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Abstract 

This new short version of my 1983 paper suggests the goals you might have for your system—

Simple, Timely, Efficient, Adaptable, Dependable, Yummy (STEADY)—and techniques for 

achieving them—Approximate, Incremental, Divide & Conquer (AID). It also gives some princi-

ples for system design that are more than just hints, and many examples of how to apply the ideas. 

1. Introduction 

There are three rules for writing a novel. Unfortunately, no one knows what they are. —Somerset 

MaughamQ33 

You got to be careful if you don’t know where you’re going, because you might not get there. —

Yogi BerraQ4 

Designing a computer system is very different from designing an algorithm: 

− The external interface (the requirements) is more complicated, fuzzy and changeable. 

− The system has much more internal structure, and hence many internal interfaces. 

− The measure of success is much less clear. 

The designers usually find themselves floundering in a sea of possibilities, unclear about how one 

choice will limit their freedom to make other choices, or affect the size and performance of the 

entire system. There probably isn’t a ‘best’ way to build it, or even any major part of it; what’s 

important is to avoid a terrible way, and to have clear division of responsibilities among the parts. 

I have designed and built a number of computer systems, some that succeeded and some that 

didn’t. I have also used and studied many other systems, both successes and failures. From this 

experience come some general hints for designing good ones. Most are part of the folk wisdom of 

experienced designers, but, “It is not sufficiently considered that men more often need to be re-

minded than informed.”Q22 There are also some principles (about abstraction and modules) that 

almost always apply, and some oppositions that suggest different ways to look at things.  

There’s a longer version of this paper here, about twice the size. Both are successors to a much 

shorter paper on hints that I wrote in 1983.R38 

I’ve organized the hints along three axes, corresponding to three time-honored questions, with 

a catchy summary: STEADY by AID with ART. 
    

https://www.dropbox.com/sh/4cex542zznbjh7b/AADM59pqAb9YBy4eeT1uw0t8a?dl=0
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What? Goals STEADY — Simple, Timely, Efficient, Adaptable, Dependable, Yummy 

How? Techniques by AID —Approximate, Incremental, Divide & Conquer 

When, who? Process with ART —Architecture, Automate, Review, Techniques, Test 
    

There are a lot of hints, but here are the most important ones: 

− Keep it simple.  

− Write a spec.  

− Design with independent modules. 

− Exploit the ABCs of efficiency. 

− Treat state as both being and becoming. 

− Use eventual consistency to keep data local. 

These are just hints. They are not novel (with a few exceptions), foolproof recipes, guaranteed 

to work, precisely formulated laws of system design or operation, consistent, or always appropriate 

and approved by all the leading experts. Skip over the ones you find wrong, useless or boring.  

The paper begins with a list of oppositions (simple vs. rich, imperative vs. declarative, etc.), 

which can help you decide on priorities and structure for a system. §2 presents the principles: 

abstraction, specs, code, modularity and the value of a point of view. In §3 each goal gets a section 

on the techniques that support it, followed by one for incremental techniques that didn’t fit under 

a goal. “Efficient” gets by far the most space, followed by “dependable”, because locality and 

concurrency fall naturally under the first and redundancy under the second, and these three are 

fundamental to today’s systems. Finally there’s a short nontechnical §4 on process, and a discus-

sion of each opposition in §5. Throughout, short slogans capture the most important points without 

any nuance, and quotations give a sometimes cynical commentary on the text. 

There are lots of examples to illustrate specific points; I’ve tried to choose ones that are well-

known or well-described online. Look for an example that matches your problem; it can help you 

find a good technique. I’ve also told some longer stories, marked » and in smaller type. Many 

things fit in several places, so there are many cross-reference links (for reading online) as well as 

an index. A term of art is in italics the first time it’s used, and it’s a good starting point for a web 

search; so are the names of techniques and examples. I’ve put in explicit references when I think 

a search won’t find what you need. 

I’m afraid that what I’ve written is rather dense—you’ll need to think carefully about many of 

the points to get the most out of them —why I said it that way, what’s wrong with obvious alter-

natives, how it connects to other points. And I’ve omitted many details and caveats that you can 

find in the literature. Otherwise there would be a thousand pages, though. If you’re reading the 

short version and find it too terse, try the long one. 

https://www.dropbox.com/sh/4cex542zznbjh7b/AADM59pqAb9YBy4eeT1uw0t8a?dl=0


3 

 

1.1 Oppositions and slogans 

I've looked at life from both sides now. —Joni MitchellQ36 

It often helps to think about design in terms of the opposition between two (or three) extremes. 

These are not irreconcilable alternatives, but the endpoints of a range of possibilities. Here are 

some useful ones, each with a few slogans that hint at its (sometimes contradictory) essence. They 

are ordered by the first goal or technique they serve, and discussed in §5. 
    

Goal Opposition  Slogans 
    

Princi-

ples 
Spec ↔ code 

 Have a spec. Get it right. Keep it clean. 

Don’t hide power. Leave it to the client. 
    

Simple 
Simple ↔ rich, fine ↔ features,  

  general ↔ specialized 

  KISS: Keep It Simple, Stupid. Don’t generalize. 

Do one thing well. Don’t hide power.  

Make it fast. Use brute force.  

 Perfect ↔ adequate, exact ↔ tolerant 
  Good enough. Worse is better. 

Flaky, springy parts.  

 Spec ↔ code  
  Keep secrets. Free the implementer.  

Good fences make good neighbors.  

Embrace nondeterminism. Abstractions leak.  

 Imperative ↔ functional ↔ declarative  Make it atomic. Use math. Say what you want.  
    

Timely Precise ↔ approximate software  Get it right. Make it cool.  
    

Efficient   
 ABCs. Use theory. Latency vs. bandwidth.  

S3: shard, stream or struggle.  
 Dynamic ↔ static   Stay loose. Pin it down. Split resources. 

 Indirect ↔ inline   Take a detour, see the world. Use what you know. 

 Lazy ↔ eager ↔ speculative  Put it off. Take a flyer. 

 Centralized ↔ distributed, share ↔ copy   Do it again. Make copies. Reach consensus. 
    

Adapt-

able  

Fixed ↔ evolving,  

  monolithic ↔ extensible  

  The only constant is change. 

Make it extensible. Flaky, springy parts. 

 Policy ↔ mechanism  Change your mind. 
    

Depend- Consistent ↔ available ↔ partition-tolerant  Safety first. Always ready. Good enough. 

able Generate ↔ check  Trust but verify. 
    

    

Incre- Being ↔ becoming  How did we get here? Don’t copy, share. 

mental Iterative ↔ recursive, array ↔ tree  Keep doing it. A part is like the whole. 
    

Process   Build on a platform. Keep interfaces stable. 

{

{

{
{

{

{
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2. Principles 

The ideas in this section are not just hints, they are the basic mental tools for system design. But if 

you are math-averse and section 2.1 puts you off, just skip it. 

2.1 Abstraction—Have a spec 

The purpose of abstraction is not to be vague, but to create a new semantic level in which one can 

be absolutely precise. —Edsger DijkstraQ14 

Without a specification, a system cannot be wrong, it can only be surprising. —Gary McGrawQ34 

If you’re not writing a program, don’t use a programming language. —Leslie LamportQ30 

Abstraction is the most important idea in computing. It’s the way to make things simple enough 

that your limited brain can get the machine to do what you want, even though the details of what 

it does are too complicated for you to track: many, many steps and many, many bits of data. The 

idea is to have a specification for the computer system that tells its clients 

− what: everything they need to know to use the system,  

− but not how: nothing about how it works inside—the code. 

The spec is normally much smaller and clearer than the code, and it decouples the client from the 

details of the code, so that (a) the client’s life is simpler and (b) changes in the code don’t affect 

the client. An abstraction is better if it’s simpler and clearer; it’s good enough if your limited brain 

can use it effectively. 

A system’s state is the values of its variables. The spec describes a client’s view of the state 

using basic notions from mathematics, usually relations (sets of ordered pairs) and their special 

cases: sets, sequences, tuples, functions, and graphs. This is the abstract state. For example, a file 

system spec describes a file as a sequence (array or list) of bytes. Internally the code has  index 

blocks, buffer caches, storage allocators, crash recovery, etc., but none of this appears in the spec. 

The spec hides the complexity of the code from the client and keeps secret the details that the 

client shouldn’t depend on because they are irrelevant and might change. Almost always the spec 

is much simpler, so the client’s life is much easier. If it’s not, you are probably doing something 

wrong. 

The spec also describes the actions that read and change the state; a file has read, write, and 

set-length actions. The state and actions define a state machine or transition system. An action 𝑎 

is just a set of possible transitions or steps from a pre-state 𝑠 to a post-state 𝑠′, so it too can be 

described by a relation, a predicate 𝑎(𝑠, 𝑠′) on pairs of states that is true exactly when a step from 𝑠 

to 𝑠′ is one of the action’s steps. There are many notations (usually called programming languages) 

for writing down these relations easily and clearly, but first-order logic underlies all of them. Ex-

ample: x:=y is short for the predicate 𝑥′ = 𝑦 and (∀ 𝑣 except 𝑥 ∣ 𝑣′ = 𝑣); the value of x is now y 

and the other variables stay the same. There might be more than one possible next state if an action 

is nondeterministic, or none if it’s blocked. A behavior of the system is just a sequence of steps 

that the system could take. 
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Why use math in a spec? For clarity and precision. You can also write down the state and the 

actions in English prose, and this is often a good place to start, but it’s surprisingly hard to make 

an English spec complete and correct. Prose as comments can help the developer’s intuition about 

the system, but when you try to translate it into math you usually find that you overlooked many 

details, and that you don’t even have the right vocabulary to express them clearly and concisely. 

The computer won’t overlook any details. 

A spec can be very partial, describing only some aspects of the behavior; then it’s often called 

a property. For example, it might just specify “no segfaults” by allowing any step that isn’t a 

segfault. As well as being partial, a spec can be nondeterministic: any of a set of results is accepta-

ble; for example, a timing spec such as “Less than 200 ms”. And often details should be left open: 

eventual consistency just says that an update will surely be visible by the end of the next sync. 

