
v
viewpoints

november 2009 | vol. 52 | no. 11 | communications of the acm 25

P
h

o
t

o
g

r
a

P
h

 b
y

 i
a

n
 L

L
o

y
D

adds hassle and blocks progress. For
software developers, it interferes with
features and with time to market.

To make things worse, security is
fractal: Each part is as complex as the
whole, and there are always more things
to worry about. Security experts always
have a plausible scenario that demands
a new option, and a plausible threat that

C
oMPuTer seCuriTY TodaY is in
bad shape: people worry
about it a lot and spend a
good deal of money on it, but
most systems are insecure.

Security is not about perfection. In
principle we can make secure software
and set it up correctly, but in practice
we can’t, for two reasons:

Bugs ˲ : Secure systems are com-
plicated, hence imperfect. Of course
software always has bugs, but even
worse, security must be set up: user ac-
counts and passwords, access control
on resources, and trust relationships
between organizations. In a world of
legacy systems, networked computers,
mobile code, and changing relation-
ships between organizations, setup is
error-prone.

Conflicts ˲ : Even more important,
security gets in the way of other things
you want. In the words of General B.W.
Chidlaw, “If you want security, you
must be prepared for inconvenience.”a
For users and administrators, security

a Chidlaw, B. Dec. 12, 1954. Quoted by the Inter-
national Spy Museum, Washington D.C.

demands a new defense. There’s no rest-
ing place on the road to perfection.

Security is really about risk man-
agement: balancing the loss from
breaches against the costs of security.
Unfortunately, both are difficult to
measure. Loss is the chance of secu-
rity breaches times the expense of deal-
ing with them. Cost is partly in dollars
budgeted for firewalls, software, and
help desks but mostly in the time users
spend typing and resetting passwords,
responding to warnings, finding work-
arounds so they can do their jobs, and
so forth. Usually all of these factors are
unknown, and people seldom even try
to estimate them.

More broadly, security is about
economics.2 Users, administrators, or-
ganizations, and vendors respond to
the incentives they perceive. Users
just want to get their work done; they
don’t have good reasons to value secu-
rity, and view it as a burden. If it’s hard
or opaque, they will ignore it or work
around it; given today’s poor usabil-
ity they are probably doing the right
thing. If you force them, less useful
work will get done.1 Tight security

Privacy and security
usable security:
how to get it
Why does your computer bother you so much about security, but still isn’t secure? It’s
because users don’t have a model for security, or a simple way to keep important things safe.

DOI:10.1145/1592761.1592773 Butler Lampson

26 communications of the acm | november 2009 | vol. 52 | no. 11

viewpoints

usually leads first to paralysis and then
to weak security, which no one com-
plains about until there is a crisis.

Administrators want to prevent
obvious security breaches, and avoid
blame if something does go wrong.
Organizations want to manage their
risk sensibly, but because they don’t
know the important parameters they
can’t make good decisions or explain
their policies to users, and tend to os-
cillate between too much security and
too little. They don’t measure the cost
of the time users spend on security and
therefore don’t demand usable secu-
rity. Vendors thus have no incentive
to supply it; a vendor’s main goal is to
avoid bad publicity.

Operationally, security is about
policy and isolation. Policy is the state-
ment of what behavior is allowed: for
example, only particular users can
approve expense reports for their di-
rect reports or only certain programs
should run. Isolation ensures the pol-
icy is always applied. Usability is pretty
bad for both.

Policy
Policy is what users and administrators
see and set. The main reason we don’t
have usable security is that users don’t
have a model of security they can un-
derstand. Without such a model, the
users’ view of security is just a matter of
learning which buttons to push in some
annoying dialog boxes, and it’s not sur-
prising they don’t take it seriously and
can’t remember what to do. The most
common user model today is “Say OK
to any question about security.”

What do we want from a user model?

It has to be simple (with room for ˲

elaboration on demand).
It has to minimize hassle for the ˲

user, at least most of the time.
It has to be true (given some as- ˲

sumptions). It is just as real as the sys-
tem’s code; terms like “user illusion”
make as much sense as saying that
bytes in RAM are an illusion over the
reality of electrons in silicon.

