberos ticket, can be returned to its
sender for forwarding to anyone with whom the sender shares a symmetric key.

• A token that is just sent on an authenticated channel cannot be forwarded, since
there’s no way to prove to anyone that the sender said it.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 13/47

In a token the principals on both sides of the ⇒ must be represented by identifiers, and
it’s important for these identifiers to be unambiguous. A fully qualified identifier (one
that starts with a key or hash) is unambiguous. Other identifiers depend on the context,
that is, on some convention between the issuer and the consumer of the token.

Like a claim, a token usually has a validity period; see section 4.2.2. For example, a Ker-
beros token is typically valid for eight hours.

A token is the most common way for a principal to communicate a claim to others, but it
is not the only way. You can ask a principal A “Do you say P ⇒ Q?” or “What principal
does P speak for?” and get back “A says ‘yes’” or “A says ‘Q’”. Such a statement only
makes sense as a response to the original query; to be secure it must not only be signed
by (some principal that speaks for) A, but also be bound securely to the query (for exam-
ple, by a secure RPC protocol), so that an adversary can’t later supply it as the response
to some other query.

4.4 Organizing principals

There are several common ways to impose structure on principals in addition to the path
identifiers introduced in section 4.1: security domains, attributes, and groups.

4.4.1 Security domains

A security domain is a collection of principals (users, groups, computers, servers and
other resources) to which a particular set of policies apply, or in other words, that have
common management. Usually we will just say “domain”. It normally comprises:
• A key KD.
• A namespace based on that key.
• A trust root—a set of claims of the form Kj1 /\ Kj2 ... ⇒ identifier-pattern
• ACLs for the trust root and the accounts, which define the administrators of the do-

main.
• A set of accounts—statements of the form KD says Ki ⇒ KD/N for principals with

names in its namespace.
• A set of resources and policies for those resources

The essential property of paths is that namespaces with different roots are independent,
just as different file system volumes are independent. In fact, namespaces with different
prefixes are independent, just as file system directories with different names are inde-
pendent. This means that anybody with a public key K can create a namespace rooted in
that key. Such a namespace is the most important part of a security domain. Because of
(S2), K speaks for the domain. Because of (S3), if you know K-1 you can delegate author-
ity over any part of the domain, and since K is public, anyone can verify these delega-
tions. This means that authentication can happen independent of association with any
domain controller. Of course, you can also rely on a third party such as a domain control-
ler to do it for you, and this is necessary if K is a symmetric key.

For example, an application such as SQL Server can create its own domain of objects,
IDs, names and authorities that has no elements in common with the Windows domain of

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 14/47

objects, IDs, names and authorities for the machine on which SQL Server is running.
However, the SQL Server can use part or all the Windows security domain if that is de-
sired. That use is controlled by policy, in the form of trust root contents and issued to-
kens.

Here are some other examples of operating in multiple security domains:

1. A user takes a work laptop home and connects to the home network, which has no
connection to the work security domain.

2. A consultant has a laptop that is used in working with two competing companies. For
each company, the consultant has a virtual machine with its own virtual disk. Each of
those virtual machines joins the Windows domain of its respective company. The host
OS, however, is managed by the consultant and has its own local domain.

Sometimes we distinguish between resource domains and account domains, depending on
whether the domain mostly contains resources or objects, or mostly contains users or sub-
jects.

Domains can be nested. A child domain has its own management, but can also be man-
aged by its parent.

4.4.2 Attributes

An attribute such as age=32 is a special kind of path, and thus is a principal like any
other. This one has two components, the name age and the value 32; they are separated
by “=” rather than “/” to emphasize the idea that 32 is a value for the attribute name age,
but this is purely syntactic.7 The claim Paul ⇒ age=32 expresses the fact that Paul has
the attribute age=32. Like any path, an attribute should be global if it is to be passed be-
tween machines: Koasis/age=32. However, unlike file names or people, we expect that
most attributes with the same name in many different namespaces will have the same in-
tended meaning in all of them. A claim can translate the attribute from one namespace to
another. For example, WA/dmv/age ⇒ NY/rmv/age means that New York trusts WA/dmv
for the age attribute. Translation can involve intermediaries: WA/dmv/age ⇒ US/age and
US/age ⇒ NY/rmv/age means that New York trusts US for age, and US in turn trusts
Washington (presumably US trusts lots of other states as well, but these claims don’t say
anything about that). Locally, of course, it’s fine to use age=32; it’s a local name, and if
you want to translate US/age=32 to age=32 you need a trust root entry US/age ⇒ age. In
fact, from the point of view of trust age=32 is just like a nickname. The difference is that
we expect lots of translations, because we expect lots of principals to agree about the
meaning of age, whereas we don’t expect wide agreement about the meaning of Bob.

7 Sometimes people call age=32 an “attribute-value” or an “attribute-value pair”, and call age an “attrib-
ute”. This is perfectly good English; it might even be better English than calling age=32 an attribute. But it
is confusing to have both meanings for “attribute” floating around. In this paper, “attribute” means the pair
age=32, and age is the attribute name. Sometimes we say “the age attribute”, meaning an attribute whose
name is age.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 15/47

Because of the broad scope of many attribute names such as age, the name of an attribute
can change as it is expressed in different languages and even different scripts. Therefore
it is often necessary to use an ID rather than a name for the attribute in policy. For exam-
ple, an X.509 object identifier or OID is such an ID. Sections 4.5 and 4.6 discuss the im-
plications of this; what they say applies to attributes as well.

A Boolean-valued attribute (one with a value that is true or false), such as over21, de-
fines a group; we normally write it that way rather than as over21=true. The next sec-
tion discusses groups.

4.4.3 Groups and conditions

A condition is a Boolean expression over attribute names and values, such as “micro-
soft.com/division == ‘sales’ & microsoft.com/region == ‘NW’”. A condition
is a principal; every principal that speaks for attributes whose values cause the expression
to evaluate “true” speaks for the condition. In the preceding example, every Microsoft
employee in the northwest sales region would speak for it.

For use in conditions, identifiers are considered to be Boolean-valued attributes that
evaluate true for the principals that speak for them. Hence the condition
paul@microsoft.com | carl@microsoft.com is true for paul@microsoft.com and
carl@microsoft.com. It is also true for the key K if K => paul@microsoft.com.

In addition, there are special attributes, such as time, that may be used in conditions;
every principal is considered to speak for them. For example, “time >= 0900 & time
<= 1500 & shift == ‘day’ & jobtitle == ‘operator’” would be true for all day-
shift operators between 9am and 5pm.

If C is a condition, and a principal P has attributes whose values cause C to evaluate true,
then we write:
 P ⇒ C
We can give a condition an identifier (a name or an ID) by saying that the condition
speaks for the identifier:
 C ⇒ identifier

We call such an identifier a group.8 A group is thus a principal with zero or more other
principals that speak for it. If a principal speaks for the group, we say that it is a member
of the group. Today’s groups are defined by a condition that is just the “or” of a list of
members. In such a case, it’s possible to provide a complete list of all the group mem-
bers, but this is not always true. The distinction is important for a principal with the au-
thority to define members, but it is invisible to access control, which only cares about a
requestor P presenting a claim P ⇒ G and G ⇒ resource being on the ACL.

Such an authority will only issue such a claim if it:

8 This is not the only meaning of ‘group’ in English, in computing, or in security, but it is the usual mean-
ing and the one we adopt.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 16/47

• Has access to a complete list of the group members (such as Paul, Carl, Charlie), and
P is in it, or

• Has access to a partial list of the group members and P is on its partial list; there may
be several such lists, each accessible to a different issuer, or

• Knows that P satisfies the condition that defines the group (such as age>=21).

The question of who is trusted to assert P ⇒ G, that is, who can define the members of a
group, is part of authorization.

4.5 Global identifiers

To avoid confusion, identifiers communicated between computer systems should be
global. If a set of systems doesn’t communicate with the rest of the world, they only need
to agree among each other. However, when these systems suddenly do need to share
identifiers (perhaps because they merge with another set of systems), collisions of identi-
fiers can occur, requiring a massive renaming of entities. To avoid such problems, all
identifiers that might travel between computers should be global, except perhaps names
intended to communicate to a human being.

An identifier is global if everyone agrees on its meaning, that is, when presented with a
request and some supporting evidence, everyone either agrees on whether the identifier is
the principal that made the request or doesn’t know. A key or hash is automatically
global; cryptography makes it so. Other identifiers are paths (perhaps of length one).

A path rooted in a key, such as Kintel/andy@intel.com, is called fully qualified. Such
identifiers are global, because Kintel is global, and according to rule (S2) above it can say
what other keys can speak for identifiers rooted in itself. For example, Kintel can establish
that Andy’s key Kandy speaks for the name Kintel/andy@intel.com, by signing a certifi-
cate (token):
(C1) Kintel says Kandy ⇒ Kintel/andy@intel.com
Paths not rooted in keys are rooted in self, the local environment interpreting the identi-
fier. They are not global and therefore should not be sent outside the local environment.

We would like to treat an identifier like andy@intel.com (or /com/intel/andy in the
canonical form) as global, even though it is not rooted in a key, because we want to keep
keys out of most policy. This is a conventionally global identifier: we make it very likely
that almost everybody agrees about what speaks for it, by making it very likely that eve-
ryone agrees that Kandy ⇒ andy@intel.com. We do that by getting the same agreement
that Kintel => intel.com; then everyone will accept Kintel’s certificate (C1). Of course
this is the same problem, and we can solve it in the same way: agree that Kverisign ⇒ com,
and get a certificate
(C2) Kverisign says Kintel ⇒ intel.com

This recursion has to stop somewhere, and it stops in a special part of the security policy
called the trust root, where some of these facts are built in. The essential idea is:

Provided their trust roots agree and they have the same tokens, two parties will
agree on what keys speak for a conventionally global identifier.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 17/47

One case in which the parties might disagree is while a key is being rolled over or re-
placed, but only if they have different tokens—one has heard about the key change and
the other one hasn’t.

Section 5.1 discusses the trust root in detail, and section 5.1.1 explains how to make it
likely that two trust roots agree.

