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Butler Lampson

Declarative Programming: �e Light at the End of the
Tunnel

Ah, but a man’s reach should exceed his grasp,
Or what’s a heaven for?

— Robert Browning, Andrea del Sarto

Goals

I started out to write about declarative programming, which seemed like a

good topic because in a way it is the opposite of the kind of programming

that Alan Kay introduced in Smalltalk and has been working on ever since,

and also because Alan Borning’s 
ingLab [53], one of the �rst examples of

general-purpose declarative programming, was developed in Alan’s group. As

I thought about it, though, I realized that I don’t really know what declarative

programming is. In fact, it seems to be an umbrella term for “the kind of

programming we wish we had.”

What kind of programming do we wish we had? We want to be able to

tell the computer what to do, in a way that is easy for us and that reliably and

promptly gets us the result we want (or an intelligible explanation of why we

can’t have it, and how we might change the program to get it).
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e problem, of course, is that what the computer natively knows how

to do is very far removed from this ideal. It knows how to perform very small,

very precisely-de�ned state changes on a state space whose main component is

an array of a few billion eight-bit numbers. We want it to look through a few

attached cameras and drive a car through New York city tra�c, or �nd integers

x, y, z and n > 2 such that xn+yn = zn
. 
is is a gap too great to be bridged

in any way we can currently imagine, so we must lower our aspirations.


ere are two things we know how to do that make the gap smaller. One

is to make the machine operate on more interesting datatypes than bytes—for

example, on arrays of �oating point numbers, on relations, or on images—and

to do big operations on these datatypes, such as �nding the eigenvalues of

a matrix, or a list of all the registered voters in electoral precincts that went

Republican in the last presidential election but are in cities that went Demo-

cratic, or the faces of women in a picture. 
e other is to make the machine

optimize some function subject to a set of constraints, perhaps approximately.


e challenge is to use these two methods (and anything else we can think of )

to come closer to our goal.


e most common banners under which people have tried to do this carry

the labels domain-speci�c languages (DSLs) and declarative programming. 
e

�rst is fairly easy to understand. 
e idea is to restrict the scope of programming

enough that the machine can do a good job, albeit within narrow boundaries.

Parser generators and MATLAB are examples at the two poles of this approach.

A parser generator meets our ideal perfectly, as long as the only thing that can

vary in what we ask for is the language to be parsed. MATLAB is very good

at handling problems that can be solved with standard operations on vectors

and matrices; if you want to do something non-standard, it pushes you closer

to programming in FORTRAN. 
e most common fate of a DSL is to be

absorbed into a general-purpose programming language as a library, perhaps

with a little additional syntax as in Linq;
1

this happens because when the

DSL is successful people try to stretch its boundaries, adding more and more

1http://msdn.microsoft.com/netframework/future/linq
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general-purpose facilities, and you don’t have to go very far down this path

before you have a clumsy general-purpose language that is hard to understand

and hard to support.

By relieving the brain of all unnecessary work,
a good notation sets it 	ee to concentrate on more advanced problems,

and in e�ect increases the mental power of the race.
— Alfred North Whitehead, An Introduction to Mathematics

Declarative programming

Declarative programming is more puzzling, and it is the main topic of this

paper. 
e fact that no one knows what it is gives me free rein to re�ect on a

wide range of ideas and techniques.

Two somewhat unrelated goals seem to motivate the idea of declarative

programming:

1. Make it easier to get from a precise speci�cation of what the program is

supposed to do to a working program. Two examples of this are SQL

queries and parser generators.

2. Make it easier for a non-programmer to get from a fuzzy idea of what

they want to a working program. Two examples of this are spreadsheets

and search folders.


is paper is mostly about the �rst goal, though it has some things to say

about the second.

It’s easier to say what declarative programming is not than to say what it

is. Certainly programming in the native instruction set of the computer is

not declarative programming, and neither is programming in C, Visual Basic,

or Smalltalk. In fact, any program that explicitly gives the computer a long

sequence of small steps to carry out is not declarative; this means that a program

with loops or recursion is not declarative. One consequence is that there’s not
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much hope for using declarative programming all the way down to the bare

machine, as one can do in Smalltalk: it’s not turtles all the way down.

At the opposite extreme, “do what I mean” is not declarative programming

either. In other words, a declarative program is not magic, and it doesn’t make

wild guesses about the user’s intent. It is just as precise as any other program.