The code should satisfy (meet, conform to) the spec. This means that every visible behavior of 

the code is a visible behavior of the spec: code behaviors are a subset of spec behaviors. The 

“visible” is important; typically the code has internal state that’s invisible, and often the spec does 

too. A partial spec usually has less visible state. This doesn’t mean that the code does everything 

the spec allows. In particular, the spec is often nondeterministic where the code takes a single path.  

Satisfying is subset, hence it’s transitive: if 𝐶 ⊆ 𝑅 and 𝑅 ⊆ 𝑆 then 𝐶 ⊆ 𝑆. So you can get from 

spec to code in several stages, putting in more details at each stage. You usually stop the formal 

development once you have correct code for the tricky parts, even if it’s still far from executable,R51 

because the bugs that you add in getting from there to something you can ship are much less tricky.  

Finding good abstractions is the most important part of designing a system. A language gives 

you some built-in abstractions: strings, arrays, dictionaries, functions. These are useful, but they 

are less important than the abstractions in the platform you are building on, such as files, network-

ing, relational data, vectors and matrices, etc. And those in turn are less important than the abstrac-

tions specific to the application, such as calendars, protein structure or robot motion. 

Which comes first, the spec or the code? In theory the spec should come first, since it reflects 

what you want done; this is called top-down design, and the code is a refinement of the spec. In 

practice they evolve together, because you can’t tell what the spec should be until you see how it 

affects the code and the system’s customers. The first ideas for a spec are usually either too ambi-

tious or too close to the code, providing both more and less than the customers need.  

2.1.1 Safety and liveness 

Any spec is the conjunction of two parts:  

− A safety spec, which says what the code may do, or equivalently, that nothing bad ever 

happens. If the code violates a safety spec the bad thing happens in a finite number of steps. 

Safety generalizes partial correctness.  

− A liveness spec, which says what the code must do, or equivalently,  that something good 

eventually happens, usually that it’s fair: every action allowed by safety eventually 
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happens. No finite behavior can violate liveness, because the good thing could happen later. 

Liveness generalizes termination.  

For a non-interactive program such as 𝑠𝑜𝑟𝑡(𝑎:seq) returns 𝑠𝑎 (one that just takes an input and 

produces a result), the spec is just the relation between the pre-state and the post-state. The traces 

are of length two, and safety and liveness are called partial correctness and termination.  

Usually safety is what’s important, because “eventually” is not very useful; you care about 

getting a result within two seconds, and that’s a safety property (violated after two seconds). 

2.2 Writing a spec—KISS: Keep It Simple, Stupid. 

Seek simplicity, and distrust it. —A.N. WhiteheadQ59 

Reality is that which, when you stop believing in it, doesn’t go away. —Philip K. DickQ12 

How should you go about writing a spec? There are two steps: 

(1) Write down the state of the spec (the abstract state).  

You have to know the state to even get started, and finding the simplest and clearest abstract state 

is always worth the effort. It’s hard, because you have to shake loose from the details of the code 

you have in mind and think about what your clients really need. The mental tools you need for this 

are the elementary discrete math of relations, and a good understanding of the clients. 

Often people say that the abstract state is not real or that the spec is an illusion; only the RAM 

bytes, disk blocks and machine instructions are real. I can’t understand this; a physicist will say 

that only the quantum mechanics of electrons in silicon is real. What they probably mean is that 

the spec doesn’t actually describe the behaviors of the system. This can happen in several ways: 

• It can be wrong: the code does things the spec doesn’t allow. This is a bug that should be fixed. 

• It can omit important details: how accurate a sine routine is or what happens if there’s a failure. 

• It can omit unimportant details by being leaky. This is a matter of judgment. 

For the file system example, the spec state has files 𝐹, directories 𝐷, and inode numbers 𝑁. A 

file is 𝐹 = seq Byte (a function 0. . 𝑙–1 → Byte) and a directory is a (partial) function 𝐷 =

𝑁𝑎𝑚𝑒 → 𝑁. The state is a function 𝑠 = 𝑁 → (𝐹 or 𝐷) that gives the current contents of the nodes. 

The 𝐷’s must organize the nodes into a graph where the 𝐹’s are leaf nodes and the 𝐷’s form a tree 

or DAG rooted in 𝑠(0); an invariant on the state says this. 

(2) Write down the spec actions: how each action depends on the state and changes the state. You 

may need English comments to guide the developer’s intuition. 

Now you have everything the client needs to know. If you haven’t done this much, you prob-

ably can’t do a decent job of documenting for the client. A spec should be simple, it should be 

complete enough, and it should admit code that is small and fast enough. Good specs are hard, 

because each spec is a small programming language with its own types and built-in operations, 

and language design is hard. Also, the spec mustn’t promise more than the code can deliver—not 

the best possible code, but the code you can actually write.  
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There is nothing special about concurrency, except that it makes the code (and perhaps the 

spec) nondeterministic: the current state doesn’t determine the next step, which could come from 

any thread that isn’t blocked. Likewise there is nothing special about failures. A crash or the mis-

behavior of a component is just another action. Crashes cause trouble because they may destroy 

state that you would prefer to keep, and because they add nondeterminism that’s not under your 

control. But these are facts of life that you have to deal with, not flaws in the method. 

2.2.1 Leaky specs and bad specs 

Specs are usually incomplete or leaky. Most notably, specs often don’t say much about speed. 

Sometimes the spec needs to be leaky, in the sense that it exposes some internal secrets, to give 

clients the access they need to run fast. Being leaky is not necessarily a bad thing, and in general 

it’s unavoidable. But there are other properties of a spec that are usually bad: 

• Complexity is hard for the client to understand, and hard to code. It often comes from being 

overambitious, ignoring the state-and-actions recipe, or exposing the code’s secrets. 

• Brittleness makes the spec depend on details of the environment that are likely to change, or 

on details of how it is called that are easy to get wrong. 

• Errors or failures in the code mean that the code won’t satisfy the spec, unless the spec gives 

it a way to report them. A common example is a synchronous API that makes the code look 

local, fast and reliable even though it’s really remote, slow and flaky. 

• Similarly, contention or overload may keep the code from meeting the spec if there’s no way 

to report these problems or set priorities. 

• De facto specs, in either function or performance, happen when the code has properties that 

clients come to depend on even though they are not in the spec. 

2.2.2 Executable specs 

Another kind of spec is executable: the machine can run it fast enough for its clients to actually 

use it, perhaps not to do useful work but at least to see whether they like its functionality.R33 This 

has some advantages: 

− You can try it out, often a better way than thinking about it to learn whether you like it. 

− You can use it as an oracle for testing real code.R57 

− Perhaps you can evolve it into code that’s good enough to ship. 

If it’s a spec for a module in a bigger system and it’s fast enough (perhaps running on a supercom-

puter), you can run that system before there’s real code for the module. 

An executable spec also has some drawbacks:  

− It may not be simple and clear enough to be useful as a spec; you need powerful primitives 

and a strong will to keep from putting in too many details. 

− Nondeterminism is hard, and a single choice in the spec may constrain the code too much. 

− It can’t use the full power of mathematics. For example, it can’t say, “There exists a path 

through this network such that …” 
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A related idea is a reference implementation. Sometimes this means an executable spec, but 

more often it means practical but unoptimized code, intended to make it clear that the spec itself 

is practical, and often to guide implementers about what to do. 

2.3 Writing the code: Correctness—Get it right 

Smart companies know reliable software is not cost effective. It’s much cheaper to release buggy 

software and fix the 5-10% of bugs people complain about. (paraphrased)  —Bruce SchneierQ49 

Most of this paper is about how to write the code. But is the code correct? In other words, does it 

satisfy the spec? (You don’t have a spec? Then the question makes no sense.) In theory this ques-

tion has a yes-or-no answer. If  

− the spec is a predicate that describes every allowed or required action (step) of the system,  

− the code precisely specifies every action that the system takes, and  

− you know which parts of the state are visible to the client,  

then correctness is a theorem: “Every visible code behavior is a spec behavior,” either true or false. 

This section explains how to prove this theorem; even though it’s seldom worthwhile to complete 

this proof, you can find bugs and get insight into why the code works by writing down the abstrac-

tion function and invariants described in step (3) below. 

If the theorem is true, a surprising fact is that it has a simulation proof: there is an abstraction 

function 𝑓 from the code state to the spec state that matches each code action with a spec action 

that has the same visible effect. 
  

 

Fig. 1: Inductive step for a simulation proof 
 

Figure 1 is the inductive step in the proof that every visible code behavior is a spec behavior. You 

might need to add history or prophecy variables (or use an abstraction relation).R1 

For a non-interactive system such as 𝑠𝑜𝑟𝑡(𝑎:seq) returns 𝑠𝑎 the figure is the whole story, 

since the spec has only two states. The code has lots of internal states as it reorders the sequence, 

but they all map to the spec’s pre-state. For the file system spec action 𝑤𝑟𝑖𝑡𝑒(𝑓, 𝑖, 𝑏) (ignoring the 

complications of crashes) the code does  

− a long sequence of internal actions that simulate skips in the spec, to bring into RAM the 

index block and data block for byte 𝑖 of the file, allocating new blocks if necessary,  

− followed by a visible action to update byte 𝑖 to 𝑏 that simulates the 𝑤𝑟𝑖𝑡𝑒 action,  

− followed by more internal code actions to write the changed blocks back to disk. 

f (c) f (c')

c c'

ff

spec

code

pre-state post-state
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A later 𝑟𝑒𝑎𝑑(𝑓, 𝑖) will return 𝑏. Following this script, once you have the spec (steps (1) and 

(2) above) and the code state and actions, there are two more steps to connect them: 

(3) Find an abstraction function (or relation) from code to spec state. 

At the same time, find the invariants on the code state, that is, define the states that the code can 

reach; the proof only needs to deal with actions from reachable states. For example, code that has 

a sorted array has an invariant that says so, and you need it to show that lookup actually works. 

(4) Finally, do the proof that every code action preserves the visible behavior and the invariants. 