Although any kind of path could be a conventionally global identifier, the ones that peo-
ple cares most about are DNS names (see section 4.7). Email names are important too,
but they usually don’t require special attention because there’s a single DNS name that
authenticates a given email name.

4.6 Choosing identifiers for access policy

There are three conflicting requirements on identifiers:

• Meaningful (to humans): When security policy such as group definitions, access con-
trol lists, etc is displayed to humans, identifiers must be meaningful, since people
must be able to understand the policy. Only names are meaningful. Another conse-
quence is that only names are controversial: no one cares what bit pattern your public
key has, or what domain ID your SID uses, but people do care who controls
microsoft.com or mit.edu.

• Long-lived: The identifier doesn’t need to change when encryption keys or names
change. This is desirable, because much security policy is long-lived: the identifier
may appear on ACLs for objects that last for decades, and that are scattered over the
internet or written on DVDs. Neither names nor direct identifiers can be guaranteed to
be long-lived, since people get married, join a new organization, or otherwise change
their minds about names, and keys can be compromised and need to change.

• Direct: some identifiers must be direct, since only direct identifiers can actually make
requests. Direct identifiers are neither meaningful nor long-lived.9

The following table summarizes the choices:

Property
Identifier type

Meaningful Long-lived Direct

Name yes no no
ID no possibly no
Direct (keys etc.) no no yes

We can distinguish three main places where an identifier may appear:
• As the direct source of a request, where it must be direct, since all the machine di-

rectly knows about the source of a request is the channel it arrives on.

9 The hash of some data is long-lived in the sense that it won’t change. However, the hashes that are impor-
tant for access control are hashes of code, and the hash of code that you care about changes frequently, be-
cause of patches and new versions. So in practice a hash has a much shorter lifetime than many keys.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 18/47

• In the user’s view of access control policy, where it must be meaningful, in other
words, a name.

• In access control policy stored in the system, where it’s desirable for it to be long-
lived, but it could have none of these properties as long as there is extra machinery to
make up the lack.

As peer-to-peer operation grows—both personal P2P and corporate P2P—identifiers for
principals will show up in access control policy far and wide. An identifier might be on
ACLs on machines and DVDs all over the world, with no record of where those machines
are. It might also be in tokens such as XrML licenses, SAML or XACML tokens, certifi-
cates in various forms, etc., which are another way to express access control policy.
These signed statements can be carried anywhere, can be backed up, can be transferred
from one machine to another. Again, there is no requirement that each such statement
have its location registered in any central place. Hence it’s often desirable for the identi-
fiers in access control policy to be long-lived.

Since no identifiers satisfy all the requirements, there have to be ways of mapping among
them:
• When a request or a token comes in, it can only be authenticated as coming from a

direct principal, that is, a channel C, so there must be a mapping C ⇒ P to a stored
principal.

• When a user wants to examine or edit policy they need to see a meaningful principal
M, so there must be mappings in both directions M ⇒ P and P ⇒ M.

Any kind of identifier can appear in stored access control policy. As we have seen, how-
ever, it’s often important for stored identifiers to be long lived, so that the policy doesn’t
have to change when the identifiers change. It’s therefore advantageous to use a particu-
lar kind of ID called a SID for stored policy, because SIDs are carefully constructed to be
long-lived; see section 4.7. There has to be a reliable correspondence between SIDs and
names so that policy can be read and written by people, but this correspondence can
change with time. There also has to be a reliable SID↔key correspondence so that re-
quests can get access.10

The preferred approach to keys is complementary to this one: the only long-term place to
store keys should be the trust root (see section 5.1), which contains facts about principals
that are installed manually and accepted on faith in reasoning about authentication.

10 Preferring names would also work, and it would be simpler since there would be no need for the
SID↔name correspondence, but it leads to inconvenience when a name changes, and to insecurity when a
name is reused.

Preferring keys seems appealing at first, since although it needs a key↔name correspondence, it doesn’t
need anything else. Unfortunately, it’s insecure when a key is compromised, unless the key in policy is no
longer treated as a direct identifier but rather as something that can be mapped reliably to a key that is cur-
rently valid. Doing this makes it harder to handle than a SID. Since you can’t tell by looking at it whether a
key has been compromised, you have to do this work every time.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 19/47

4.6.1 Anonymity

Sometimes people want to avoid using the same identifier for all their interactions with
the world, because they want to preserve their anonymity. A variation on this is that they
don’t want their actions at one web site, for example, to be correlated with their actions at
another site; this kind of correlation is called tracking.

Since there is no shortage of encryption keys or identifiers, it’s easy for a computer to
generate as many identifiers for me as I want, for example, a different one for every web
site I interact with. The computer can keep track of which identifier to use at which site.
If you are really paranoid, you can use a different identifier each time you go to the same
site.

In many case, this by itself is sufficient. Sometimes, however, a web site or other party
may want to know something about me: that I am over 18, or have a decent credit rating,
or whatever. For this purpose a mutually trusted third party such as Live or Consumer
Reports can authenticate one of my identifiers, certifying, for example,
Kbwl-amazon ⇒ over18. The protocol for this is simple: I authenticate to Live, I give
Kbwl-amazon to Live and ask for a certificate, and I get back Klive says Kbwl-amazon ⇒ over18.

4.7 SIDs

SIDs contain a 96 bit domain identifier plus a 32 bit relative identifier within the domain.
Thus the structure is D/R. To distinguish SIDs from other identifiers we prefix SID, so
the full identifier is SID/D/R, but we will usually omit the SID/ prefix here. Roughly
speaking, D corresponds to something like microsoft.com, and R to blampson or the
server red-msg-70, so D/R corresponds to blampson@microsoft.com or red-msg-
70.microsoft.com.

These SIDs have the following useful properties:
1. They are not meaningful to humans, unlike names. No one will care which numbers

are assigned to which domains or which principals.
2. They are not direct identifiers, as keys are, so that policy expressed in terms of SIDs

remains the same when keys change. Only the SID↔key correspondence needs to
change.

3. There are plenty of them, so they don’t have to be rationed (except to prevent denial
of service attacks on ID services that map SIDs to keys).

4. They are (two part) paths D/R, so that a key that speaks for a domain D can speak for
lots of SIDs in that domain.

Because of (1) and (2) a SID is a long-lived identifier that is suitable for long-lived policy
such as ACLs.

Since there are plenty of domain identifiers, you can get a new one just by choosing a 96
bit random number; this is reasonable because one D is as good as another. The chance of
an accidental collision is very small (once every 8,000 years if there are a thousand new
domains per second); we consider collisions caused by malice shortly. Some domains
will have only a few SIDs (that is, a few values of R for one D), for example, a domain

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 20/47

for a person, family, or small organization. But most SIDs will probably be in large do-
mains belonging to corporations or to Internet services such as Live or Yahoo.

As we saw in the previous section, we need to know K ⇒ D/R so that we can authenticate
a statement signed by K as coming from D/R. We also need to know name ⇒ D/R and
D/R ⇒ name so that users can read and change policy that is stored in terms of SIDs.
These mappings could be strictly local if the local administrator takes responsibility for
setting up and maintaining them, but in general it will come from someone who speaks
for D/R (for example, someone who speaks for D) or for name (for example,
microsoft.com if name is billg@microsoft.com).

Note that joining a Windows domain is quite different from learning KD ⇒ D. A machine
can only be joined to one domain, and a domain joined machine trusts its domain control-
ler for any SID, and also for various management functions. A machine or session can
know about lots of domains, and it trusts each one only for its own SIDs.

4.7.1 Domain ID service

To simplify the handling of domain key changes and malicious (as opposed to accidental)
conflicts for domain identifiers, it’s desirable to have one or more domain ID services,
which are intended to issue tokens KDR says KD ⇒ D. Then instead of having a trust root
entry for each D that you encounter, you only need one that says KDR ⇒ SID/* for each
ID service that you want to trust. For greater security, you could configure your trust root
with n domain ID services and a requirement that k of them agree on KD ⇒ D before it is
believed; see section 5.1.2 for more on this. As with other kinds of trust root entries, an
entry KD ⇒ D for a specific domain takes precedence, or disagreement is referred to the
administrator; see section 5.1. For this to work well, there should not be too many ID ser-
vices and the scope of each one should be wide.

The domain ID service can work as a simple web service with no human operator in-
volvement only because what it records has no intrinsic value. The ID service is designed
specifically and only to meet the needs of authentication. It offers only one public query:
“Is KD ⇒ D a registered claim?”11 It is intentionally not a general purpose directory. It is
intentionally limited never to become a general purpose directory. Nothing stops people
from making more general directories, but those are not domain ID services.

In addition to the query, there is one operation for registering new values of D. The input
parameters are D, a public key KD, and an optional password PW encrypted by KDR that
can be used for resetting KD. The request is signed by KD

-1. There is no other authentica-
tion. In particular, there is no linkage to any PII or to any other information that would
require human operators at the domain ID service. After success, KD ⇒ D is a registered
claim.

Windows domains today implement a highly simplified version of this scheme, since a
domain joined machine trusts its domain controller for any SID.

11 Or perhaps “What are the keys that speak for D?”

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 21/47

4.8 Names

The purpose of a name is to be meaningful to a human. Most useful names are paths, and
the preferred (conventionally) global names are DNS and email names such as
research.microsoft.com or billg@microsoft.com. As we did with SIDs, to distin-
guish DNS names from other identifiers we prefix DNS, so the full identifier is
DNS/com/microsoft/research, but we will usually omit the DNS/ prefix here and use
the standard DNS syntax.

The crucial security questions about a name are what real world entity it identifies, and
what key or SID speaks for it. To answer the second question, you consult the trust root,
together with any tokens that are relevant. Thus the trust root might contain

KVerisign ⇒ DNS/*; Kbillg ⇒ billg@microsoft.com
Here the second name is written in its conventional email form; as a canonical path name
it would be DNS/com/microsoft/email/billg. The rule for trust roots (see section 5.1)
is that the more specific entry governs, so that what Verisign or Microsoft have to say
about billg@microsoft.com will be ignored.