It does ˲ not have to reflect the im-
plementation directly, although it
does have to map to things the code
can deal with.

An example of a successful user
model is the desktop, folders, and files
of today’s client operating systems.
Although there is no formal standard
for this model, it is clear enough that
users can easily move among PC, Ma-
cintosh, and Unix systems.

The standard technical model for se-
curity is the access control model shown
in the figure, in which isolation ensures
there is no way to get to objects except
through channels guarded by policy,
which decides what things agents (prin-
cipals) are allowed to do with objects
(resources). Authentication identifies
the principal, authorization protects
the resource, and auditing records what
happens; these are the gold standard for
security.3 Recovery is not shown; it fixes
damaged data by some kind of undo,
such as restoring an old version.

In most systems the implementa-
tion follows this model closely, but it
is not very useful for ordinary people:
they take isolation for granted, and
they don’t think in terms of objects or
resources. We need models that are
good for users, and that can be com-

piled into access control policy on the
underlying objects.

A user model for security deals with
policy and history. It has a vocabulary of
objects and actions (nouns and verbs)
for talking about what happens. His-
tory is what did happen; it’s needed
for recovering from past problems
and learning how to prevent future
ones. Policy is what should happen, in
the form of some general rules plus
a few exceptions. The policy must be
small enough that you can easily look
at all of it.

Today, we have no adequate user
models for security and no clear idea
of how to get them. There’s not even
agreement on whether we can elicit
models from what users already know,
or need to invent and promote new
ones. It will take the combined efforts
of security experts, economists, and
cognitive scientists to make progress.
Here are a few tentative examples of
what might work.

You need to know who can do what
to which things. “Who” is a particular
person, a group of people like your Fa-
cebook friends, anyone with some at-
tribute like “over 13,” or any program
with some attribute like “approved by
Microsoft IT.” “What” is an action like
read or write. “Which” is everything in
a particular place like your public fold-
er, or everything labeled medical stuff
(implying that data can be labeled). An
administrator also needs declarative
policy like, “Any account’s owner can
transfer cash out.”

A time machine lets you recover
from damage to your data: you can see
what the state was at midnight on any
previous day. You can’t change the past,
but you can copy things from there to
the current state just as you can copy
things from a backup disk.

isolation
Perfect isolation ensures that the only
way for an input to reach an object is
through a channel controlled by policy.
Isolation fails when an input has an ef-
fect that is not controlled by policy; this
is a bug. Some common bugs today
are buffer overruns, cross-site script-
ing, and SQL code injection. Execut-
able inputs like machine instructions
or JavaScript are obviously dangerous,
but modern HTML is so complex and
expressive that there are many ways

standard technical security access control model.

requestAgent/Principal

1. isolation boundary

2. Access Control

3. Policy

Authentication Authorization

Guard

Policy audit Log

object/
resource

viewpoints

november 2009 | vol. 52 | no. 11 | communications of the acm 27

to trick a browser into running code,
and widely used programs with simple
inputs like JPEG have had buffer over-
runs. A modern client OS, together
with the many applications that run on
it, is bound to have security bugs.

Users can’t evaluate these dangers.
The only sure way to avoid the effects
of dangerous inputs is to reject them.
A computer that is not connected to
any network rejects all inputs, and is
probably secure enough for most pur-
poses. Unfortunately, it isn’t very use-
ful. A more plausible approach has two
components:

Divide inputs into safe ones, han- ˲

dled by software that you trust to be
bug-free (that is, to enforce security
policy), and dangerous ones, for which
you lack such confidence. Vanilla ANSI
text files are probably safe and unfil-
tered HTML is dangerous; cases in be-
tween require judgments that balance
risk against inconvenience.

Accept dangerous inputs only from ˲

sources that are accountable enough,
that is, that can be punished if they
misbehave. Then if the input turns out
to be harmful, you can take appropri-
ate revenge on its source.

accountability
People think that security in the real
world is based on locks. In fact, real-
world security depends mainly on de-
terrence, and hence on the possibility
of punishment. The reason your house
is not burgled is not that the burglar
can’t get through the lock on the front
door; rather, it’s that the chance of
getting caught and sent to jail, while
small, is large enough to make burglary
uneconomic.