Step (4) requires reasoning about every action in the code from every reachable code state, so 

it’s by far the most work. Step (3) requires understanding why the code works, and it usually 

uncovers lots of bugs. Unfortunately, the only way to be sure that you’ve done it right is to do step 

(4), which is usually not worthwhile.  Writing a spec is always worthwhile, though, because it 

decouples the client from the code. 

An alternative is model checking: exploring a subset of the code’s state space systematically, 

looking for behaviors that violate the spec. This doesn’t give any guarantee of correctness (unless 

there are so few behaviors that the checker can try them all), but it finds lots of bugs.R51,R23  

Testing, model checking, and proof are all much easier when a big system is decomposed into 

well-specified modules with simple abstract states, because you only have to consider the code 

state of one module at a time, which is much smaller than the code state of the entire system. 

2.3.1 Types 

Types are a way to express some facts about your code that the machine can understand and check, 

in particular some stylized preconditions and postconditions. The idea is that  

− a value 𝑣 of type 𝑇 has an extra type field whose value is 𝑇,  

− if 𝑅 is a routine with type 𝑇 → 𝑈, its argument must have type 𝑇 (the precondition): 𝑅(𝑣) 

is an error unless 𝑣.type = 𝑇 (or more generally, 𝑣.type is a subtype of 𝑇), 

− 𝑅’s result has type 𝑈 (the postcondition).  

With dynamic types the type field is there at runtime (most often it’s called a class) and a call of 

𝑅 checks the precondition. In a static system type is a “ghost” field not present at runtime, because 

the compiler knows the type of every expression and does the checks. 

Why are static types good? For the same reason that static checking in general is good: the 

compiler can try to prove theorems about your program, and if it fails you have found a bug early, 

when it’s cheap to fix. Most of the theorems are not very interesting, since they just say that argu-

ments have the right types. But the first draft of a program almost always has lots of errors, most 

pretty obvious, so type checking finds lots of bugs  when it can’t prove its trivial theorems.R55  

2.3.2 Languages 

What programming language should you use? There is no universal answer to this question, but 

here are some things to think about: 
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• How hard is it to write your program so that the language guarantees a safe, bulletproof abstract 

state, in which a variable always has the expected type and only an explicit write can change 

its value? Usually this means strong typing and garbage collection. Java is safe in this sense, 

C++ is not (unless you hide unsafe features behind a safe abstraction),R65 and JavaScript is in 

between. If the abstract state isn’t bulletproof, debugging is much harder. 

• Is the language well matched to your problem domain? Is it easy to say the things that you say 

frequently? Is it possible to say all the things that you need to say? 

• What static checking does the compiler do? A bug found at compile time is much easier to fix. 

• How hard is it to make your program efficient enough, and to measure how it uses resources? 

2.4 Modules and interfaces—Keep it clean. Keep basic interfaces stable.  

The only known way to build a large system is to reinforce abstraction with divide and conquer: 

break the system down into independent abstractions called modules. I’ll call the running code of 

a module a service; sometimes people call it an object. The spec for a module does two things:  

− it simplifies the client’s life by hiding the complexity of the code (see above), and 

− it decouples the client from the code, so that the two can evolve independently.  

Thus many people can work on the system productively in parallel without needing to talk to each 

other. Since a spec embodies assumptions that are shared by more than one part of a system, and 

sometimes by a great many parts, changing it is costly. 

It’s common to call the spec of a module its interface, and I’ll do this too. Unfortunately, in 

common usage an interface is a very incomplete spec that a compiler or loader can process, giving 

just the data types and the names and (if you’re lucky) the parameters of the operations, rather than 

what the actions do with the state. Even a good description of the state is often missing. 

A really successful interface is like an hourglass: the spec is the narrow neck, with many clients 

above and many codes below; it can live for decades. Examples: CPU ISAs (instruction set archi-

tectures such as x86 and ARM), file systems (Posix), reliable messages (TCP), names for Internet 

services (DNS), web pages (HTTP and HTML). Ousterhout’s book on software designR53 gives 

many smaller examples, emphasizing how important it is to make the spec much smaller and sim-

pler than the code.  

A module boundary doesn’t just decouple its code from the clients; it can decouple its execu-

tion and resource consumption as well. If the interface is asynchronous neither side waits for the 

other, so the service can keep running no matter what the clients are doing, and vice versa. And it 

can manage the way it consumes storage and other resources independently of its clients. Thus the 

service is an autonomous agent. How does this show up in the spec? A complete spec doesn’t just 

say enough about the service’s internal state to say what results it returns; the spec also describes 

how it consumes any resources it shares with its clients. An autonomous service doesn’t share 

resources, so its spec is simpler and a system that uses it is more dependable and easier to change. 

Distributed transactions are an interesting example. 
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2.4.1 Classes and objects 

Mathematics is the art of giving the same name to different things. —Henri PoincaréQ43 

A very popular variation on modules attaches the spec and code to a data item, usually called an 

object. Programs organized this way are called object-oriented. You package the specs for a set of 

routines called methods with the same type of first argument into a single spec, here called a class-

pec (it’s called an abstract base class in C++ and Python). The code for the classpec is a class, a 

dictionary that maps each method name to its code. An object that has the class attached is an 

instance of the class. 

For example, the classpec Ordered T might have methods eq and lt. If x is an instance of 

Ordered T, then x.eq(y) calls the eq method in x’s class with arguments (x,y). Adding methods 

to a class makes a subclass, which inherits the superclass methods; so Ordered T is a subclass of 

an Equal T class that has only the eq method. An Ordered T instance is also an Equal T instance. 

2.4.2 Layers and platforms 

A system usually has lots of modules, and when a module’s spec 

changes you need to know who depends on it. To make this easier, put 

related modules into a layer, a single unit that a team or vendor can ship 

and a client can understand. The layer only exposes chosen interfaces, and a lower layer is not 

allowed to call a routine in a higher layer. So a layer is a big module, normally a client of its host, 

a single layer below it, with one or more layers as its clients above it. Layers are good for decou-

pling, but they are not free. Unless you’re very careful, there’s a significant cost for each level of 

abstraction. Usually this cost is worth paying, but if performance is important it’s prudent to meas-

ure it. There are two ways to reduce it: make it cheaper to go from one layer to another, or bypass 

some layers (making the system a lot more complicated and hard to maintain). The ideas in § 2.4.4 

on open systems can also help. 

Usually you build a system on a platform, a big layer that serves a wider range of clients and 

comes from a different organization. Common platforms are a browser (the interface is a document 

object model accessed through JavaScript) or a database system (the interface is SQL), built on an 

operating system platform (Windows or Linux; the interface is kernel and library calls) built on a 

hardware platform (Intel x86 or ARM; the interface is the ISA). It’s turtles all the way down: the 

hardware is built on gates and memory cells, which are built on transistors, which are built on 

electrons . Here is a 2020 example with all the turtles: 
  

Host

YOU

Clients

PeersPeers
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Layer Example 

application Gmail 

web framework Django 

database     browser BigTable     Chrome 

operating system Windows 10 

virtual machine VMware 

ISA X86 

CPU hardware AMD Ryzen 7 2700X 

gates         memory TSMC 7 nm         Micron MT40A16G4 

transistors 7 nm finFET      LPDDR4X-4266 

quantum mechanics electrons 
  

2.4.3 Components 

Reusing pieces of code is like picking off sentences from other people’s stories and trying to make 

a magazine article. —Bob FrankstonQ17 

It’s harder to read code than to write it. —Joel SpolskyQ51 

A module that is engineered to be reused in several systems is called a component. Obviously it’s 

better to find a component that does what you need than to build it yourself (don’t reinvent the 

wheel), but there are some pitfalls: 

− You need to understand its spec, including its performance. 

− You need to be confident that its code actually satisfies the spec and will be maintained.  

− If it doesn’t quite do everything that you want, you have to fill in the gaps.  

− Your environment must satisfy the assumptions the component makes: how it allocates 

resources, how it handles exceptions, how it’s configured, and the interfaces it depends on. 

There are two ways to keep from falling into one of these pitfalls: 

• Copy and paste the module’s code into your system and make whatever changes you find nec-

essary. This is usually the right thing to do for a small component, because it avoids the prob-

lems listed above. The drawback is that it’s hard to keep up with bug fixes or improvements. 

• Stick to the very large components usually called platforms. There will only be a few of them 

to learn about, they encapsulate a lot of hard engineering work, and they stay around for a long 

time because they have a viable business model (since it’s impractical to write your own).R39 

A well-maintained library can also be a source of safe components. 

2.4.4 Open systems—Don’t hide power. Leave it to the client. 

The point of an abstraction is to hide how the code is doing its work, but it shouldn’t prevent a 

client from using all the power of its host. An abstraction can preempt decisions that its clients 

could make; for example, its way of buffering I/O might keep a device from running at its full 

bandwidth. If it’s an ordinary module, a client can always hack into it, but that’s not an option if 

it’s an operating system that isolates its clients, or if you want to keep taking bug fixes. The alter-

native is careful design that doesn’t hide power, but gives clients access to all the underlying per-

formance. The Internet’s UDP protocol is an example; unlike reliable TCP, it gives clients direct 
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access to the basic unreliable, best-efforts packet delivery, which is critical for real-time applica-

tions like voice. Scheduler activations are less convenient than threads, but give the client control 

over scheduling and context switching. Exokernels carry this idea further to a library OS. 

Another way to expose an abstraction’s power (and also to make it extensible) is to make it 

programmable, either by callbacks to client-supplied functions or by programs written in an appli-

cation-specific instruction set. A successful abstraction will have many clients depending on all 

the details of this interface, so choose it carefully. There are many examples of programmability: 

− The SQL query language, a functional instruction set. 

− JavaScript embedded in data: webpages, documents, database records, etc. 

− Display lists and more elaborate programs for GPUs. 

− Programmable network interfaces (NICs); leaving it to the client is very important here.R32 

− Software-defined networking. 

− Patching of binaries, or of code written in other languages. 