Today’s X.509 trust roots usually grant a certificate authority such as Verisign authority
over all DNS names; that is what the KVerisign ⇒ DNS/* claim in the example says. Al-
though there are ways to limit the names that such a key can speak for, today they are ob-
scure. Such limits are of fundamental importance, and need to be easy to set and under-
stand.

Adding an entry for a name to the trust root must be a human decision, so the procedure
by which the human decides that it’s the right thing to do, called a ceremony, must be
carefully designed. A ceremony is like a network protocol but includes human compo-
nents as well as computers. for more on this topic.

4.9 Freshness

Secure communication requires more than assurance that a message came from a known
source; it also requires freshness, a guarantee that the message is sufficiently recent.
Without freshness, a bad guy can make trouble by replaying old messages, which might
well be misinterpreted in the current context. For example, consider a request to a service
to write a check for $10,000. Replaying this request should not result in a second check.
Or consider a request that asks “Does key K speak for microsoft.com?” and expects a
yes or no answer. If a previous request that asked “Does key Kmicrosoft speak for
microsoft.com?” got a “yes” answer, it should not be possible to replay this answer and
get the requester to accept it as the answer to the later request.

There are many ways to ensure freshness. In a request-response protocol like the second
example above, you tag the request with a sequence number and demand the same se-
quence number in the response. Such a tag is called a nonce or challenge. To ensure that
an incoming message is fresh, in particular that it was generated since you chose a nonce,
you insist that it contain some evidence that the sender received that nonce.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 22/47

The essential property of a nonce is that it is not reused; nonces may be ordered, but this
is usually unimportant. If you want to prevent the responder from precomputing the re-
sponse, a nonce must be unpredictable; frequently this is not a requirement. Often there
are two layers of freshness. For example, a sequence of requests might be carried on a
channel that is secured with a fresh key. Then the nonces need only be unique within that
sequence, since a different sequence of requests will be secured with a different key. In
this example the sequence numbers on the messages don’t need to be unpredictable.

To ensure that a key is fresh, generate it by hashing some data that includes a newly gen-
erated random number. For two party two-way communication, each party should gener-
ate its own random number to be included in the hashed data; this gives each party assur-
ance of freshness, and also ensures a good key even if one of the parties is not good at
generating random numbers.

For broadcast communication such as a certificate signed with a public key, nonces don’t
work because the receivers don’t send anything to the broadcaster beforehand. Instead,
we usually rely on a timestamp in the certificate for freshness. The validity period in a
token is an example of such a timestamp. You might also want to use a timestamp to
avoid a round trip, for instance when sending email. It’s not as conclusive as a nonce be-
cause of clock skew (and perhaps because it’s predictable).

4.9.1 Consistency vs. availability

Availability and consistency: choose one

There is a fundamental tradeoff between consistency (or freshness) and availability. A is
consistent with B if A’s view of B’s state agrees with B’s actual state.12 The only way to
ensure this is for A to hold a lock on B’s state, but this means that A has to communicate
with B to acquire the lock, and after that B can’t change its state until A releases the lock.
This is usually unacceptable in a distributed system because it hurts availability too
much: if A and B can’t communicate, one of them is going to be stuck.13

The alternative is for A to settle for a view of B’s state at some time in the past; often this
is cached information. Now there is a tradeoff among freshness (how far in the past?),
availability, and performance (how often does A check for changes in B’s state?). This
tradeoff is fundamental; no cleverness in the implementation can avoid it. The choice is
between acting on old (perhaps cached) information, and getting stuck when you can’t
communicate. This is a management decision and it must be exposed to management
control. At least two parameters must be settable by the relying party (perhaps taking ac-
count of hints in the token):
1. How old data can be and still be acted on (the tradeoff between freshness and avail-

ability).

12 More precisely, the view is some function v of B’s state sB, and A knows v(sB

past), where sB
past is some

past value of sB. A is consistent with B if v(sB
past) = v(sB).

13 Sometimes a special kind of lock called a lease is acceptable; this is a lock that times out. A lease pre-
vents its issuer from changing the state until either the leaseholder releases it, or the lease times out. People
usually don’t use leases for security information, but they could.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 23/47

2. How frequently data should be refreshed (the tradeoff between freshness and per-
formance).

The way to get the freshest information is for A to ask B for its state right now. This still
doesn’t guarantee perfect consistency, since B’s state can change between the time that B
sends its reply and the time that A receives and acts on it, but it’s the best you can do for
consistency without a lock. The way to get the greatest availability and the least commu-
nication cost is for A to act on any view it has of B’s state, no matter how old.

This issue shows up most often for authentication in the validity period of a token. A
short validity period means that the token is fresh, but also that new tokens must be is-
sued and distributed frequently. A long validity period means that once you have the to-
ken you’re good to go, but the token’s issuer might have changed its mind about the
claims in it. Note that there’s nothing to stop a relying party from using a different valid-
ity period from the one in the token.

4.9.2 Revoking claims

If you have issued a token and you want to cancel it, is there any alternative to letting the
validity period expire? Well, yes and no. Yes, because you may be able to revoke the to-
ken. No, because the revocation is just another kind of token, with a shorter validity pe-
riod.

The idea behind revocation is that you need two tokens to justify a claim: the original to-
ken Tk that is “issuer says subject ⇒ ... as long as revoker confirms”, and another con-
firmation token “revoker says Tk is still valid” that has a much shorter validity period
than Tk. This is better than simply issuing Tk with a short validity period because the re-
voker is optimized for issuing confirmation tokens cheaply, quickly, and with high avail-
ability. It can’t grant any access by itself, and it doesn’t need any detailed information
about the principals involved. Its database consists simply of tokens revoked by their is-
suers. When queried about Tk, it checks that database and issues a confirmation token if
the database doesn’t say that Tk is revoked.

To add an entry to the revoker’s database, the original issuer writes a token “is-
suer says the token identified by TkId has been revoked” and sends it to the revoker. TkId
could be a hash of the original token or a serial number embedded in the original token.
The revoker puts (issuer, TkId) in its database. Since issuers can only revoke their own
tokens, the revoker doesn’t need to know anything about the issuers (unless it wants them
to pay). The only harm the revoker can do is to revoke tokens without instructions, that
is, mount a denial of service attack.

Because it is much simpler than most issuers and because it can’t grant any access by it-
self, the revoker can afford to issue confirmation tokens with short validity periods, and it
can be replicated for high availability. It’s important to understand, however, that this is a
difference of degree and not of kind. The tradeoffs described in section 4.9.1 still apply;
only the parameters are different. For systems that are expected to be connected to the
Internet, it’s reasonable to use a validity period of a few minutes (or the length of a ses-

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 24/47

sion, if that is greater). Policy might say that if you can’t contact a revoker, you should
accept the token anyway.

There are several schemes for revocation. The original X.509 standard specifies a method
called a Certificate Revocation List (CRL), but this has fallen out of favor. The revoca-
tion scheme usually used for X.509 certificates is the Internet standard OCSP; see [3]. It’s
undecided what revocation scheme should be used for other tokens; currently there is
none.

5 Authentication

This section describes the core components of authentication, highlighted in Figure 5: the
trust root, token sources, and the speaks-for engine. Then it touches briefly on other com-
ponents: user logon, device and app authentication, compound principals, and capabili-
ties.

Access control is based on checking that the principal making a request is authorized to
access the resource, in other words, that the principal speaks for the resource. This check
typically involves a trust chain like the one in the example of section 3.2:

KSSL ⇒ Klogon ⇒ KAlice ⇒ Alice@Intel ⇒ Atom@Microsoft ⇒r/w Spectra
Where do these claims come from? They can be known, (that is, built in), or they can be
deduced from other claims or from tokens, which are claims made by known principals.
The trust root holds the built in claims, token sources supply tokens, and the speaks-for
engine makes the deductions. Thus these components are the core of authentication:
1. The trust root holds claims that we know, such as KVerisign ⇒ Verisign. All trust is lo-

cal, so the trust root is the basis of all trust.
2. Token sources provide claims that others say, such as

KVerisign says KAmazon ⇒ Amazon.

Host

Speaks-for
engine

Trust root
store

Confidential & TP
Tamper-Proof (TP)

Token Sources
(CA, KDC, DS, OCSP, WS*,…)

Token
issue

User
AuthN

Claims
(groups)

Translator

Other claim
sources

Cert /
claim
cache
claim

NTToken

Logon
(in)

To other
hosts

From other
hosts

Access
Check

ACL
Resource

Logon
(out)

authorization

Transient
key store

User
Agent

Smart card
Keyboard

Biometrics
USB Token

(CredProv)

AppID

App
Logon

App
Manifest

TPM holds ⇒ statements we
know

the sources of ⇒
statements others say

consumes ⇒
statements to deduce
other things we know

Figure 5: Core authentication components (see section 3.1 for a walk-through)

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 25/47

3. The speaks-for engine consumes claims and tokens to deduce other things we may
need to know, such as what tokens to believe, nested group memberships, impersona-
tion, etc.

5.1 Trust root

All trust is local.

The trust root is a local store, protected from tampering, that holds things that a system (a
machine, a session, an application) knows to be true. Everything that a system knows
about authentication is based on facts held in its trust root. The trust root needs to be tam-
per-resistant because attackers who can modify it can assign themselves all the power of
any principal allowed on the system.

The trust root is a set of claims (speaks-for facts) that say what keys (or other identifiers)
are trusted and what identifiers (names, SIDs) they can speak for. Typical trust root en-
tries are:

KD ⇒ SID/D key KD speaks for domain identifier D
KMicrosoft ⇒ microsoft.com key KMicrosoft speaks for the name microsoft.com
KVerisign ⇒ DNS/* the key KVerisign speaks for any DNS name
KDR ⇒ SID/* key KDR speaks for all domain identifiers

Because all trust is local, the trust root is local, and it must be set up manually. It must
also be protected, like any other local store whose integrity is important. Because manual
setup is expensive and error-prone, a trust root usually delegates a lot of authority to
some third party such as a domain controller or certificate authority. The third claim ex-
ample above, KVerisign ⇒ DNS/*, is such a delegation. It says that Verisign’s key is trusted
for any DNS name. Another example of such a delegation is the first one above,
KD ⇒ SID/D, which delegates authority over the domain identifier D to the key KD.