It is common to classify programs as imperative (with object-oriented as an

important case) or declarative (with functional and logic as important cases).

In practice, however, these categories are not strict. Imperative programs o	en

have large parts that are functional, and functional programs in systems like

MapReduce and Dryad usually have computational kernels that are written

imperatively, though their external behavior must be functional.

Successful declarative systems usually have a few things in common:

1. 
ey give you a way to write the program that is a good match to the

user’s view of the problem. Another way of saying this is that the system

synthesizes a program that the computer can run e�ciently from a

speci�cation that the user writes, which may have a very di�erent form.


e purest version of this is the planning that has been part of robotic

systems for many years [63]. It used to be called automatic programming,

but that term has fallen out of favor. An important aspect of a good

match is that the user can employ a familiar vocabulary. 
us declarative

systems o	en involve a DSL, or a database schema that has been worked

out by someone else. Another important aspect is that you can debug

the program at the same level that you write it; macro recorders generally

fail this test.

2. 
ey are compositional, which means that you can write a program

in small pieces that are fairly independent, and the system will put

them together automatically. A spreadsheet is a simple example of this,

and a solver for an optimization problem with constraints such as linear

programming is a more sophisticated example. Functional programming

is the most basic composition mechanism.
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3. 
ey give you big primitives, so that you can get a lot of work done

without having to write a lot of code, and your program only needs

to have a few steps. A primitive can be big by operating on big data
(arrays, graphs, relations), by solving a nontrivial system of equations or

constraints (such as linear programming or Boolean satis�ability [57]),

or by embodying a powerful algorithm (such as scale-invariant feature

transforms in computer vision [60]) or a powerful data structure (such

as a balanced tree for storing ordered data).

4. 
ey have clean escape hatches, so that you can fall back to boring old

imperative programming when e�ciency, familiarity, or legacy code

demands that. An escape hatch may be internal, allowing the declarative

program to invoke a primitive written in some other way, or external,

allowing an imperative program such as a shell script to invoke a declar-

ative program.

Another characteristic of most declarative systems is that you can get

started (do the equivalent of “Hello world”) with very little e�ort, though

certainly other systems like Python have this property too.

Don’t ask what it means, but rather how it is used.
— Ludwig Wittgenstein, unknown source

Examples

Another way to characterize declarative programming is to look at some exam-

ples of successful declarative systems:

Spreadsheets such as Excel. A spreadsheet is functional programming

with a human face, without recursion, and with powerful primitives for tabular

layout, for charts and graphs, and for aggregating data (pivot tables). Excel has

a rather clumsy escape hatch to Visual Basic. Hundreds of millions of people
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have learned how to make a spreadsheet do useful work, though only a few can

use more than a small fraction of its capabilities.

SQL queries. 
is is functional programming with big arguments (rela-

tions), powerful primitives (for aggregation), and good optimization. It has

also been enormously successful, though it’s a tool for professionals—the gen-

eral user needs a front end to generate SQL, such as a form to �ll in, and these

front ends only expose a small fraction of SQL’s power.

Parser generators such as yacc are a successful example at the opposite

pole from these two. 
ey produce a parser for a context-free language from a

grammar. Where Excel and SQL share an expression language with ordinary

imperative languages, and have escape hatches to general imperative program-

ming, a parser generator is as domain-speci�c and declarative as possible. It

takes a speci�cation that is the user’s intent (the grammar de�ning the sen-

tences to be recognized), o	en produces a parse tree by default, and usually

has a very stylized escape hatch that just allows you to write patterns to de�ne

what the output tree should be (though some let you attach to each grammar

rule some arbitrary code that runs in a context where the results of the parse

are accessible).

Streaming data �ow systems like DryadLINQ [64] (which grew out of

Unix pipes and the AVS graphics system [62]) are an interesting variation on

functional programming. 
ey let you write arbitrary kernels that take a set of

input streams and produce a set of output streams (some of which might be

much smaller if the kernel does aggregation). 
en you can compose many such

kernels into a data�ow graph that can be deployed automatically over a number

of CPU cores or cluster nodes. Dryad (and MapReduce, which is less general)

can automatically partition the computation, run it on thousands of compute

nodes in a cluster, and recover from detected failures of some of the nodes.