Binary patching was first done in the Informer, a tool for instrumenting an OS kernel; it checked 

the proposed machine code patch for safety.R22 Now there are binary modification tools 

2.5 Points of view 

A point of view is worth 80 points of IQ —Alan KayQ25 

A good way of thinking about a system makes things easier, just as the center-of-mass coordinate 

system simplifies dynamics problems, or statistical mechanics summarizes the behavior of many 

particles in a few parameters such as temperature and pressure. It’s not that one viewpoint is more 

correct than another, but that it’s more convenient for some purpose. Many of the oppositions 

reflect this idea. Here are some examples of alternative points of view, discussed in more detail 

later: 

• Being vs. becoming: the state is the variable values (a map), or the actions that made it (a log).  

• Iterative vs. recursive: do the same thing, or divide into sub-cases until it’s really simple. 

• Declarative vs. imperative define a result by its properties or by the steps that achieve it. 

• Interpreter vs. compiler: different primitives get you different speed, size, or ease of change. 

2.5.1 Notation 

By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more 

advanced problems, and in effect increases the mental power of the race. —A.N. WhiteheadQ58 

Notation is closely related to viewpoint, making something that’s important easier to think about. 

Every system has at least some of its own notation: the datatypes and operations it defines, which 

are a domain-specific language (DSL) without its own syntax. A notation can also be general-

purpose: a programming language like C or Python, or a library like the C++ standard template 

library. Or it can be for a domain: a DSL like the Unix shell (for sequential string processing) or 

Julia (for numerical computation), or a library like TensorFlow (for machine learning).  

A notation consists of: 
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• Vocabulary for naming relevant objects and actions (grep, awk, cat, etc. for the shell). Generic 

terms make it easier for people: “sort” for different sorting methods, “tree” for partially ordered 

or recursive structures. In a spec, the foundation should be mathematics, most often relations. 

• Syntax for stringing them together (in the shell, “|” for pipes, “>” for redirect, etc.). In a DSL, 

syntax is a way to make common things in the domain easy to write and read. By contrast, a 

library has to live with the syntax of the language, typically method selection and function call. 

3. Goals and Techniques 

3.1 Overview 

The summary is STEADY by AID with ART: reach goals by using techniques with the process. 

3.1.1 Goals—STEADY 

[Data is not information,] Information is not knowledge, Knowledge is not wisdom, Wisdom is not 

truth, Truth is not beauty, Beauty is not love, Love is not music and Music is THE BEST —

Frank ZappaQ61 

By goals I mean general properties that you want your system to have, not the problem it tries to 

solve. You probably want your system to be STEADY: Simple, Timely, Efficient, Adaptable, 

Dependable, and Yummy. Since you can’t have all these good things at the same time, you need 

to decide which goals are most important to you; engineering is about trade-offs. 

Simple should always be the leading goal, and abstraction is the best tool for making things 

simpler, but neither one is a panacea. There’s no substitute for getting it right. Three other goals 

are much more important now than in the 1980s: Timely, Adaptable, and Yummy.  

• Timely (to market) because cheap computer hardware means that both enterprises and con-

sumers use computer systems in every aspect of daily life, and you can deploy a system as 

soon as the software is ready. If you can’t deliver the system quickly, your competitor can. 

• Adaptable because the Internet means that a system can go from a few dozen users to a few 

million in a few weeks. Also, user needs can change quickly, and for many applications it’s 

much more important to be agile than to be correct. 

• YummyQ47 because many systems are built to serve consumers, who are much less willing 

than organizations to work hard to learn a system, and much more interested in features, fash-

ions and fads. Even for professionals, the web, social media and GitHub mean that it’s easy 

for enthusiasm to build up in defiance of formal procurement processes. 
       

Goals Simple Timely Efficient Adaptable Dependable Yummy 

As questions Is it clean? Is it ready? Is it fast? Can it evolve? Does it work? Will it sell? 

Alliterative Frugal First Fast Flexible Faithful Fashionable 

As nouns Beauty Time to market Economy Evolution Fidelity Elegance 
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3.1.2 Techniques—AInD 

Techniques are the ideas and tools that you use to build a system; knowing about them keeps you 

from reinventing the wheel. The most important ones are about abstraction and specs; those are 

principles, not just hints. Most of the rest fall under three major headings: 

• Approximate rather than exact, perfect or optimal results are almost always good enough, and 

often much easier and cheaper to achieve. Loose rather than tight specs are more likely to be 

satisfied, especially when there are failures or changes. Lazy or speculative execution helps to 

match resources with needs. 

• Incremental design has many aspects; often they begin with “i”. The most important is to 

build the system out of independent, isolated parts called modules with interfaces, that you can 

put together in different ways. Such parts are easier to get right, evolve and secure, and with 

indirection and virtualization you can reuse them in many different environments. Iterating the 

design rather than deciding everything up front keeps you from getting too far out of touch 

with customers, and extensibility makes it easy for the system to evolve. 

• Divide and conquer is the most important idea, especially in the form of abstractions with 

clean specs for imposing structure on your system. This is the only way to maintain control 

when the system gets too big for one person’s head, now or later. Other aspects: making your 

system concurrent to exploit your hardware, redundant to handle failures, and recursive to re-

use your work. The incremental techniques are other aspects of divide and conquer. 

For each technique, many examples show how it’s used and emphasize how widely applicable it 

is. A small number of ideas show up again and again, often concealed by the fact that people use 

different words for the same thing. The catalog below is both short and surprisingly complete. 

The examples can inspire you when you have a design problem; if you find one that’s a good 

match for an important part of your problem, you can see what techniques it uses and how it uses 

them. A helpful example might be from a very different application domain than yours. For another 

source of inspiration, look at these links to important techniques: 

Simple: abstraction, action, extensible, interface, predictable, relation, spec. 

Efficient: algorithm, batch, cache, concurrent, lazy, local, shard, stream, summarize, translate. 

Adaptable: dynamic, index, indirect, scale, virtualize. 

Dependable: atomic, consensus, eventual, redundant, replicate, retry. 

Incremental: becoming, indirect, interface, recursive, tree. 

3.2 Simple 

I’m sorry I wrote you such a long letter; I didn’t have time to write a short one. —Blaise PascalQ42 

Everything should be made as simple as it can be, but not simpler. —Albert EinsteinQ16 

Simple things should be simple, complex things should be possible. —Alan KayQ26 

The main thing is to keep the spec simple and to divide the system into modules with simple specs, 

points that I’ve already discussed. This section is about keeping the code simple. 
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3.2.1 Do one thing well 

Figure out how to solve one really tricky sticky problem and then leave the rest of the system 

straightforward and boring. I call this the “rocket science” pattern. —Terry CrowleyQ10 

There are some insurmountable opportunities around. —Don MitchellQ35 

Work expands so as to fill the time available for its completion. —C. Northcote ParkinsonQ41 

Design your system around a small number of key modules with simple specs and predictably good 

performance. If you’re lucky you can get these modules from your platform or from a library. If 

not, you have to build them yourself, but your goal should be the same. Finding this system design 

and building the key modules is hard work, but it’s rewarded throughout the system’s life because 

you can concentrate on the customers’ needs; the rest of the code is easy to change, since it won’t 

need any real cleverness. A successful key module will grow over time, improving performance 

with better algorithms and adding a few features, but building on a solid foundation. Make it fast 

rather than general or powerful, because then the client can program the function it wants. Slow, 

powerful operations force the client who doesn’t want the power to pay more for the basic function. 

Usually it turns out that the powerful operation is not the right one. Well-known examples are 

CISC vs. RISC instruction sets and guaranteed vs. best-efforts packet delivery. 

A wide range of examples illustrate this idea: 

• The inode structure in a file system represents variable-length byte strings efficiently, even 

very large ones. Many variations fit in: variable-length extents (ranges of disk blocks) to keep 

the index small, sharing parts of the byte string for copy-on-write, logs for crash recovery. 

• The Unix version 6 operating system separates file directories from inodes, and uses shell pro-

grams to connect applications through byte streams. 

• The basic Internet protocols (TCP and UDP) provide reliable and best-efforts communication 

among billions of nodes. 

• The BitBlt interface’s simplicity make it the standard for raster display applications.  

• The eventually consistent hierarchical name space of DNS is the basis of Internet naming. It 

maps a path name such as csail.mit.edu into a set of small “records”. 

• Relational databases structure very large amounts of data as tables with named columns. 

Often a module that succeeds in doing one thing well becomes more elaborate and does several 

things. This is okay, as long as it continues to do its original job well. If you extend it too much, 

though, you’ll end up with a mess. Only good judgment can protect you from this. 

3.2.2 Brute force 

Entities should not be multiplied beyond necessity. —William of OccamQ39 

Computers are fast, and specialized hardware is even faster—take advantage of this. Exhaustive 

search (perhaps only up to some “depth”) is a simple brute force technique. Its cost is 𝑂(𝑛), and 

often 𝑛 is not too big, so always consider it first. Examples: grep over a file, model checking, 

many optimization problems, and a host of attacks on security measures such as password 
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guessing. It’s also the only way to query a database if you don’t have an index. It works best when 

you have locality. 

Broadcast is another example of brute force. It is to routing as exhaustive search is to indexing, 

and likewise scales badly. In networking you often need a broadcast to get started. A third example 

is polling for pending work, instead of notification. 

3.3 Timely 

Building a timely system (one that ships soon enough to meet your time-to-market needs) means 

making painful choices to give up features and dependability. If it’s extensible you can add features 

later; adding dependability is harder. It’s easier to make approximate software timely. 

»The web. Perhaps the biggest reason the web is successful is that it doesn’t have to work. The model is that the user 

will try again, switch to an alternative service, or come back tomorrow. It’s quite rare to find a web service that is 

precise. For example, there’s no spec for a search engine, since you can’t write code for “deliver links to the 10 web 

pages that best match the customer’s intent”, and indeed engines are ruthless about ignoring parts of the Internet in 

order to deliver results faster. 