All trust is partial.

For convenience people tend to delegate a great deal of authority in the trust root. For ex-
ample:
• A domain-joined machine trusts its domain controller for any SID.
• Most trust root entries for X.509 certificate authorities trust the authority for any DNS

name.
• Today Microsoft Update is trusted by default to change entries in a Windows X.509

trust root.

This is not necessary, however. In a speaks-for claim, a delegation can be as specific as
desired. Existing encodings of claims are not completely general, but for example, name
constraints in a X.509 certificate can either allow or forbid any set of subtrees of the DNS
or email namespace.

A very convenient way of limiting the authority of the delegation in the trust root is the
rule that “most specific wins”. According to this rule, a trust root with the two entries

KVerisign ⇒ DNS/*; KMS ⇒ microsoft.com

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 26/47

means that KVerisign speaks for every DNS name except those that start with
microsoft.com. It may also be desirable to find out what key KVerisign says speaks for
microsoft.com, and notify an administrator if that key is different from KMS.

5.1.1 Agreeing on conventionally global identifiers

As we saw in section 4.5, we would like to use names such as microsoft.com as global
identifiers. Since this name doesn’t start with a key and therefore is not fully qualified,
however, and since all trust is local, this can only be done by convention. There is noth-
ing except convention to stop two different trust roots from trusting two different keys to
speak for microsoft.com, or from delegating authority over *.com to two different third
parties that have different ideas about what PKI speaks for microsoft.com.

Our goal is that “normal” trust roots should agree on conventionally global identifiers
(SIDs and DNS names). We can’t force them to agree, but we can encourage them to
consult friends, neighbors and recognized authorities, and to compare their contents and
notify administrators of any disagreements.

As long as trust roots delegate authority to the same third parties they will agree. If they
delegate to two different third parties that agree, the trust roots will also agree. So it is
desirable to systematically detect and report cases where recognized authorities disagree.

5.1.2 Replacing keys

The cryptographic mechanisms used in distributed authentication merely take the place,
in the digital world, of human authentication processes. These are not just human-scale
scenarios performed faster and more accurately, however; they are scenarios that are too
complex for unaided humans. Therefore it’s important that human intervention be needed
as seldom as possible.

It’s simple to roll over a cryptographic key automatically, which is fortunate since good
cryptographic hygiene demands that this be done at regular intervals. The owner of the
old key simply signs a token Kold says Knew ⇒ Kold. Both keys will be valid for some pe-
riod of time. The main use of these tokens is to persuade each authority that issued a cer-
tificate for Kold to issue an equivalent certificate for Knew.

When a cryptographic key is stolen or otherwise compromised, or the corresponding se-
cret key is lost, things are not so simple. If the key is compromised but not lost, often the
first step is to revoke it with a revocation certificate Kold says “Kold is no longer valid”; by
a slight extension of (S3), everyone believes this. See section 4.9.2.

The lost or compromised key must now be replaced with a new key. That replacement
process requires authentication. In the simplest case, there is an authority responsible for
asserting that the key speaks for a SID or name, for example, a trust root (the base case),
Verisign or a domain ID service. This authority must have a suitable ceremony for re-
placing the key. Here are five examples of such a ceremony:
• You sign a replacement request with a backup key.
• You visit the bank in person.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 27/47

• You give your mother’s maiden name.
• You call up your associates in a P2P system on the phone and tell them to change

their trust roots.
• Microsoft takes out full page ads in every major newspaper announcing that the Mi-

crosoft Update key has been compromised and explaining what you should do to up-
date the trust root of your Windows systems.

5.2 Token sources

Recall that a token is a signed claim (speaks-for statement): issuer says P ⇒ Q. In to-
day’s Windows, the sources of tokens are highly specialized to particular protocols. For
example, a domain controller provides Kerberos tokens, and the SSL protocols obtain
server and client certificates. Any entity that obeys a suitable protocol (like the STS pro-
tocol for Web Services) can be a source of tokens.

The same host may get tokens from many sources, and any kind of token source can be
local, remote, or both. In addition to coming from domain controllers, protocols such as
SSL and IPSec, and Web Services Security Token Services, tokens can come from public
key certificate authorities, from peer machines, from searches over web pages or online
databases that contain tokens, from Personal Trusted Devices such as smart cards or
(trusted) cellphones, and from many other places. In corporate scenarios most if not all
tokens will probably come from the corporate authentication authority, but in P2P scenar-
ios they will often come from peer machines as well as from services such as Live. This
means that a standard Windows machine needs to be a token source.

The simplest kind of token to manage is signed by a key, and therefore can be stored
anywhere since its security depends only on the signature and not on where it is stored. If
the token is signed by a public key, anyone can verify it. However, a token can also be
signed by a symmetric key, and in this case it usually must come from a trusted online
source that shares the symmetric key with the recipient of the token.

5.3 Speaks-for engine

The job of the speaks-for engine is to derive conclusions about what principals are
trusted, starting from claims and adding information derived from tokens. The starting
claims are:
• The ones in the trust root.
• If you are checking access to a resource that has an ACL, the claims in the ACL. Re-

call that we view an ACL entry as a claim of the form SID ⇒permissions resource.

Today this reasoning is done in a variety of different places. For example, in Windows:

• Logon, both interactive and network, derives the groups and privileges that a user
speaks for; this is called group expansion. Part of this work is done in the host, part in
the domain controller.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 28/47

• X.509 certificate chain validation, which is used to authenticate SSL connections, for
example, derives the name that a public key speaks for. In Windows it also does
group expansion and optionally maps a certified name to a local account.

• AccessCheck uses an NT token, which asserts that a thread speaks for every SID in a
set, and an access control list, which asserts that every SID in a set speaks for a re-
source, to check that a thread making a request has the necessary access (that is,
speaks for) the resource.

• A Web Services STS takes authentication tokens supplied as input and a query, and
produces new tokens that match the query. It can do this in any way it likes, but in
many cases it has a database that encodes a set of claims (for example, associating
keys with users or users with attributes), and the tokens it produces are just the ones
that the speaks-for engine would produce from those claims and the inputs.

Although some or all of these specialized reasoning engines may survive for reasons of
performance or expediency, or because they implement specialized restrictions, every
conclusion about trust should be derived from a set of input claims and tokens using a
few simple rules.

The implementation of this tenet is a speaks-for engine, a piece of code that takes a set of
claims and tokens as input and produces all of the claims that follow from this input.
More practically, it produces all of the claims that match some query. In general, the
query defines a set of claims. For example, for an access to a resource, the query is “Does
this request speak for this resource about this operation”. For group expansion, the query
is “What are all the groups that this principal speaks for”.

The speaks-for engine produces one or more chains of trust demonstrating that principal
P speaks for resource T about access R. For example, in section 3 we saw how to demon-
strate that KSSL ⇒r/w Spectra by deriving the chain of trust

KSSL ⇒ Klogon ⇒ KAlice ⇒ Alice@Intel ⇒ Atom@Microsoft ⇒r/w Spectra
Each link in this chain corresponds to a claim, either already in the trust root or derived
from a token. For example, we derive KAlice ⇒ Alice@Intel.com from the token
KIntel says KAlice ⇒ Alice@Intel.com, using the claim KIntel ⇒ Intel.com. This fact
comes either from the trust root or from another token KVerisign says KIntel ⇒ Intel.com,
using the claim KVerisign ⇒ *.com. So the main chain of trust has auxiliary chains hanging
off it to justify the use of tokens. The entire structure forms a proof tree for the
conclusion KSSL ⇒r/w Spectra.

When P is a set of SIDs in an NT token, R is a permission expressed in the bit mask form
used in Windows and Unix ACLs and T has an ACL, this is a very simple, very efficient
computational proof.

The full speaks-for calculus extends the flexibility and power of this statement. P can be
a principal other than SIDs. T can be the name of a resource or a named group of re-
sources. Rights R can be expressed as names and as named groups of rights. A principal
P can delegate to Q its right R to T by the token P says Q ⇒R T (if P has the right to do
this).

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 29/47

For example, what can be delegated in an X.509 certificate chain is the permission to
speak for some portion of the namespace for which the chain’s root key can speak. This
does not include the ability to define groups, for example, because group definition is
outside the X.509 certificate scope. For that, one can use another encoding of a speaks-
for statement (perhaps in SAML, XACML or ISO REL). From the speaks-for engine de-
duction we can establish that some key (bound to an ID by X.509) speaks for some group
(defined by the other encoding—e.g., SAML), and establish that without having to teach
SAML to understand X.509 or teach X.509 to understand SAML.

5.4 Additional components

Figure 6 shows all the components of authentication. They are (starting in the lower left
corner of the figure and roughly tracing the arrows in the figure, which follow the walk-
through in section 3.13.1; * marks components already discussed):

1. User Logon Agent: a module that is responsible for gathering authentication in-
formation from human users.

2. Logon (in): a module that takes logon requests (currently user, network, batch or
service), interacts with token sources, and collects the principals that the user
speaks for.

3. Token Sources (User Authentication): a source, whether local or remote, such
as the Kerberos KDC or an STS, that verifies a logon and provides SIDs or other
identifiers to represent the logged-on principal.

4. *Token Sources (Claims (groups), Token issue): a source of group and attribute
information. This information may either be obtained over a secure channel, or is-
sued as a token.

5. Translator: a dispatcher and a collection of components, each of which verifies
the signature on a token and translates that token into an internal claim.

6. App Manifest: a data structure that completely specifies an application (listing
the modules of the application and the hash of each module).