It is difficult to deter attacks on a
computer connected to the Internet be-
cause it is difficult to find the bad guys.
The way to fix this is to communicate
only with parties that are accountable,
that you can punish. There are many dif-
ferent punishments: money fines, ostra-
cism from some community, firing, jail,
and other options. Often it is enough if
you can undo an action; this is the finan-
cial system’s main tool for security.

Some punishments require identify-
ing the responsible party in the physical
world, but others do not. For example,
to deter spam, reject email unless it is
signed by someone you know or comes
with “optional postage” in the form

of a link certified by a third party you
trust, such as Amazon or the U.S. Postal
Service; if you click the link, the sender
contributes a dollar to a charity.

The choice of safe inputs and the
choice of accountable sources are both
made by your system, not by any cen-
tralized authority. These choices will
often depend on information from
third parties about identity, reputation,
and so forth, but which parties to trust
is also your choice. All trust is local.

To be practical, accountability needs
an ecosystem that makes it easy for
senders to become accountable and for
receivers to demand it. If there are just
two parties they can get to know each
other in person and exchange signing
keys. Because this doesn’t scale, we
also need third parties that can certify
identities or attributes, as they do to-
day for cryptographic keys. This need
not hurt anonymity unduly, since the
third parties can preserve it except
when there is trouble, or accept bonds
posted in anonymous cash.

This scheme is a form of access con-
trol: you accept input from me only if
I am accountable. There is a big prac-
tical difference, though, because ac-
countability is for punishment or undo.
Auditing is crucial, to establish a chain
of evidence, but very permissive access
control is OK because you can deal with
misbehavior after the fact rather than
preventing it up front.

freedom
The obvious problem with account-
ability is that you often want to com-
municate with parties you don’t know
much about, such as unknown ven-
dors or gambling sites. To reconcile
accountability with the freedom to go
anywhere on the Internet, you need
two (or more) separate machines: a

green machine that demands account-
ability, and a red one that does not.

On the green machine you keep im-
portant things, such as personal, fam-
ily and work data, backup files, and so
forth. It needs automated management
to handle the details of accountabil-
ity for software and Web sites, but you
choose the manager and decide how
high to set the bar: like your house, or
like a bank vault. Of course the green
machine is not perfectly secure—no
practical machine can be—but it is far
more secure than what you have today.

On the red machine you live wild and
free. You don’t put anything there that
you really care about keeping secret or
really don’t want to lose. If anything
goes wrong, you reset the red machine
to some known state.

This scheme has significant un-
solved problems. Virtual machines can
keep green isolated from red, though
there are details to work out. However,
we don’t know how to give the user
some control over the flow of informa-
tion between green and red without
losing too much security.

conclusion
Things are so bad for usable security
that we need to give up on perfection
and focus on essentials. The root cause
of the problem is economics: we don’t
know the costs either of getting secu-
rity or of not having it, so users quite
rationally don’t care much about it.
Therefore, vendors have no incentive
to make security usable.

To fix this we need to measure the
cost of security, and especially the
time users spend on it. We need sim-
ple models of security that users can
understand. To make systems trust-
worthy we need accountability, and
to preserve freedom we need separate
green and red machines that protect
things you really care about from the
wild Internet.

References
1. adams, a. and Sasse, a. Users are not the enemy.

Commun. ACM 42, 12 (Dec. 1999), 41–46.
2. anderson, r. economics and Security resource Page;

http://www.cl.cam.ac.uk/~rja14/econsec.html
3. Lampson, b. Practical principles for computer security.

in Software System Reliability and Security, broy et
al., eds., ioS Press, 2007, 151–195.

Butler Lampson (butler.Lampson@microsoft.com) is a
technical fellow at Microsoft research and is an aCM
fellow.

Copyright held by author.

the most common
user model
today is “say oK
to any question
about security.”