» Uncoordinated software. A more surprising example comes from a major retail web site, where the software is 

developed as hundreds of modules. Each module is developed by a small team that has complete control over the 

specs and code. Any module can call any other module. There is no integration testing or release control. Not surpris-

ingly, it’s common that a module fails to deliver expected or timely results; this means that its caller must be pro-

grammed defensively. Retail customers may notice that some of the web pages they see are incomplete or wrong—

the only page that really must be correct is the one with the “Place Your Order” button. Of course, credit card pro-

cessing uses precise software. 

3.4 Efficient—ABCs. Use theory. Latency vs. bandwidth. S3: shard, stream or struggle. 

An efficient program is an exercise in logical brinksmanship. (paraphrased) —Edsger DijkstraQ15 

Efficiency is about doing things fast and cheaply. Most of what I have to say about it is in the 

ABCs below: Algorithms, Approximate, Batch, Cache, Concurrent, Commute, Shard/Stream. 

Bentley’s book says more about these ideas and gives many others.R8 But first some generalities. 

3.4.1 Before the ABCs 

The greatest performance improvement of all is when a system goes from not-working to working. 

—John OusterhoutQ40 

It’s tricky to write an efficient program, so don’t do it unless you really need the performance. If 

a shell script is fast enough to solve your problem, by all means use a shell script.R9 If you do 

optimize, remember the rule: make the code correct first and then make it fast. It’s a good idea to 

keep the unoptimized code around as an oracle to test the optimized code against. 

The resources you are trying to use efficiently are computing, storage, and communication. 

The dimensions are time and space: how long something takes and how many resources. For time 

the parameters are bandwidth (or throughput) and latency (or response time). Latency is the time 

to do the work (including communication) plus the time spent waiting for resources because of 

contention (queuing).  

A system design needs to consider efficiency as well as simplicity and functionality, even 

though it shouldn’t involve detailed optimization. To evaluate a design idea, start by working out 
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roughly how much latency, bandwidth and storage it consumes to deliver the performance you 

need. Then ask whether with optimistic assumptions (including plausible optimizations), you can 

afford that much. If not, that idea is no good; if so, go on to a more detailed analysis of the possible 

bottlenecks, and of how sensitive the cost is to the parameters of the platform and workload. 

If you can divide the work into independent parts, you can use concurrency to trade more 

resources (more bandwidth) for less latency. With enough parts the only limit to this is the budget, 

as cloud services for search, email, etc. demonstrate.   

Fast path and bottlenecks 

There are two basic ways to reduce latency: concurrency and fast path—do the common case fast, 

leaving the rare cases to be slow. For caching, the fast path is a cache hit. Amdahl’s Law governs 

the performance of fast path: if the slow path has probability 𝑝 ≪ 1, the fast path takes time 𝑓, and 

the slow path takes time 𝑠 ≫ 𝑓, then the average time is 𝑓 + 𝑝𝑠. The slowdown from the slow path 

is (𝑓 + 𝑝𝑠) 𝑓⁄ = 1 + 𝑝(𝑠 𝑓⁄ ). Thus a RAM cache with 𝑝 = 1% (99% hits) and 𝑠 𝑓⁄ = 100 (1 ns 

to cache, 100 ns to RAM) is 2 × slower than a hit every time. 

Amdahl invented his law to describe the limit on speedup from concurrency. Here the slow 

path is the part that must be done serially. The speedup from the concurrent fast path is 

𝑠 (𝑓 + 𝑝𝑠)⁄ = 1 (𝑓 𝑠⁄ + 𝑝)⁄ . With 𝑛-way concurrency 𝑓 𝑠⁄ = 1 𝑛⁄ , and for large 𝑛 this goes to 0 

and the speedup is just 1 𝑝⁄ . If 𝑝 = 1% (only 1% is serial), the maximum speedup is 100 ×, no 

matter how much concurrency there is. Whether you think of the result as a speedup or slowdown 

depends on your expectations. 

Almost the opposite of a fast path is a bottleneck, the part of the system that consumes the most 

time. Look for the bottleneck first. Usually you don’t need to look any farther; it dominates the 

performance, and optimizing anything else wastes your time and adds complexity. Once you’ve 

found it, find a fast path that alleviates it. In other words, design your code to use it as little as 

possible, and measure and control how it’s used. 

Predictable performance 

That, Sir, is the good of counting. It brings everything to a certainty, which before floated in the 

mind indefinitely. —Samuel JohnsonQ23 

What you measure is what you’ll get. Period. —Dan ArielyQ2 

Your guess about where the time is going is probably wrong. Measure before you optimize. If you 

depend on something unpredictable, measure it in the running system and either adapt to it, or at 

least report unexpected values so that developers or operations staff can tell what’s going on. 

It’s often not enough for a spec to describe only the state that the program can name. Resources 

must be part of the state, including real time, and an action must say roughly (perhaps within a 

factor of two) what resources it consumes, and especially how long it takes. Ideally this won’t 

depend on the environment or on parameters of the action, but often it does and you need to know 

how in order to use the action effectively. A module can control many aspects of its performance: 

internal data structures and algorithms, optimization, compression, etc. But the environment 
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controls other aspects: latency and bandwidth to storage, between address spaces and between 

machines. This can change as the clients’ demands or the underlying platform change, and a robust 

application must either adapt or report that it can’t.R20  

Don’t try to be precise; that’s too hard. It’s enough to know how to avoid disaster, as in paging, 

where you just need to keep the working set small enough. 

 Network access is very unpredictable and you can’t control it very well, so it’s best to work 

only on local data (which might be stale) when responding to a user input, unless it’s very obvious 

to the user that the network is involved, for example in a web search. This means that the UI should 

communicate asynchronously with anything that might be slow. 

Locality—Keep data small and close 

Because communication is expensive and memory hierarchies are deep, keep the data close to the 

computation. The L1 cache is the closest it can get, but you just need the data close enough that 

moving it to the computation doesn’t slow things down too much. The two main strategies are: 

• Keep the parts that run concurrently as independent as possible, to minimize communication.  

• Make the data smaller, so that more of it is local and there’s less to communicate. Try to get 

by with a summary of the full dataset. 

Often it helps to process data in a stream. To interact with a large object, store it so that all the 

data needed for computing the display is together. 

Contention 

If there aren’t enough resources to process the instantaneous load there will be contention, which 

shows up as queuing for access to a resource and increases the latency. It’s hard to understand 

queuing in general, but the simplest case is important and easy: if a resource is busy (utilized) for 

𝑢 seconds per second and tasks arrive randomly, then a task that uses it for a second will take 

1 ⁄ (1 − 𝑢) seconds. For example, at 𝑢 = 90% it takes 10 seconds—ouch!  

The other simple fact about a single queue is Little’s Law, 𝐿 = 𝜆𝑊: 𝐿 is the number of requests 

being processed, 𝜆 the throughput or bandwidth (the rate at which requests arrive and depart), and 

𝑊 the latency or response time for a request; all three are averages.One way to avoid contention 

is to break a resource into lots of pieces and choose one to use at random; if there are many more 

pieces than clients, contention is unlikely. 

3.4.2 Algorithms 

[In many areas] performance gains due to improvements in algorithms have vastly exceeded even 

the dramatic performance gains due to increased processor speed. —PCASTQ44 

Fancy algorithms are slow when N is small, and N is usually small. —Rob PikeQ45 

There’s been a lot of work both on devising algorithms for important problems and on analyzing 

their performance. The analysis bounds the running time 𝑡(𝑛) asymptotically as the problem size 

𝑛 grows: 𝑡(𝑛) = 𝑂(𝑛) means that there’s a constant 𝑘 such that 𝑡(𝑛) ≤ 𝑘𝑛 as 𝑛 → ∞. Anything 

worse than 𝑂(𝑛 log 𝑛) is bad unless 𝑛 is sure to be small, but this is not the whole story. 
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− There can be a large fixed overhead (which is bad when 𝑛 is small), and 𝑘 can also be large. 

− You might care about the average rather than the worst case. 

It’s usually best to stick to simple algorithms: a hash table for looking up a key, a B-tree for 

finding all the keys in a range, a DHT for strong fault tolerance. Books on algorithmsR19 tell you a 

lot more than you need to know. If you have to solve a harder problem from a well-studied domain 

such as numerical analysis or graph theory, look for a widely-used library. If 𝑛 is really large (say 

the Facebook friends graph), look for a randomized sublinear algorithm with time < 𝑂(𝑛); for 

example, the median of a large set of size 𝑛 is very close to that of a random subset of size log 𝑛.   

3.4.3 Approximate—Flaky, springy parts 

It is better to have an approximate answer to the right question than an exact answer to the wrong 

one. —John TukeyQ54 

Very often you don’t need an exact answer; a good enough approximation is fine. This might be 

“within 5% of the true answer” or “the chance of a wrong answer is less than 1%.” If the “chance” 

in the latter is truly random and the runs are independent, doing it twice makes it .01%. Sometimes 

the answer is just a guess (a hint), which you need to validate by watching the running system. 

You can approximate the analysis rather than the solution; this is “back of the envelope” anal-

ysis, and usually it’s all you need. How to do it: find the few bottleneck operations that account 

for most of the cost, estimate the cost and the number of times you do each one, multiply and add. 

For example, for a program that does 1010 memory operations, has a cache hit rate of 95%, and 

runs on a machine with RAM access time of 100 ns, if memory access is the bottleneck it will take 

about 1010 × .05 × 100/109 = 50 sec.R45 

It often pays to compress data so that it’s cheaper to store or transmit. The most powerful 

compression produces a summary that is much smaller than the input.  

• A sketch keeps the most important things about the input. Examples: a low resolution version 

of an image, a vector of hashes that maps similar documents to nearby pointsR14. 

• A Bloom filter is a bit vector that summarizes a set for testing membership. If a value is in the 

set the filter will say so; if it’s not, the filter will wrongly say that it is with some  probability 

𝑓. With 10 filter bits per set element 𝑓 < .01, with 20 filter bits 𝑓 < 10−4.R49 

• Sampling a data set summarizes it with a much smaller set whose properties are good approx-

imations to properties of the original. Often log 𝑛 samples from a set of size 𝑛 are enough. 