Host

Speaks-for
engine

Trust root
store

Token Sources
(CA, KDC, DS, OCSP, WS*,…)

Token
issue

User
AuthN

Claims
(groups)

Translator

Other claim
sources

Cert /
claim
cache
claim

NTToken

Logon
(in)

To other
hosts

From other
hosts

Access
Check

ACL
Resource

Logon
(out)

authorization

Transient
key store

User
Agent

Smart card
Keyboard

Biometrics
USB Token

(CredProv)

AppID

App
Logon

App
Manifest

TPM

Confidential & TP
Tamper-Proof (TP)

1

2

3
4

5

6

8

7

9

10

11

12

13

14 15

Figure 6: Authentication: The full story

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 30/47

7. TPM: hardware support for strong verification of application manifests and of the
entire stack on which the application runs.

8. App Logon: code that compares an application being loaded into a process
against the manifest for that application and, when the two agree, assigns an ap-
propriate SID to that process.

9. *Speaks-for Engine: the module that derives claims according to the speaks-for
calculus—of primary use in authorization but used in authentication to deduce
group memberships.

10. NT Token: the existing Windows NT Token—of which there is at least one per
session—containing a collection of SIDs identifying the system on which the
logon initiated, the user, groups to which this process belongs and the application
ID of the process application. In other applications of the architecture this will be
a general security context, that is, a principal. Authentication verifies that the user
and app speak for this principal.

11. Other claim sources: token or claim sources that do not fit the model of Token
Sources—tokens or claims can come from anywhere.

12. Cert / claim cache: a local cache of certificates or claims (in general, tokens)—in
either external or internal form.

13. *Trust root: a protected store of speaks-for statements representing things that
this session knows.

14. Transient key store: a protected and confidential store of cryptographic keys
(symmetric keys and private keys) by which this session authenticates (proves) it-
self to remote entities.

15. Logon (out): the module with which this session authenticates (proves) itself to a
remote entity, including both protocols for authentication with negotiation and the
user interface that allows a human operator to decide what information to release
to the remote system (the CardSpace Identity Selector).

5.5 User agent and logon

User logon (often called interactive logon) does two things:
• It authenticates the user to the host, giving the host evidence that the user is typing on

the keyboard and viewing the screen.
• It optionally also makes it possible for the host to convince others that it is acting on

behalf of the user without any more user interaction. This process of convincing oth-
ers is called network logon.

There are many subtleties in user authentication that are beyond the scope of this paper.
Here are the steps of user authentication in its most straightforward form:

1. The user agent in the host collects some evidence that it interacted with the user,
called credentials: a nonce signed by a key or password, biometric samples (the out-
put of a biometric reader: measurements of fingerprints, irises, or whatever), a one
time password, etc.. Modularity here is for the data collection, which is likely to de-
pend on the type of evidence, and often on the particular hardware device that pro-
vides it.

2. It passes this evidence to logon along with the user name.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 31/47

3. Logon sends the evidence, together with a temporary logon session key Klogon, over a
secure channel to a user authentication service that understands this kind of evidence;
the service may be local, like the Windows SAM (Security Accounts Manager), or
may be remote (as in the figure) like a domain controller. Modularity here is for the
protocol used to communicate with the service.14

4. The authentication service evaluates the evidence, and if it is convinced it returns
“yes, this evidence speaks for this user name”.

5. In addition, to support single sign-on it returns tokens author-
ity says Klogon ⇒ user name and authority says Klogon ⇒ user SID. It may also return
additional information such as Klogon ⇒ authentication method or
Klogon ⇒ logon location.

Single sign-on works by translating the user’s interactive authentication to cryptographic
authentication. Logon generates a cryptographic key pair for the user’s logon session.
The new key Klogon is certified by a more permanent key (on the user’s smartcard, in the
computer’s hardware security module, sealed by a password, from a domain controller, or
whatever): Kpermanent says Klogon ⇒ user. It is then used for that one logon session. Since
today there are protocols that insist on secret key such as Kerberos, and others that use
public key such as SSL, logon should certify one of each.

5.6 Device authentication

Device authentication is more subtle than you think. As much as possible, computers and
other digital devices should authenticate to each other cryptographically with tokens of
the form K says ... As we have seen, for these to be useful the key K must speak for some
meaningful name. This section explains how such names get established, using the exam-
ple of very simple devices such as a light switch or a thermostat. More powerful devices
with better I/O, such as PCs, can use the same ideas, but they can be much more chatty.

It is a fundamental fact of cryptographic security that keys must be established initially
by some out of band mechanism. There are several ways to do this, but two of them seem
practical and are unencumbered by intellectual property restrictions: a pre-assigned
meaningful name and a key ferry. This section describes both of them.

You might think that this is a lot of bother over nothing, but consider that lots of wireless
microphones and even cameras are likely to be installed in bedrooms in apartments.
Some neighbors will certainly be strongly motivated to eavesdrop on these devices. Be-

14 You might think that one protocol could work for any kind of authentication factor. There are two rea-
sons for using different protocols. One is purely historical: existing services used particular protocols. The
other is that some protocols, such as Kerberos, depend on the fact that the workstation has a key that it can
use to communicate secrets to the service. In Kerberos, for example, the user’s password is the source for
such a key. Biometric samples don’t work. Other protocols, such as SSL, create a secure channel to the
service and authenticate it starting with nothing but a trust root entry for a generic authority such as
Verisign. As far as I know, SSL secure channel setup together with conventions for finding the service to
use, encapsulating the evidence, and allowing for interaction between the user and the service would be a
universal protocol.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 32/47

cause the wireless channel is a broadcast channel, the neighbor can mount a “man-in-the-
middle” attack that intercepts the messages passing between the device and your com-
puter, and pretends to be the device to the computer and the computer to the device.

5.6.1 Device authentication by name

For device authentication, the simplest such mechanism is for the manufacturer to install
a key K-1 in the device, give it a name dn, and provide a certificate manufac-
turer says K ⇒ dn, for example, Honeywell says K ⇒ thermo524XN12.Honeywell.com.
In this example the out of band channel is a piece of paper with the name thermo524XN12
printed on it that comes in the box with the thermostat. After installing the thermostat in
the living room, the user goes to a computer, asks it to look around for a new device,
reads the name off the screen, compares it with the name on the paper, and assigns the
thermostat a meaningful name such as LivingRoomThermostat. Of course a hash of the
device’s key would do instead of a name, but it may be less meaningful to the user (not
that 524XN12 is very meaningful). This protocol only authenticates the device to the com-
puter, not the other way around, but now the computer can “capture” the device by send-
ing it a “only listen to this key” message.

In many important cases this assignment needs to be done only once, even though many
different people and computers will interact with the device. For example, a networked
projector installed in Microsoft conference room 27/1145 might be given the name
projector.27-1145.microsoft.com by the IT department that installs it. When you
walk into the conference room and ask your laptop to look around for available projec-
tors, seeing one that can authenticate with that name should be good enough security for
almost anyone. Because this name is very meaningful, authenticating to it is just like au-
thenticating to any other service such as a remote file system.

In many other important cases this assignment only needs to be done very rarely because
the device belongs to one computer, which is the device’s exclusive user until the com-
puter is replaced. This is typical for an I/O device such as a scanner or keyboard.

5.6.2 Device authentication by key ferry

There are three disadvantages to pre-assigned names that might make you want to use a
different scheme:
• You might lose the piece of paper, in which case the device becomes useless.
• You might not trust the manufacturer to assign the name correctly and uniquely.
• You might not trust the user to compare the displayed name with the printed one cor-

rectly (or at all, since users like to just click OK)

The alternative to a pre-assigned name as an out of band channel is some sort of physical
contact. What makes this problem different from peer-to-peer user authentication is that
the device may have very little I/O, and does not have an owner that you can talk to.
There are various ways to solve this problem, but the simplest one that doesn’t assume a
cable or other direct physical connection is a “key ferry”. This is a special gadget that can
communicate with both host and device using channels that are physically secure. This
communication can be quite minimal: upload a key from host into ferry at one end;

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 33/47

download the key out of ferry into device at the other end. The simplest ferry would plug
into USB on the host and the device.

5.7 App ID

This section explains how to authenticate applications. While it’s also important to un-
derstand how apps are isolated so that it makes sense to hold an app responsible for its
requests, this out of scope here.

The basic idea is that apps are principals just like users:
• An app is registered in a domain, with an AppSID and a name. This domain is typi-

cally the publisher’s domain.
• An app is authenticated by the hash of a binary image, just as a user is authenticated

by a key.
• When a host makes a new execution environment (process, app domain, etc.) and

loads a binary image into it, the new environment gets the hash of the image (and
everything that the hash speaks for) as its ID.

• User, machine, and app identifiers can all appear on ACLs or as group members.

Also like users, apps can be put into groups, but this is even more important for apps than
it is for users because groups are the tool for managing multiple versions of apps. Like
any group membership, the fact that an app is a member of the group can be recorded in
AD, or it can be represented in a certificate that is digitally signed by an appropriate au-
thority. Like groups containing users, groups containing apps can nest to make manage-
ment easier. For example, the GoodApps group might have members GoodOffice,
GoodAcrobat, etc.

AppSIDs are probably assigned from the same space as user, group, and machine SIDs,
though frequently the AppSIDs are from a “foreign” domain, that of the software pub-
lisher (e.g. Microsoft). The assignment is encoded in a signed certificate (usually in the
manifest) that associates the binary image with an AppSID and a name in the publisher’s
domain.

AppSIDs can also be assigned locally by a domain or machine administrator. This must
always be done for locally generated applications, and can be done for third party appli-
cations (where the AppSID is assigned as part of some approval process). The application
is identified by a hash just as in the published case. The local administrator can sign a
manifest just like the publisher, or can define a group locally or in AD.

ACLs list the users, machines, and applications that are allowed to access the resource.
Sensitive resources might only be accessible through applications in the GoodApps group.
Specialized resources might only be accessible to specific applications (plus things like
backup and restore utilities).

5.7.1 AppSIDs and versions

A certificate for an app is a signed statement that says something like “hash 743829 =>
MS/Word12.3.1, s-msft-word12.3.1. Applications contain many files; a manifest is a

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 34/47

data structure that defines the entire contents of the application. The manifest includes
hashes of all the component files, and it’s the hash of the manifest that defines the app.