Here the main value is that you can easily express complex operations on very

large data sets, and the system handles partitioning, scheduling, concurrency

and fault tolerance automatically. 
is kind of composition and scaling is

similar to what you get from a transaction processing system. Dryad has escape
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hatches both above and below: you can program the kernels any way you like as

long as their only communication with the rest of the world is through Dryad’s

streams, and you can take the result streams and process them with ordinary

.NET programs; this works because Dryad’s datatypes (collections) are also

.NET datatypes.

Mashups are a DSL that exploits two powerful features of HTML and

XML: a hierarchical namespace that extends all the way down to the small-

est elements (even to single characters if you like) and fairly elaborate two-

dimensional layout of text and graphics. When you combine these with the

web’s ability to fetch information from anywhere in the Internet and the exis-

tence of more or less functional web services for search, mapping, �nancial and

demographic information, etc., you can easily produce nice-looking displays

that integrate a lot of disparate information. 
e escape hatch is JavaScript.

Mathematica is a DSL that deals with symbolic mathematical expressions.

It gets its power by embodying sizable pieces of mathematics (polynomials,

di�erential equations, linear algebra, etc.) so that it can solve a wide range

of equations. In addition, it can evaluate expressions numerically and solve

equations numerically if symbolic methods fail, and you can easily turn nu-

merical results into two- and three-dimensional graphics. It incorporates its

own general-purpose imperative programming language, so it doesn’t need

an escape hatch. MATLAB is a similar system that specializes in numerical

linear algebra and digital signal processing. Numerical computation is steadily

becoming more declarative.
2

Security policy is not very declarative today; usually you have to specify

the access controls for each object individually, which is time-consuming and

error-prone. Experimental systems such as Chang’s [55] show the possibilities

for expressing policies in a way that is very close to the user’s intent.

Table 1 summarizes these examples.

2http://www.nag.co.uk/market/trefethen_future.asp
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Time is nature’s way of keeping everything 	om happening at once.
— variously attributed

Failures

Many attempts have been made to do less domain-speci�c declarative program-

ming. I think it’s fair to say that all of these have been failures: they are based

on powerful ideas and can do some very impressive toy examples, but so far at

least, they all turn out to have limitations that keep them from being widely

adopted. 
e basic problem seems to be that these systems are solving a system

of equations or constraints, and it’s too hard

• to write down everything needed to avoid undesired solutions,

• to keep the solver’s problem from becoming intractable, and

• to make the program modular, which is essential for large problems.


ese systems fall into three main classes: constraint programming, logic

programming, and algebraic speci�cations for datatypes.

Constraint programming, as in 
ingLab, is very appealing, since it’s

o	en easy to obtain constraints directly from a speci�cation, and a constraint

solver is a very powerful primitive. A variation is to add a goal function of

the variables to be optimized subject to the constraints. 
e di�culty is that

the only general solution method is some kind of search of the solution space,

and you have to choose between very stylized constraints for which there’s

an e�cient search algorithm, as in linear programming, and more general

constraints for which the only known method is exponential. If the goal

function is di�erentiable then hill climbing sometimes works, but usually there

are many local maxima.

Logic programming, as in Prolog, has the same intractability problem,

even though the domain is just Boolean values rather than reals, lists, or what-

ever, and usually this simpli�cation is counterbalanced by wanting to deal with

many more variables. 
ere are periodic waves of enthusiasm for Prolog or for
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the closely related rule systems that underlay the expert systems of the 1980s,

but they don’t last.

Algebraic datatypes are rather di�erent, since they are a way of writing

a speci�cation, not a program, but their failure illustrates some of the same

points very clearly. 
e idea is that you can specify the behavior of a datatype

such as a queue by specifying the primitives (put an item on the end, get an

item from the front, test for empty) and a set of axioms that they satisfy, given

in the form of equations. 
is strategy falls foul of the fact that it’s amazingly

di�cult to write down a set of consistent axioms for even a simple datatype

that doesn’t allow all kinds of undesired behavior.