• A classifier tells you some property of the input, for example, whether it’s a picture of a kitten. 

• A Merkle tree  lets you prove that an item 𝑖 is in a set 𝑠 in 𝑂(log 𝑛) time and space.  

• Abstract interpretation summarizes the dynamic behavior of a program by making it static, 

replacing each variable with one whose value only depends on where you are in the program. 

Approximate behavior 

Another kind of approximation works on a program’s behavior rather than its data. 

• A hint is a value that might be what you want, but you need to check that it’s valid; see below. 
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•  In exponential backoff an autonomous agent responds to an overload signal by decreasing its 

offered load (rate) by some factor. Examples: ethernet, Internet TCP, Wi-Fi.  

• A randomized algorithm gives an answer with probability 𝑝 < 1 of being wrong. If 𝑝 isn’t 

small enough, repeat 𝑛 times and the chance of being wrong is 𝑝𝑛, as small as you like. 

• Eventual consistency lets applications operate on stale data. 

• Agile software development approximates the system spec to get something running quickly 

for both developers and users to try out. Their reactions guide the evolution of the spec. 

Hints 

A hint (in the technical sense) is information that bypasses an expensive computation if it’s 

correct; it’s cheap to check that it’s correct, and there’s a backup path that will work if it’s wrong. 

There are many examples of hints throughout the paper, but here are some general patterns: 

• An approximate index points to an item in a large data set that contains a search term, or more 

generally that satisfies a query. To check the hint, check that the item does satisfy the query.  

• A predictor uses past history to guess something. A CPU predicts whether a conditional branch 

will be taken; the check is to wait for the condition, the backup is to undo any state changes.R24  

• Routing hints tell you how to forward a packet or message. The backup is rerouting. 

3.4.4 Batch—Take big gulps 

Whenever the overhead for processing 𝑏 items is much less than 𝑏 times the overhead for a single 

item, batching items together will make things faster. If the batch cost is 𝑠, the cost per batched 

item is 𝑓 and the batch size is 𝑏, the total cost is 𝑠 + 𝑓𝑏 and the cost per item is 𝑓 + 𝑠 𝑏⁄ . This is 

just the fast path formula 𝑓 + 𝑝𝑠, with 𝑝 = 1 𝑏⁄ ; bigger batches are like a smaller chance of taking 

the slow path. Batching increases bandwidth, at the cost of increased latency. 

Here are some examples of batching: 

• Buffering many items in a stream (characters, lines, records, etc.) in memory. Usually it’s much 

cheaper to get or put an item from the buffer than from the stream. 

• A cache with a line size bigger than the size of the data requested by a load instruction.  

• Minibatches for deep learning; each minibatch trains a set of weights that fits in the cache. 

• Group commit, packing the commit records for many transactions into one log record. 

• Indexing, which pays a big cost upfront to build the index so that later queries will be fast. 

• Epochs, batching deletions or other changes to reduce syncing, as in read-copy-updateR48. 

The opposite of batching is fragmenting, artificially breaking up a big chunk of work into 

smaller pieces. This is good for load-balancing, especially when either the load or the service time 

is bursty. Fragmenting bounds the variation in latency, and it also reduces head-of-line blocking: 

small jobs stuck behind big ones. Fragments in a network are called packets. 



22 

 

3.4.5 Cache 

The idea of caching is to remember the result of a function evaluation 𝑓(𝑥). The best-known ap-

plication is when 𝑓(𝑥) is “the contents of RAM location 𝑥”; CPUs implement this in hardware. 

File and database systems do the same in software, keeping disk pages in RAM. Most references 

will hit in the cache if there’s enough locality and it’s bigger than the working set of frequently 

referenced locations; otherwise the cache will thrash.  

The software indexes of databases and search engines are equally important; here 𝑓(𝑥) is “the 

table rows or documents matching 𝑥”. Without an index you have to scan the entire database to 

evaluate these functions.    

If 𝑓(𝑥) depends on the state as well as 𝑥, then when state changes cause 𝑓(𝑥) to change you 

must tolerate stale cache values, treat a cache hit as a hint and check it, or invalidate or update a 

cache entry. The last requires that the source of the change either 

− sends a notification to any cache entries that depend on it, or  

− broadcasts every state change, and the cache watches the broadcasts. 

For a RAM cache a state change is another processor’s write to an address in the cache, and the 

two techniques are called directory and snooping.  

Here are some other examples of caching a function: 

• Network routing tables, which say what link to use to reach a destination address. These are 

soft state, updated lazily by a routing protocol such as BGP, OSPF, or ethernet switching. 

• Shadow page tables in virtual machines, which cache values of the mapping 

(𝑔𝑢𝑒𝑠𝑡 𝑉𝑀, 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠) → ℎ𝑜𝑠𝑡 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠, the composition of 𝑔𝑢𝑒𝑠𝑡 𝑉𝐴 →

𝑔𝑢𝑒𝑠𝑡 𝑃𝐴 and 𝑔𝑢𝑒𝑠𝑡 𝑃𝐴 → ℎ𝑜𝑠𝑡 𝑃𝐴.  

• Materialized views in a database, which cache the table that’s the result of a query. 

3.4.6 Concurrency—S3: shard, stream or struggle. Make it atomic. 

Now that single-stream general-purpose processors are not getting faster,R43 there are only three 

ways to speed up a computation: using fewer instructions or cache misses (by better algorithms or 

tighter code), specialized hardware, and concurrency. Only the latter is reasonably general-pur-

pose, but it has two major problems:  

• It’s hard to reason about concurrent computations that make arbitrary state changes, because 

the concurrent steps can be interleaved in so many ways. Hence the S3 slogan.  

• To run fast, data must be either immutable or local, because when a remote variable changes, 

getting its current value is costly. Fast computations need P&L: parallelism and locality. 

The other reason for concurrency is that part of the computation is slow. Disk accesses, net-

work services, external physical devices, and user interaction take billions of processor cycles. 

And when the slow part is done it has to get the attention of the fast part, usually by some form of 

notification: interrupt a running thread, wake up a waiting thread, post to a queue that some thread 

will eventually look at, or run a dispatcher thread that creates a new thread. 
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Sharding is really easy concurrency that breaks the state into 𝑛 pieces that change inde-

pendently. A single thread touches only one shard, so the steps of threads that touch different 

shards don’t depend on the interleaving. A key determines which shard to use. The simplest exam-

ple is disk striping: a few bits of the address are the key that chooses the disk to store a given block, 

and all the disks read or write in parallel. Fancier is a sharded key-value store with ordered keys; 

𝑛 − 1 pivot values divide the keys into 𝑛 roughly equal chunks. To look up a key, use the pivot 

table to find its shard.  

Often there’s a combining function for results from several shards. A simple example is sam-

pling, which just takes the union of a small subset from each shard. 

Streaming is the other really easy kind of concurrency: divide the work for a single item into 

𝑘 sequential steps, put one step on each processor, and pass work items along the chain. This 

scheme generalizes to dataflow, where the work flows through a DAG. The number of distinct 

processing steps limits concurrency. Use batching to reduce the per-item overhead. Map-reduce 

combines these two techniques, alternating a sharded map phase with a combining reduce phase 

that also redistributes the data into shards that are good for the next phase.  You can reuse the same 

machines for each phase, or stream the data through a DAG of machines.  

Beyond shards and streams—struggle 

Do I contradict myself? Very well then I contradict myself, (I am large, I contain multitudes.) —

Walt WhitmanQ60 

I may be inconsistent. But not all the time. —Anonymous 

If you can’t shard or stream, you will have to struggle. It helps to first show that a general 

nondeterministic program is correct, and then let performance constrain the choices: scheduling 

(including timeouts, interleaving, losses), table sizes, etc. If the abstract state is not bulletproof (at 

least type and memory safe) you’ll struggle more. 

There are four kinds of concurrency; the first three provide consistency, the same result as 

running the actions sequentially in some order (this isn’t the ACID consistency of transactions). 

• Really easy: pure sharding or streaming. Either actions are independent, sharing no state ex-

cept when you combine shards, or they communicate only by producer-consumer buffers. 

• Easy: make a complex action atomic so that it behaves as if the entire action happened sequen-

tially (serially). To do this, group the actions into sets that don’t commute (and hence break 

atomicity if they run concurrently), such as reads and writes of the same variable. Have a lock 

variable to protect each set, with the rules that: 

− Before running an action, a thread must acquire its lock.  

− Two locks in different threads conflict if their actions don’t commute. For example, writes 

of the same variable don’t commute with reads or other writes. 

− A thread must wait to acquire a lock if another thread holds a conflicting lock.  

• Hard: anything else. With hard concurrency you can choose: do a formal proof or have a bug. 
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• Eventual: all updates commute, so you get the same eventual result regardless of the order 

they are applied, but you have to tolerate stale data. This is easy to code: 

− Make updates commute. The usual case is a blind write 𝑣 ≔ constant to a variable 𝑣. To 

make two writes to 𝑣 commute, timestamp them and let the last writer win. 

− Broadcast the updates to all the nodes.  

It’s also highly available, since you can always run using only local data. The apps pay the 

piper: they must deal with stale data. Three of many examples are name services like DNS, 

key-value stores like Dynamo, and “relaxed consistency” memoryR4. 

An important special case of easy concurrency is epochs, a batching technique that maintains 

some invariant on the state except in between epochs. An epoch holds a global lock on certain 

changes, so that they can only occur when the epoch ends. The code follows these rules by con-

vention; there’s no lock variable that’s acquired and released. Most often the change that is locked 

is deleting an object, so that objects won’t disappear unexpectedly. Sometimes the global lock 

prevents any changes to certain objects, keeping them immutable during the epoch. 

Locks don’t work well in a distributed system because they don’t play nice with partial failures. 

Leases can be a workaround. The only meaningful content in an asynchronous message is facts 

that are stable: once they are true, they are true forever. For example, a lease implies “𝑃 holds until 

time 𝑡,” which is stable. “𝑃 holds until 𝑄” might be stable too, but a failure can make 𝑄 inacces-

sible. A fact from an eventually consistent system is stable only if it has been synced. 