The manifest can reference system components that are not distributed with the app (e.g.
system .dlls). Such a component is considered to be part the platform on which the app is
running, not part of the app; see section 5.7.2, and it is referred to by a name, which need
not change if the component is patched. There are many complications having to do with
side-by-side execution that are not relevant here; it’s the platform’s job to ensure that the
name gets bound appropriately for both security and compatibility. In this respect an app
treats a platform component just like a kernel call.

The way this is normally encoded is that the publisher includes the principals that the app
speaks for (such as MS/Word12.3.1, s-msft-word12.3.1) in the manifest, and then sim-
ply signs the hash of the manifest. This is just a useful coding trick. Of course, the signer
of the manifest (or other app certificate) must be authoritative for the domain of the SID
and for the name, just as for any other speaks-for statement.

If the system trusts its file store, it can verify the manifest at install time and cache it.
This also covers cases where installation includes updates to registry settings and such.

There may be good reasons not to change AppSIDs with each small version change such
as a patch. Changing the AppSID requires updating all policy that references it. Some
admins will want to do so; others will not. An admin can avoid having to update lots of
policy by adding a level of indirection, defining a group and putting the AppSID for each
new version into the group; this gives the admin complete control. Publishers can make
the admin’s life easier by including multiple AppSIDs in a manifest. For example, the
manifest for a version of Word might say that it is Word, Word12, and Word12SP2 as well
as Word12.3.1. In SP3, the first two SIDs remain the same. Then Contoso ITG can say
MS/Word12, MS/Word11.7.3 => Contoso/GoodWord. Since all trust is local, the structure
of the name space for an app is in the end up to the administrator of the machine that runs
it. The job of a publisher like Microsoft is to provide some versions and names that are
useful to lots of customers, not to meet every conceivable need.

5.7.2 The AppID stack

The only assertions an app can make directly are ones encoded in its manifest. When the
app is running it depends on its host environment to provide the isolation that is needed
for an app identity to make any sense. Typically the host environment is itself hosted, so
the entire app identity is actually a stack:

StockChart
IE 7.0.1
Vista + patch44325
Viridian hypervisor + patch7654
MachineSID

At the bottom, the machine gets its identity from a key it holds. Ideally this key is pro-
tected by the TPM.

We could describe the identity of the app by hashing together the hashes of all the things
below it on the stack, just as we hashed all the files of the app together in the manifest.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 35/47

This is probably not a good idea, however, because if there are ten versions of each level
in the stack there will be 100,000 different versions—hard to manage. It’s better to man-
age each level separately.

Access control of course sees the whole stack. Taking account of plausible group mem-
berships, an ACL might say GoodApp on GoodOS on GoodMachine gets access, where
“on” here is an informal operator that makes a single principal out of an app running on a
host. This makes it easy for the administrator to decide independently which apps, which
OS’s, and which machines are good. Going further, the administrator might define
GoodApp on GoodOS on GoodMachine ⇒ GoodStuff and just put GoodStuff on ACLs.

Note that the policy for what stacks are acceptable might come from the app rather than
user or administrator. The main example of this is DRM, in which some remote service
that the app calls, such as the license server, demands some kind of evidence that it is
running on a suitably secure hardware and OS. The app’s manifest might even declare its
requirements, but of course an untrustworthy host could ignore them, so the license
server has to check the evidence itself.15

When a running program loads some new code into itself (a dll, a macro, etc.), it has a
number of options about the appID of the resulting execution environment. It can:
1. Use the new code’s appID to decide not to load it at all.
2. Trust the code and keep the same AppID the host had before. This is typically what

happens at an extensibility point, or in general when an app calls LoadLibrary.
3. Downgrade its own AppID to reflect less trust in the new code.
4. Sandbox the new code and add another level to the stack. Of course the credibility of

the resulting AppID is only as good as the isolation of the sandbox.
ACL entries on the operation of loading code can express this choice. Note that when an
app calls CreateProcess, for example, it is not loading new code into itself, but asking
its host OS to create a sibling execution environment, and it’s the host’s job to assign the
appID for the new process, which might have different, even greater rights that the app
that called CreateProcess.

5.8 Compound principals

Simple principals that appear in access control policy are usually human beings, devices
or applications. In many cases, two or three of these will actually provide proof (authenti-
cate a request). Today only one principal typically provides proof—either a human being
or a computer system. Multiple proofs of origin can be used to strengthen security. One
important example of this is combining a user identifier and an appID. There are two
main ways this can be done:

1. Protected subsystem: access is granted only to the combination of two princi-
pals, not to either of them alone—for example, opening of a file for backup can be

15 The app itself could also demand properties from its host, but since the host has complete control over
the app, this demand could not be enforced very securely. Ideally the evidence for the license server is a
chain of certificates rooted in the hardware TPM’s key.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 36/47

allowed to a registered backup operator, but only when that operator is also run-
ning a registered backup application.

2. Restricted Process: the desired access is granted only if each of the two or more
principals qualify for that access individually16—for example, an applet
downloaded from a web page at xyz.com might be allowed to access things on
xyz.com but not on the user’s local machine, and the user running that applet
might have access only to objects that the user and the applet both can access.

These two ways of combining principals correspond to and and or. The principal
billg and HeadTrax is billg running the HeadTrax protected subsystem; Windows
doesn’t currently have a way to add such an appID to a security context. The principal
billg or MyDoom is billg running the MyDoom virus; in Windows today this is a billg
process with a MyDoom restricted token.

A Windows security context (or NT token) is a set of SIDs that defines a principal: the
and of all those SIDs. This principal can exercise all the power that any of those SIDs
can exercise. Thus when a security context makes a request, the interpretation is that each
of the SIDs independently makes that request; if any of them is on the resource’s ACL,
the request is granted. So security context says request is SID1 says request and
SID2 says request ..., which is another way of saying that security context = SID1 and
SID2 and

There are other uses for compound principals made with and. Financial institutions often
demand what they call dual control: two principals have to make a request in order for it
to get access to an object such as a bank account. In speaks-for terms, this is P1 and
P2 ⇒ object. The method for making long-term keys fault-tolerant described in section
5.1.2 is another example of this, which generalized and to k-of-n.

There are also other uses for compound principals made with or. In fact, an ACL is such
a principal. It says that (ACE1 or ... or ACEn) ⇒ object.

5.9 Capabilities

A capability for an object is a claim that some principal speaks for the object
immediately, without any indirection. A familiar example in operating systems is a file
descriptor or file handle for an open file. When a process opens the file, the OS checks
that it speaks for some principal on the file’s ACL, and then creates a handle for the open
file. The handle encodes the claim that the process speaks directly for reads and writes of
the file, without any further checking; this claim is encoded in the OS data structure for
the handle. A capability is thus a summary of a trust chain. Usually it has a quite limited
period of validity, in order to avoid the need to revoke it if the trust chain becomes
invalid.

16 This kind of access is provided today in Windows by the restricted token, in which one has effectively
two NTtokens, one for the user’s principals and one for a service ID. AccessCheck is called with each of
those tokens and the Boolean results of those calls are then anded.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 37/47

For a capability to work without a common host such as an OS, it must be in a token of
the form object says P ⇒ object that the object issues after evaluating a trust chain. Later
P can make a request along with this token, and the object will grant access without
having to examine the whole chain. Such a token doesn’t have to be secret, since it only
grants authority to P.

6 Authorization

The main problem with authorization is management. Products usually have enough raw
functionality to express the customer’s intent, but there is so much detail to master that
ordinary mortals are overwhelmed. The administrator (or user) needs a way to build a
model of the system that drastically reduces the number of items they need to configure.
The model needs to not only handle enterprise level security, but also “scale down” to
small businesses and homes where there is no professional IT administrator, to peer-to-
peer systems, and to mobile platforms and small devices.

Authorization also needs to be feasible to implement. It needs to scale up to the Internet,
avoiding algorithms and data structures that only work for intranet-sized systems or that
depend on having a single management authority for the whole system. Everything that
works locally should work on the Internet. Authorization needs to support least privilege,
by taking account of application as well as user identity, so that trusted apps can get more
privileges and untrusted ones fewer; this must work even though apps come in many ver-
sions and are extensible. And it needs to be efficient: fast in the common case and rea-
sonable in complex cases, even in a large system; it needs to identify problem cases so
that people setting policy can avoid them.

6.1 Overview

The underlying semantics of authorization is the notion of “speaks-for”: there is a chain
of principals, starting with the principal making a request (typically a channel on which
the request is transmitted or an encryption key that signs the request) and ending with the
resource. For example:

Ksession => KPaul => Paul@microsoft.com => Zeno@microsoft.com =>
http://winsecurity/sites/strategy

We call the part of this chain closer to the user “authentication”, and the part closer to the
resource “authorization”. This division is somewhat arbitrary, since there is no sharp di-
viding line.

In order to make authorization more manageable, you can build a model that collects re-
sources into scopes and defines roles, each with a set of predefined permissions to exe-
cute operations on the resources in the scope. In addition, you can build a template for a
scope and its roles, and then instantiate the template multiple times for different collec-
tions of resources that have the same pattern of authorization policy. Figure 7 is an over-
view that shows the main steps in specifying and checking authorization.

This model-based access control (MBAC) organizes resources into scopes and principals
making requests into roles.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 38/47

1. The developer or IT architect defines templates for scopes and roles that can be used
repeatedly in similar situations.

2. The administrator or owner makes instances of these templates, groups resources into
scopes, and assigns principals to roles.

The remainder of the picture shows how to implement the policy that the model defines.

3. The system compiles or synchronizes the model’s policy into groups, claims, and
ACLs on resources used to do access checks efficiently. When a service starts it ac-
quires its own identity and resource groups, along with those of its enclosing execu-
tion environments (OS, device, etc.)

4. The user logs in to a service and acquires groups and claims from the directory or
STS to add to the identifiers she already has. The system combines these with re-
source manager claims and service trust policy to obtain a set of principals that the
service thinks the user speaks for.

5. Finally, the set of principals is checked against the ACL for the resource the user is
trying to access.

The templates and instances are part of MBAC. The acquisition and access check are part
of implementation. The model and implementation are connected when the policy is syn-
chronized.