All of this is not to say that constraint solvers, optimizers and theorem

provers are useless. On the contrary, they are very valuable primitives, just not

able to bear all the burden of expressing a program. Whether it’s a linear equa-

tion solver, a polynomial root �nder, a linear programming package, a regular

expression matcher, a polymorphic type inference system, or a SAT solver, it

can be a good tool as long as it works on a closed system whose interactions with

the rest of the world are the responsibility of the programmer rather than them-

selves being governed by automatic search. 
ere are a few examples of solvers

that can be extended cleanly, such as SMT theorem provers [56], but they are

conspicuous by their rarity and don’t eliminate the fundamental intractability.

Make no little plans. �ey have no magic to stir men’s blood.
— Daniel Burnham, as quoted by Charles Moore

Big Primitives

Most of our steadily increasing ability to use computers to solve increasingly

large and complex problems is based on the availability of more and more

powerful primitives that you can use in a program with con�dence that they

will deliver what they promise. I have mentioned some of these already, but it’s

instructive to see a (necessarily partial) catalog:
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• Matrix operations

• Linear programming

• Symbolic mathematics

• SAT solvers

• Synthetic graphics, both two- and three-dimensional; games show what

is routinely possible

• Image processing; striking examples of what’s possible are Street View

and Streetside, Photosynth [61], and the World Wide Telescope [58]

• Vision, still much inferior to human vision but able to extract three-

dimensional models of buildings from video

• Relational queries

• Full text search over corpora of many terabytes

• Typesetting and layout from HTML (or other forms of text, such as

TEX)

• Graph algorithms such as PageRank [54]

• Views on relations, and especially two-way mappings between relations

and forms

• Machine learning (a specialized form of program synthesis)

In addition, there are techniques that make it easier to get a computer to

do our will and are more broadly applicable than individual primitives, but

that are not instances of declarative programming:

• Transactions, which make it easy to do complicated operations atom-

ically, and to abandon them when necessary without having to worry

about side e�ects

• Undo and versions, which make it easy to experiment in more general

settings than transactions and to keep track of the evolution of a big

project

• Static analysis of programs to infer their properties

• Lazy and speculative execution, powerful general methods for matching

the work that a computer does to the needs of the problem
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• Indirect references and incremental execution, which make it much

easier to adapt a program to a changing environment

And the users exclaimed with a laugh and a taunt:
“It’s just what we asked for but not what we want.”

— unknown

Non-programmers

A non-programmer is someone who is uncomfortable with precision and

abstraction, which seems to cover most people. For the most part they can only

tell a computer what to do by pushing buttons. Sometimes one button push

does a lot, but if there’s not a button (perhaps with a few accompanying form

�elds) that does what they want, they are reduced to leading the computer by

the hand with a sequence of manual button pushes. Except for spreadsheets,

we have not been very successful in �nding better ways for them to adapt the

computer to their needs. Macro recorders help a little, but very o	en a recorded

macro needs to be edited to make it useful, and in every system that I know

about this is too hard for a non-programmer. Because most declarative systems

depend on precision and abstraction, they are not much help.

I can only speculate on how we might improve this situation: by making it

possible for a person to engage in a dialog with the computer, explaining either

in natural language or by example what they want the computer to do (change

all the references in this paper into PMLA form, or turn on the heat when a

person gets up but ignore the dog, or tell me which of my Facebook friends

knows fewer than two of the others). 
e computer’s side of the dialog is its

expression, in terms meaningful to the person, of what it’s supposed to do or

of what it doesn’t understand. 
e person then can give corrections or more

examples. 
is is obviously a form of program synthesis, and it’s declarative

in the sense that it’s not a long sequence of small steps. For it to work, the
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computer and the user have to share a conceptual model of the problem domain.

A small step in this direction is Miller’s keyword programming [59].

Conclusion

For forty years people have been working to make programming easier, faster,

and more reliable. For non-programmers it’s also important for the machine

to help the users state their needs precisely. So far the biggest successes have

come from domain-speci�c imperative languages and from providing powerful

primitives that you can invoke from imperative languages. Declarative pro-

gramming seeks to go further, allowing you to state what you want from the

program and have the computer synthesize it, or less ambitiously, to explicitly

give the machine only a few steps for it to take. 
is works to some extent, and

it works best for speci�c domains and when you have big primitives.

As machines get better at reasoning, as computers are integrated more

deeply into application areas, and as we build bigger primitives, surely declara-

tive programming will get better. Two things that will help are codifying more

information in a form the machine can understand, and building primitives in

a form that declarative programming can easily use.
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