A good rule of thumb is the scalable commutativity rule: if the specs of two actions commute, 

then it’s possible to write code in which they run concurrently, which is important for keeping all 

the cores busy on modern CPUs. For example, Posix file open returns the smallest unused file 

descriptor; if it returned an arbitrary unused descriptor, two opens could commute.R16 

3.5 Adaptable 

There are many things your system might need to adapt to during its lifetime: 

− Changes in the clients’ needs: new features or data formats, higher bandwidth, lower la-

tency, better availability. 

− Changes in the host platform: new interfaces or versions, better or worse performance. 

− Changes in regulation or in security threats: privacy or other compliance requirements, 

data sovereignty, broken cryptography, new malware. 

− Changes in scale, from 100 clients to 100 million or from storing text to storing video.  

Such changes may force major rework, but usually a well-designed system can adapt less painfully. 

An old rule of thumb says that a 10 × change in scale requires a new design, but the Internet and 

the web are striking counterexamples. 

The keys to adapting to functional changes are modularity and extension points in the design. 

The keys to adapting to scaling are modularity, automation, and concurrency. 

Interface changes can be incompatible: unless the client and service specs change at the same 

time, there’s a mismatch. This is okay if the new service spec is a superset of the old one. Ethernet, 
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the Internet, many ISAs, some programming languages, and basic HTML have done this, and 40-

year-old clients still work. The alternative is indirection: an adapter or shim that satisfies the old 

spec and is a client of the new one. When the new one is dramatically different this is virtualization.  

3.5.1 Scaling 

Expanding on the catchwords above, scaling requires: 

− Modularity for algorithms, so it’s easy to change to one that scales better. 

− Automating everything, both fault tolerance and operations, so that a human never touches 

just one machine (except to replace it if the hardware fails).  

− Concurrency that scales with the load by sharding: different shards are independent be-

cause they don’t share variables or resources: all communication is asynchronous. 

The independent shards sometimes have to come back together. There are two aspects to this: 

− Combining the independent outputs or synchronizing the shard states.  

− Naming the shards, using big random numbers (which must be indexed) or path names.  

If the shards already exist, use federation to put them into a single name space by making a new 

root with all of them as children.  

− In a file system this is called mounting, and the shards stay independent.  

− In a source code control system the shards are branches and synchronization is merging.  

3.5.2 Inflection points—Seize the moment. Ride the curve. 

History never repeats itself, but it rhymes. —John Robert ColomboQ8 

Why do great new technologies often fail?  They are great when compared with the current incar-

nation of the boring old technology, but during the 3 to 5 years that it takes to ship the new thing, 

the old one improves enough that it’s no longer worthwhile to switch. This typically happens with 

new hardware storage technologies, such as thin film memories and optical disks. 

The reverse happens when a new idea has some fundamental advantage that couldn’t be fully 

exploited in yesterday’s world, but conditions have changed so that it now pays off: 

• Packets replaced circuits for communication when the computing needed to do the switching 

got cheap enough, and bandwidth got cheap enough for bursty data traffic to overwhelm voice.  

• Ted Nelson invented the web in the 1960s (he called it hypertext), but it didn’t catch on until 

the 1990s, when the Internet got big enough to make it worthwhile to build web pages. 

3.6 Dependable 

The price of reliability is the pursuit of the utmost simplicity. It is a price which the very rich find 

most hard to pay. —Tony HoareQ21 

A system is dependable if it is: 

− Reliable—it gives the right answers in spite of partial failures and doesn’t lose data. 

− Available—it delivers answers promptly in spite of partial failures. 

− Secure—it’s reliable and available in spite of malicious adversaries. 
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The secret of reliability and availability is fault tolerance by redundancy: doing things inde-

pendently enough times that at least one succeeds. Redundancy can be in time or in space. 

• Redundancy in time is retry or redo: doing the same thing again. You have to detect the need 

for a retry, deal with any partial state changes, make sure the inputs are still available, and 

avoid confusion if more than one try succeeds. The main design tool is end-to-end validation.  

• Redundancy in space is replication: doing the same thing in several places. The challenges are 

giving all the places the same input and making the computation deterministic so that the out-

puts agree. The main tool is consensus. 

It’s very important for the redundancy to mostly use the same code as the normal case, since that 

code is tested and exercised much more, and hence has many fewer bugs. And of course redun-

dancy won’t do any good if a deterministic bug (a Bohrbug) caused the failure. On the other hand, 

many bugs are infrequent nondeterministic Heisenbugs, usually caused by concurrency.R28 

Redundancy by itself is not enough; you also need repair. If one of two redundant copies fails 

the system continues to run, but it’s no longer fault-tolerant. Similarly, if a component is failing 

half the time and a single retry costs three times as much as a success, the operation takes six times 

as long as it should.  

The idea of redundancy is to have no single points of failure. This means a distributed system, 

which inherently is concurrent and has partial failures. Hence there are many more rare states, 

which is why a distributed system is harder to get right than a centralized one, in which many 

errors just reset the whole system to a known state. A Bohrbug is also a single point of failure, 

unless the redundancy includes different code.  

»Arpanet partitioning. On December 12, 1986, New England was cut off from the Arpanet for half a day. The map 

showed that there were seven connections to the rest of the network, but it didn’t show that all seven of them went 

through the same fiber-optic cable between Newark and White Plains.R31 In theory carriers can now guarantee that 

two connections share no physical structure. 

»Cellphone disconnected. I tried to call a friend at the Microsoft campus on his office phone. It didn’t work because 

it was a VOIP phone and his building’s Internet connection was down. So I tried his cellphone, and that didn’t work 

either because his building had a local cell base station, which used the building’s Internet to connect to the carrier 

and was too stupid to shut itself off when it could no longer connect. 

3.6.1 Correctness 

The best way to get your code to be correct is to keep it simple, and the best way to do that is to 

structure your system so that the most critical parts of the spec depend only on a small, well-

isolated part of the code. This is the trusted computing base (TCB), invented to keep computer 

systems secure but applicable much more broadly. It’s a good idea, but there are some difficulties: 

− Keeping the TCB isolated from bad behavior in the rest of the system. 

− Keeping the “most critical” parts of the spec from growing to be all of it (mission creep). 

− Maintaining the structure as spec and code change. 

The single best tool for making a TCB is the end-to-end principle;R59 its underlying idea is that 

the client is in control. Specifically, if the client can easily check whether an answer is correct and 

has a backup procedure, then the code that generates the answer isn’t in the TCB, and indeed 
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doesn’t need to be reliable at all. To use this idea you need a check for failure; if you’re just sending 

a message this is a strong checksum of the contents, and a timeout in case the message never 

arrives. The checksum also works for storage. 

You probably don’t want to give up if the check fails, so you need the backup; end-to-end says 

that this decision is up to the client, not the abstraction. You need to undo any visible state change 

caused by the failure,. After that, if the failure is nondeterministic retrying is a good backup. The 

canonical example is TCP, which makes the flaky best-efforts packet service of the raw Internet 

into a reliable congestion-controlled byte stream. Other possibilities are trying something more 

expensive, especially if it was a hint that failed, or running in a degraded mode such as eventual 

consistency (with or without notice to the client). There may be no backup; encryption, for exam-

ple, can’t prevent a denial of service attack, though it can guarantee secrecy and integrity.  

Fault tolerance means that the code doesn’t run sequentially, because it can be redirected at 

any point by a fault. Instead you should think of it as a collection of atomic actions, each one 

enabled by some predicate on the state that is not just “PC = x,” much like a concurrent program. 

In fact, a fault tolerant program is a concurrent program, in which you don’t have much control 

over the concurrency. An example is a crash-tolerant file system, where every chunk of code that 

ends with a write to the disk is an atomic action, after which recovery might run instead of the next 

sequential action. 

3.6.2 Retry—Do it again 

If you can tell whether something worked, and after it fails there’s a good chance that it will work 

better the second time, then retry is the redundancy you want. This applies especially to network-

ing, where often you don’t have good control of the communication, and even if you do it’s much 

cheaper to tolerate some errors. Retry is based on the end-to-end principle, and in most applications 

you expect it to succeed eventually unless the network is partitioned or the party you are talking 

to has failed. Retry is a form of slow path: success on the first try is the fast path, with cost 𝑓, and 

if 𝑝 is the chance of failure and 𝑟 is the cost for one retry (the time it takes to detect a failure—

usually a timeout—and try again), the cost of the slow path is 𝑠 = 𝑟(1 + 𝑝 + 𝑝2 + ⋯ ) =

𝑟 (1 − 𝑝)⁄ . As usual, the slowdown caused by retries is 1 + 𝑝(𝑠 𝑓⁄ ). For example, if a retry costs 

10 × a success (𝑟 = 10𝑓), then you need 𝑝 ≪ 10% to make the slowdown from retries small. 

If 𝑝 is too big (perhaps because the chance of corrupting a message bit is too great), you can 

make it smaller with forward error correction (an error-correcting code ). Or make 𝑟 smaller by 

fragmenting: breaking the work into smaller chunks that fail and retry independently. 

A retry that succeeds is supposed to yield the same final state as a single try (as long as there 

are no concurrent actions that don’t commute with this one); this is idempotence. Some actions are 

intrinsically idempotent, notably a blind write of the form 𝑥 ≔ constant. To make an arbitrary 

action such as 𝑥 ≔ 𝑥 + 1 idempotent, make it testable: give it a unique ID, remember the ID of a 

completed action (often as the version of a variable), and discard any redundant retries. In com-

munication this is discarding duplicate messages at the receiver; it’s called at-most-once 
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messaging. The reason that the payment pages of online commerce often say “don’t hit the back 

button and retry” is that they do this wrong. 

Another form of retry is redo recovery from a log after a crash. If every pair of actions 𝑎 and 

𝑏 in the log either commute (𝑎; 𝑏 = 𝑏; 𝑎) or absorb (𝑎; 𝑏 = 𝑏), then redoing prefixes of the log 

repeatedly (which happens if there are crashes during recovery), followed by redoing the whole 

log, is equivalent to redoing the whole log once. This is log idempotence. A blind write absorbs an 

earlier write to 𝑥 and commutes with a write to any other variable. A testable action absorbs itself. 