6.2 Model-Based Access Control (MBAC)

The idea of MBAC is to make authorization policy accessible to ordinary mortals; think
of it as Excel for authorization. The main customer pain point is that security manage-
ment is too hard. There are thousands of security knobs (individual ACLs, privileges, re-
source names, etc.) on each computer, and in a large installation there are thousands of
computers. No human can keep that number of separate objects in mind. The model con-

5. Check Access

4. Acquire Groups /
Attributes

3. Synchronize Policy

2. Build Instances

1. Define Templates

Policy
Context

Role
Templates

Scope
Templates

Roles Scopes

Principal

Groups /
AttributesToken

Source

ACL
Security
Context AccessCheck

Login

Resource ACLs/
Groups/Attributes

Developer /
IT Architect

Admin

Service
M

od
el

Im
pl

em
en

ta
tio

n

Repository

Figure 7: Authorization architecture overview.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 39/47

ceals the complexity of the underlying implementation from users and administrators
(though they can dive down into individual groups and ACLs if they really need to).

MBAC shines when complex policies apply to multiple objects. It reduces repetitive
manual effort by the administrator, and makes it easy to find out what the policy is after a
long history of incremental changes. Our examples are necessarily contrived, since some-
thing simple enough to put in this paper is simple enough to do manually. So use your
imagination to see how the reduction in administrative work is actually substantial for
real world scenarios.

Figure 8 shows the administrator’s view of a model for part of a system—two project re-
positories that are scopes for resources, one for the emerald project and one for the
amber project. Each project has two roles: one for PMs and one for devs. When deploy-
ing a project repository you create a group for each role, containing the users who are in
that role for that project. Thus a scope is a collection of resources, and a role is a collec-
tion of principals.

This is a simple model—the admin just puts a user, such a Sondra, into the correct group,
and all the permissions and memberships are created as a consequence. The actual situa-
tion might be messier, as Figure 9 shows. Administering this manually would be quite
difficult, but with MBAC the administrator doesn’t have to worry about the mess when
configuring authorization policy.

Someone has to worry, of course, and that person is the designer of the template, typi-
cally a developer or an IT architect. Figure 10 shows the SharePoint template and the
emerald.specs scope that is an instance of it. Such a leaf scope corresponds to an in-
stance of a service along with (a subset of) its resources. The developer of the service, in
addition to coding the service, creates a scope template that defines the roles for the ser-
vice. A role determines the permissions for a user in that role. Each role is tailored to en-
able a user to perform some task—like being a teller, or an HR benefits clerk, or in this
example, a contributor or viewer of documents on a SharePoint server. A viewer can read
documents; a contributor can edit documents, and also is a viewer (this is an example of
role nesting). These predefined roles determine the combination of permissions that get
tested, to make sure that they correctly enable the desired tasks. Thus the developer or IT

sondra

project

dev pm

emerald

project

dev pm

amber
Scopes

Roles

Users Scope
Part

Scope

PartOperation
(Permission)

Service

User

Model Instance Physical

Role Group Principal

Figure 8: The admin sees two scopes, emerald and amber; both are instances of a
project repository template. A project has two roles, dev and pm. Sondra is a dev for

emerald and a pm for amber.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 40/47

architect is responsible for all the details of authorization policy within the scope. From
the point of view of the administrator, all the ACLs are immutable.

The administrator instantiates the scope template to create a scope. The same template
can be used to create many scopes. Figure 10 shows one of these, in which the contribu-
tor and viewer roles have the same permissions for the SharePoint resource in the scope
that the corresponding role templates had in the template. The administrator has put
Sondra into the viewer role for the emerald.specs scope. Each scope precisely mirrors
the scope template and has the resources, roles, and permissions defined in the template,
just as each instance of a class in an object oriented programming language precisely mir-
rors the class definition.

An IT architect can create higher level templates. In Figure 11 SharePoint is used to cre-
ate the project repository we described earlier. The project has two subparts, called
specs and source. The PM role is assigned to the contributor role in the specs server,
and the viewer role in the source server. A part’s roles constitute the interface that it
exports to containing scopes. The smallest parts are actual services such as SharePoint;
composite parts such as project contain subparts. The architect can nest these as deeply
as necessary. We expect that there will be a market for templates that are useful to more
than one organization.

project

emerald

especsmeditor especsread

edit

pm

sharepoint

especs

read

esrcadd esrcview

readedit

sharepoint

esource

dev

project

amber

spca-editors spca-review

edit

pm

sharepoint

spec-amber

read

srca-add srca-vfy

readedit

sharepoint

src-amber

dev

sondra

Figure 9: Manual administration gets messy

Template

contributor reader

readedit

sharepoint

Instance

sondra

Scopes

Roles

Operations

contributor reader

readedit

sharepoint

emerald.specs

Users

Scope
Part

Scope

PartOperation
(Permission)

Service

User

Model Instance Physical

Role Group Principal

Figure 10: A template and an instance emerald.specs for Sharepoint; Sondra is a
viewer.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 41/47

Because the IT architect defines this for all project repositories, all the admin has to do is
instantiate the model; she no longer needs to understand all of the details. Two instances
of the project template called emerald and amber would get us back to Figure 8.

6.3 The model and the real world

This section explains how the model is connected to the code and data in the real world
that it is modeling. Although usually we ignore the distinction between the model and the
real world, in this section we need to be clear about it, so we call the real world thing that
corresponds to an object in the model its entity.

The goal is to keep the model and the real world synchronized, so that changes in entities
(and especially creation of new entities) are reflected in the model, and the access control
policy set by the model is reflected in its entities. There are three basic issues in synchro-
nization:
1. Naming: An object in the model and its entity in the real world are not necessarily

named in the same way.
2. Delay: An object and its entity are supposed to be in sync, but there may be some de-

lay.
3. Aggregation: When entities change, how are the changes aggregated for notifying the

model.

6.3.1 Naming: Paths and handles

Objects are named by paths: sequences of field names and queries (for selecting an object
from a set-valued field). Entities are named by handles, which are opaque from the view-
point of the model. The handle must have enough information to enable secure communi-
cation with the root entity.

Because paths and handles are different in general, there has to be a way to map between
them. In particular, if the model wants to refer to an object’s entity, it needs the entity’s
handle. Similarly, if an entity wants to refer to its object, it needs the object’s path. We

contributor reader

sharepoint

contributor reader

sharepoint

specs source
pm dev

project
Scope

Roles

Sub-scopes

Sub-roles Scope
Part

Scope

PartOperation
(Permission)

Service

User

Model Instance Physical

Role Group Principal

Figure 11: Build bigger parts from smaller ones. The specs and source scope templates
are SharePoint scope templates that are parts of the outer project scope template, and
the inner contributor and viewer role templates are populated from the outer pm and

dev ones.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 42/47

take the view that MBAC should work without any changes to entities, as long as they
have some sort of interface that is adequate for implementing the get, set, and enum
methods described below. Thus the model needs to keep track of each object’s handle,
which it can do by storing it as part of the object.

In some cases a path may itself be a suitable handle. For example, the model for a file
system has objects that correspond to directories and files with isomorphic names. Thus a
directory object do has a set-valued contents field whose elements are the files and di-
rectories in do, each with a name field. So a file with pathname a\b corresponds to the
object whose path is contents?{.name=”a”}.contents?{.name=”b”}. As this example
illustrates, a path may include queries, and hence to use a path as a handle the entities
have to be able to understand a query well enough to follow a path. The simplest kind of
query has the form [.name = “foo”], where name is a primary key, and this shouldn’t
be too hard for an entity.

6.3.2 The model is in charge

The model can read, and perhaps change, the abstract fields of an entity that correspond
to fields of the model by invoking the get and set methods of a corresponding object:
obj.get(f) allows the model to read the value of field f in the entity, and obj.set(f,
value) allows the model to set the access control policy of the entity. If f is an object,
get returns a handle to that object; see below. If a field is a large set, these methods are
not suitable, so set fields have a different method: obj.enum(f, i) returns a handle to
the ith element of the set, or nil if it has fewer elements (along with a generation num-
ber that increases every time something happens to change the object numbering). To
change the membership of the set you use operations on the containing scope, such as
create. Using these APIs a model can fully explore its entity (as long as the entity isn’t
changing too fast), learn the handles of all the entities, fill in all the fields of the model,
and tell the entity the values of any fields that are determined by the model (normally
roles).

In order to use MBAC, an entity must implement these APIs. It may also need to imple-
ment query and assign APIs to deal efficiently with large sets of objects. To reflect
changes to the entity in the model more efficiently than by polling we may also want a
change log. Entries in this log are (h, f) pairs, meaning that field f of entity h has
changed.

6.3.3 Notification and aggregation

With these APIs the only way for the model to find out about changes in the entities is to
do a crawl, that is, read out the entire state again with get and enum. This seem impracti-
cal for models of any size, so it’s necessary to have some kind of change notification. No-
tification has three issues:
1. It has to be extremely reliable, since if any changes are missed the model’s state will

diverge from reality, and the only way to get it back in sync is do to a crawl.
2. The entity’s name space is handles, so it can only report changes in terms of handles.

These have to be mapped to paths.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 43/47

3. It might be desirable to aggregate all the notifications below some point in the tree.

6.4 Scale Up

Current OS authorization mechanisms can scale quite well to enterprises (one Windows
AD installation exists that holds 6 million users, for example). They need some work,
however, if they are to scale to the Internet, both because things can get much bigger on
the Internet, and because there’s no single management authority that is universally
trusted.

There are some basic features of access control that are important for scaling up:

1. All authentication and authorization statements (speaks-for statements) can be repre-
sented in three different ways:

• They can be stored locally (for example, in the trust root).
• They can be held in a database on the network (for example, active directory) and de-

livered over a secure authenticated connection.
• They can be expressed in a digitally signed certificate (for example, X.509 or SAML

tokens), which can be stored and forwarded among the various parties in the transac-
tion.

