
Lazy and Speculative Execution in Computer Systems

Butler Lampson
Microsoft Research

Butler.Lampson@microsoft.com

Abstract
The distinction between lazy and eager (or strict) evaluation has
been studied in programming languages since Algol 60’s call by
name, as a way to avoid unnecessary work and to deal gracefully
with infinite structures such as streams. It is deeply integrated in
some languages, notably Haskell, and can be simulated in many
languages by wrapping a lazy expression in a lambda. Less well
studied is the role of laziness, and its opposite, speculation, in
computer systems, both hardware and software. A wide range of
techniques can be understood as applications of these two ideas.
Laziness is the idea behind:

Redo logging for maintaining persistent state and replicated
state machines: the log represents the current state, but it is eval-
uated only after a failure or to bring a replica online.

Copy-on-write schemes for maintaining multiple versions of a
large, slowly changing state, usually in a database or file system.

Write buffers and writeback caches in memory and file systems,
which are lazy about updating the main store.

Relaxed memory models and eventual consistency replication
schemes (which require weakening the spec).

Clipping regions and expose events in graphics and window
systems.

Carry-save adders, which defer propagating carries until a clean
result is needed.

”Infinity” and ”Not a number” results of floating point opera-
tions.

Futures (in programming) and out of order execution (in CPUs),
which launch a computation but are lazy about consuming the
result. Dataflow is a generalization.

”Formatting operators” in text editors, which apply properties
such as ”italic” to large regions of text by attaching a sequence
of functions that compute the properties; the functions are not
evaluated until the text needs to be displayed.

Stream processing in database queries, Unix pipes, etc., which
conceptually applies operators to unbounded sequences of data, but
rearranges the computation when possible to apply a sequence of
operators to each data item in turn. Speculation is the idea behind:

Optimistic concurrency control in databases, and more recently
in transactional memory.

Prefetching in memory and file systems.
Branch prediction, and speculative execution in general in mod-

ern CPUs.

Copyright is held by the author/owner(s).
ICFP ’08 September 22-24, 2008, Victoria, BC, Canada
ACM 978-1-59593-919-7/08/09.

Data speculation, which works especially well when the data
is cached but might be updated by a concurrent process. This is a
form of optimistic concurrency control.

Exponential backoff schemes for scheduling a resource, most
notably in LANs such as WiFi or classical Ethernet.

All forms of caching, which speculate that it’s worth filling up
some memory with data in the hope that it will be used again. In
both cases it is usual to insist that the laziness or speculation is
strictly a matter of scheduling that doesn’t affect the result of a
computation but only improves the performance. Sometimes, how-
ever, the spec is weakened, for example in eventual consistency. I
will discuss many of these examples in detail and examine what
they have in common, how they differ, and what factors govern the
effectiveness of laziness and speculation in computer systems.

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: Design studies; I.1.3 [Languages and Systems]: Evaluation
strategies

General Terms Design, Performance.

Keywords lazy evaluation

Bio
Butler Lampson is a Technical Fellow at Microsoft Corporation and
an Adjunct Professor of Computer Science and Electrical Engineer-
ing at MIT. He was on the faculty at Berkeley and then at the Com-
puter Science Laboratory at Xerox PARC and at Digital’s Systems
Research Center. He has worked on computer architecture, local
area networks, raster printers, page description languages, operat-
ing systems, remote procedure call, programming languages and
their semantics, programming in the large, fault-tolerant comput-
ing, transaction processing, computer security, WHSIWYG editors,
and tablet computers. He was one of the designers of the SDS 940
time-sharing system, the Alto personal distributed computing sys-
tem, the Xerox 9700 laser printer, two-phase commit protocols,
the Autonet LAN, the SDSI/SPKI system for network security,
the Microsoft Tablet PC software, the Microsoft Palladium high-
assurance stack, and several programming languages.

He received an AB from Harvard University, a PhD in EECS
from the University of California at Berkeley, and honorary ScD’s
from the Eidgenssische Technische Hochschule, Zurich and the
University of Bologna. He holds a number of patents on networks,
security, raster printing, and transaction processing. He is a member
of the National Academy of Sciences and the National Academy of
Engineering and a Fellow of the Association for Computing Ma-
chinery and the American Academy of Arts and Sciences. He re-
ceived the ACM Software Systems Award in 1984 for his work on
the Alto, the IEEE Computer Pioneer award in 1996, the National
Computer Systems Security Award in 1998, the IEEE von Neu-
mann Medal in 2001, the Turing Award in 1992, and the National
Academy of Engineering’s Draper Prize in 2004.