The first and third ways permit offline operation and offload of online services (caching).
The third way means that claims can be transmitted via untrusted parties.

2. All principal identifiers that are passed from one system to another are globally
unique. This means that there’s no ambiguity about the meaning of an identifier.

3. Any system or domain can make use of statements from any other domain. It is trust
policy, rather than domain boundaries, that distinguishes friend from foe.

4. There is an unavoidable tradeoff among freshness, availability, and performance. If
you want the latest information about whether a key is revoked, for example, you
cannot proceed if the source of that information is unavailable, and you must pay for
the communication to get it. This tradeoff should be controlled by policy, rather than
being baked in. For example, here are two possible policies for key revocation:
• Fail without a fresh OCSP for every access.
• If OCSP isn’t available, treat all cached statements as valid for some period.

Neither one is unconditionally better than the other; it’s a matter for administrators’
judgment to choose the appropriate one.

In addition to these general principles, there are two topics that require special attention
in scaling to the Internet:
• Trust in attribute claims made by other authorities.
• Handling groups, because both the number of groups that a principal belongs to and

the total size of a group can become extremely large.

6.4.1 Scale Up: Attribute Claims

An attribute differs from a group in two ways:

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 44/47

• It can have a value associated with it, for example, birthdate.
• There may not be a single authority responsible for its definition. For example, birth-

dates may be certified by any one of 50 state driver’s license issuing authorities.
For scaling up, only the second point is important. The first one is handled by conditions.

It is a system’s trust policy that handles attributes from other authorities. For example,
consider using a driver’s license from another state to verify date of birth at a bar in New
York. It’s convenient for states to agree on the string name of this property. Oasis.org is
a standards organization, and we will use oasis.org/birthdate as the standard name.

The first step is for the bar’s trust policy to say what the primary authority is for this
property:

KNY ⇒ oasis.org/birthdate

Then the primary authority says which other sources to trust:
KNY says KWA/oasis.org/birthdate ⇒ oasis.org/birthdate

This says that New York believes Washington about birth dates. If they have a broader
agreement, New York might believe Minnesota about all properties defined by oasis.

 KNY says KMN/oasis.org/* ⇒ oasis.org/*

Name translation can be done, too. Suppose Illinois doesn’t adopt the oasis name:
KNY says KIL/DOB ⇒ oasis.org/birthdate

6.4.2 Scale Up: Group Claims

Group membership is a scaling problem today, at least in large organizations. The reason
is that a user can be a member of lots of groups, and a group can have lots of members.
Today Windows manages this problem in two ways:
• By distinguishing client and resource groups (also called domain global and domain

local groups in Windows), and imposing restrictions on how they can be used.
• By allowing only administrators to define groups used for security.

Figure 12 illustrates the problem. Imagine that ACM creates a group of corporate sub-
scribers to its online digital library. There are 1000 corporate members, each with 10-
1,000,000 employees, for a total of millions of individual members. Furthermore, every
Microsoft employee may implicitly be a member of thousands of such groups, since Mi-

billg

FTE Redmond6

Microsoft FTE

ACM Corp Subs

CACM Access

Client
Groups

Resource
Groups

Figure 12: Corporate subscribers can access CACM online. The arrows are group mem-
bership.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 45/47

crosoft subscribes to lots of services. Thus a client may be in too many groups to list, and
a resource may define a group with too many members to list.

In addition, there may be a privacy problem: the client may not want to disclose all its
group memberships, and the server may not want to disclose all the groups that it’s using
for access control.

This is the group expansion, or path discovery, problem. The solution that Windows
adopts today, and that we generalize, is to distinguish two kinds of groups:
• Client groups (also called push groups), which the client is responsible for asserting

when it contacts the resource. An individual identifier is a special case of a client
group. Thus in Figure 12, the client groups are green: billg, FTE-Redmond6, and
MicrosoftFTE. A requestor’s client groups are thus known to all resources (subject to
privacy constraints), but there can only be a limited number of them.

• Resource groups (also called pull groups), which the resource is responsible for
keeping track of and expanding as far as client group members. In Figure 12 the re-
source groups are blue: ACMCorpSubs and CACMAccess. The resource thus knows all
the client groups that are members, but there can be only a limited number of them.

A client group can only have other client groups as members. This means that there can
be only one transition from green to blue in the figure. The client asserts all its client
group memberships, and the resource expands its resource groups to the first level of cli-
ent groups. Consequently, if there is any path from the client to the resource, what the
client presents and what the resource knows will intersect and the resource will know it
should grant access.

Client groups are a generalization of today’s domain global groups in AD. Unlike domain
global groups, client groups can have members from other domains, but the client must
know all the client groups it belongs to so that it can assert them, because the resource
won’t try to expand client groups.

Resource groups are a generalization of today’s domain local groups in AD. Unlike do-
main local groups, resource groups can be listed on the ACL of any resource so long as
the resource has permission to read the group membership. It’s the resource administra-
tor’s job to limit the total size of the group, measured in first-level client groups. The re-
source may cache the membership of third party resource groups.

An added complication is that today Windows eagerly discovers all the resource groups
in a domain a client belongs to when the client connects to any resource in the domain.
This makes subsequent access checks efficient, and the protocols allow the client and the
resource to negotiate at connection time, but if the domain is big (for example, if it con-
tains lots of big file servers) there might be too many resource groups. To handle this,
resources may use smaller resource scopes than an entire domain – for example, a ser-
vice.

To sum up, the way to handle large-scale group expansion is by distinguishing client and
resource groups. This extends what Windows does today in five ways:
1. The client and resource can negotiate what group memberships (or other attributes)

are needed.

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 46/47

2. Both client and resource can query selected third parties for groups.
3. Both client and resource can cache third party groups. The client must do this, since it

must assert all its client groups.
4. The resource can use a smaller scope to limit the number of resource groups that get

discovered when the client connects.
5. The client can be configured to know which groups the resource requires.

References
1. Abadi and Needham, Prudent engineering practice for cryptographic protocols. IEEE Trans. Software

Engineering 22, 1 (Jan 1996), 2-15, dlib.computer.org/ts/books/ts1996/pdf/ e0006.pdf or
gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-25.html

2. Internet X.509 Public Key Infrastructure: Certificate and Certificate Revocation List (CRL) Profile,
RFC 3280, http://www.ietf.org/rfc/rfc3280.txt

3. Internet X.509 Public Key Infrastructure: Online Certificate Status Protocol – OCSP, RFC 2560,
http://www.ietf.org/rfc/rfc2560.txt

4. Lampson et al, Authentication in distributed systems: Theory and practice. ACM Trans. Computer Sys-
tems 10, 4 (Nov. 1992), pp 265-310, www.acm.org/pubs/citations/ journals/tocs/1992-10-4/p265-
lampson

5. Myers and Liskov, A decentralized model for information flow control, Proc. 16th ACM Symp. Oper-
ating Systems Principles, Saint-Malo, Oct. 1997, 129-142, www.acm.org/
pubs/citations/proceedings/ops/268998/p129-myers

6. Wobber et al., Authentication in the Taos operating system. ACM Trans. Computer Systems 12, 1 (Feb.
1994), pp 3-32, www.acm.org/pubs/citations/journals/tocs/1994-12-1/p3-wobber

Appendix: Basic facts about cryptography

Distributed computer security depends heavily on cryptography, since that is the only
practical way to secure communication between two machines that are not in the same
room. You can describe cryptography at two levels:
• Concrete: how to manipulate the bits
• Abstract: what the operations are and what properties they have
This section explains abstract cryptography; you can take it on faith that there are con-
crete ways to implement the abstraction, and that only experts need to know the details.

Cryptography depends on keys. The essential idea is that if you don’t know the key, you
can’t do X, for various values of X. The key is the only thing that is secret; everything
about the algorithms and protocols is public. There are two basic kinds of cryptography:
public key (for example, RSA or elliptic curve) and symmetric (for example, RC4, DES,
or AES). In public key (sometimes called asymmetric) cryptography, keys come in pairs,
a public key K and a secret key K-1. The public key is public, and the secret key is the
only thing that is kept secret. In symmetric crypto there is only one key, so K = K-1.

Cryptography is useful for two things: signing and sealing. Signing provides integrity: an
assurance that signed data hasn’t changed since it was signed. Sealing provides secrecy:
only the intended recipients can learn any of the bits of the original data even if anyone
can see all the bits of the sealed data.

For signing, the primitives are Sign(K-1, data), which returns a signature, and Verify(K,
data, signature), which returns true if and only if signature = Sign(K-1, data). The es-
sential property is that to make a signature that verifies with K requires knowing K-1, so if

Practical Principles for Computer Security Butler Lampson Marktoberdorf, August 2006 47/47

you verify a signature, you know it was made by someone that knew K-1. With public
key, you can verify without being able to sign, and everyone can know K, so the signa-
ture is like a network broadcast. With symmetric crypto, anyone who can verify can also
sign, since K = K-1, so the signature is basically from one signer to one verifier, and
there’s no way for the verifier to prove just from the signature that the signature came
from the signer rather than from the verifier itself.

For sealing, the primitives are Seal(K, data), which returns sealed data, and Unseal(K-1,
sealedData), which returns data if and only if sealedData = Seal(K, data). The essential
property is that you can’t learn any bits of data (other than its length) from sealedData
unless you know K-1. With public key, anyone can seal data with K (since K is public) so
that only one party can unseal it; thus lots of people can send different secrets to the same
place. With symmetric crypto, the sealing is basically from one sealer to one unsealer.

There’s a trick that uses public key sealing to get the effect of a signature in one impor-
tant case; it’s the usual way of using a certificate to authenticate an SSL session. Suppose
you have made up a symmetric key K (usually a session key) and you want to know
K ⇒ P, That is, any messages signed with K that you don’t sign yourself come from an-
other party P. Suppose you have a certificate for P, that is, you know KP ⇒ P. This
means that only P knows K-1. The usual way to authenticate K is to get a signed statement
KP says K ⇒ P from P. Instead, you can compute SK = Seal(KP, K) and send it to P in
the clear. Only P can unseal SK, so only P (and you) can know K.