3.6.3 Replication—Make copies 

The simplest kind of replication is several copies of the bits that represent the state, but it’s very 

tricky to make this work when there are failures because you can’t update all the copies atomically. 

The most powerful kind of replication is a log that records the sequence of operations that produced 

the current state. With this and a checkpoint of some past state, you can reconstruct the current 

state by redoing the operations. There are many variations on this idea. 

The strongest variation provides uninterrupted service even when there are failures. It is a rep-

licated state machine (RSM), a way to do a fully general fault-tolerant computation using the ideas 

of being and becoming. You make several replicas of the host, all running the same code, start 

them in the same state, and feed them the same sequence of deterministic commands, either in real 

time or from a log. Then they will produce the same outputs and end up in the same state. Any of 

the outputs will do as the output of the RSM, or the replicas can vote if there are at least three of 

them and a minority might be Byzantine. 

Of course there are some complications: 

• The replicas must all see the same sequence: they must all agree about the first command, the 

second command, etc. The Paxos algorithm for distributed asynchronous consensus does this; 

it guarantees that replicas will never disagree about commands, and it makes progress as long 

as a suitable quorum of replicas can communicate for long enough. a retry is forced to 

• The commands must be deterministic; this requires some care. 

• To restore a failed replica, you can redo the whole sequence of commands from scratch, or 

copy the state of some other replica and redo recent commands.  

Reads must go through the RSM as well, which is expensive. To avoid this cost, use the reliable 

communication channel called real time. One replica takes out a time-limited lock called a lease 

on part of the state through the RSM; this stops anyone else from changing that state. Drawbacks 

are that the leaseholder can be a bottleneck, and if it fails everyone must wait for the lease to expire 

unless you can reliably detect the failure. 

The usual way to do replication is as primary-backup: one replica is the primary, chosen by 

the RSM, and it has a lease on the whole state so that it can do fast reads and batch many writes 

into one RSM command. The backups see all the writes because of the RSM, and they update their 

state to be ready in case the primary fails. The RSM needs three replicas, but they only need to 

store the commands; only two have to store the entire state. 
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Replication can make things faster as well as fault tolerant, since you can read from any replica 

that you know is up to date, such as a cache. This only helps if there are a lot more reads than 

writes from different writers, since a replicated write costs more.  

»Ariane 5. The first flight of the European Space Agency’s Ariane 5 rocket self-destructed because both inertial ref-

erence system computers failed. The computers shut down because of an uncaught exception from an overflow. Shut-

down seemed reasonable to engineers familiar with random hardware failures rather than software Bohrbugs.R10 Les-

son: independence is tricky. 

3.6.4 Detecting failures: real time 

Real time is not just for leases. It’s the only way to detect that a service is not merely slow but has 

failed—it hasn’t responded for too long. (Another way is for the service to tell you about it, but it 

might be wrong or dead.) How to decide how long is too long? Choose a timeout, and when it 

expires either retry or declare a failure and run recovery; in both cases report the problem. For a 

client device the report goes to the human user, who can decide to keep trying or give up. For a 

service it ultimately goes to the operations staff.  

How do you choose a timeout? If it’s too short there will be unnecessary retries, failovers or 

whatever. If it’s too long the overall system latency will be too long. If the service reports the 

progress it’s making, that might help you to choose well. This story applies to a fail-stop system, 

which either satisfies its spec or does nothing. After a Byzantine failure the system might do any-

thing. These are trickier to handle, and out of scope here. 

3.6.5 Recovery and repair 

It’s common to describe availability by counting nines: 5 nines is 99.999% available, which is five 

minutes of downtime per year. A good approximation is 𝑀𝑇𝑇𝑅/𝑀𝑇𝑇𝐹, mean time to repair over 

mean time to failure (how long the system runs before it fails to serve its clients promptly enough). 

When part of a fault-tolerant system fails, 𝑀𝑇𝑇𝑅 is the time to fail over to a redundant component, 

not the time to fix the failing part. In a well-engineered system failover is less than the specified 

response time, so the system doesn’t fail at all; this is why it’s important to make failover fast. 

Repair is also important. 

»Memory errors. At Xerox Parc in 1971 we built a medium-sized computer called Maxc, using the new Intel 1103 

1024-bit dynamic RAM chip. We didn’t really know whether this chip worked, but with single bit error correction we 

never saw any failures in the running system. So we used the same chips in the Alto, but we decided to just have 

parity. Everything was fine until we ran the first serious application, the Bravo full-screen editor, and we started to 

get parity errors. Why? It turned out that 1103’s are pattern-sensitive. Although Maxc hardware reported a corrected 

error, there was no software to read the reports, and there were quite a few of them. Lesson: Measure failures and do 

repairs. 

We got the problem under control using a random memory test program. Two years later we built the Alto 2, 

using 4k RAM chips and error correction. The machine seemed to work flawlessly, but after another two years we 

found that in one quarter of the memory neither error correction nor parity worked at all, because of a design error. 

Why did it take us two years to notice? The 4k chips were much better than 1103’s, and most bits in RAM don’t matter 

much. This is why consumer PCs don’t have parity: chips are pretty reliable, parity adds cost, and parity errors make 

the PC manufacturer look bad, but if random things happen Microsoft gets blamed. Lesson: Different parties may 

have different interests. 
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3.6.6 Transactions—Make it atomic 

In bacon and eggs, the chicken is involved, the pig is committed. —Anonymous 

If a complex action is atomic (either happens or doesn’t), it’s much easier to reason about. The 

slogan for this is ACID: Atomic, Consistent, Isolated, Durable.  

• Atomic: Redo recovery makes it atomic with respect to crashes: after a crash either the whole 

action has happened, or none of it. 

• Consistent: If each transaction leaves the system in a good state when running sequentially, 

then the whole system does so in spite of concurrency or failures. In addition, the transaction 

can decide to abort before committing, which undoes any state changes and so makes it atomic 

with respect to its own work. So it only needs to leave the system in a good state (consistent) 

if it commits. 

• Isolated: The locks of easy concurrency make it atomic with respect to concurrent actions.  

• Durable: A committed transaction writes its changes to persistent storage, usually in several 

copies, so that they survive anything short of a truly catastrophic failure. 

Transaction processing systems ensure all these properties by draconian control over the transac-

tion’s application code. 

Atomic transactions don’t scale across organizations, because they can force you to hold locks 

until another agent’s work is done, and usually an organization won’t give up that much control.  

»Pixie dust. Transaction processing systems are the pixie dust of computing. They take an application that understands 

nothing about fault tolerance, concurrency, undo, storage or load-balancing, and magically make it atomic, abortable, 

immune to crashes, and easy to distribute across a cluster of machines. 

3.6.7 Security 

But who will watch the watchers? She’ll begin with them and buy their silence. —JuvenalQ24 

If you want security, you must be prepared for inconvenience. —Gen. Benjamin ChidlawQ7 

Computer security is hard because of the conflict between isolation and sharing. People don’t want 

outsiders to mess with their computing, but they do want to share data, programs and resources. In 

the early days isolation was physical and there was no sharing except by reading paper tape, punch 

cards or magtape. Today there’s a lot more valuable stuff in your computers, and the Internet 

enables sharing with people all over the world. The job of security is to say “No,” and people like 

to hear “Yes,” so naturally they weaken the security until they actually get into trouble.  

Here are the most important things to do for security (which all add inconvenience): 

− Focus: figure out what you really need to protect. 

− Lower aspirations: secure only things so important that you’ll tolerate the inconvenience. 

− Isolation: sanitize outside stuff to keep it from hurting you, or don’t share dangerous stuff. 

− Whitelisting: decide what you do trust, rather than blacklisting what you don’t.  

There are basically two approaches to security: high assurance and fixing bugs. The former 

tries to build a  that is simple enough to be formally verified or thoroughly tested. This has proved 

easier to say than to do; the closest approximations that are widely deployed are hypervisors. 



31 

 

Everyone practices the latter for want of anything better, but decades of experience tell you that 

there are always more bugs. Defense in depth can help. 

It’s traditional to describe the goals of security as confidentiality (secrecy), integrity and avail-

ability; the acronym is CIA. Integrity means that only authorized agents can change the state. In 

practice, systems that keep track of money or other critical data do use authorization, but they rely 

on detecting and undoing bad changes, rather than always preventing them, because even author-

ized agents sometimes make mistakes or do bad things; this is an example of the end-to-end prin-

ciple, and the data is only eventually consistent. If you can’t undo something, such as a wire to 

Russia, you must be much more careful in allowing it. Long-lived systems have levels of undo, 

ending with bankruptcy court. 

The mechanisms of security are isolation and the gold standard of authentication (who is mak-

ing a request), authorization (who can access a resource), and auditing (what happened). A decen-

tralized system also has to establish  trust, which you do by indirection: you come to trust someone 

by asking someone else that you already trust. Thus to answer questions like, “What is the public 

key for billg@microsoft.com,” you trust a statement from microsoft.com that says, “The pub-

lic key for billg@microsoft.com is 𝐾.”R40 

What are the points of failure? For security they are called a threat model, especially important 

because there are so many possible attacks (hardware, operating system, browser, insiders, phish-

ing, …) and because security is fractal: there’s always a more subtle attack. For example, how do 

you know that your adversary hasn’t hacked the BIOS on your PC, or installed a Trojan Horse in 

the hardware?R73 So you need to be very clear about what you are defending against and what you 

are not worrying about. The TCB is the dual of the threat model; it’s just what you need to defend 

against the threats. The end-to-end principle makes the TCB smaller: encryption can make a secure 

channel between the two ends, so that the stuff in the middle is not a threat to secrecy or integrity.  

Code for security is often tricky; don’t roll your own. For secure channels, use TLS. For parsing 

text input to complex modules like SQL or the shell, use standard libraries to block SQL injection 

and similar attacks. Similarly for encrypting data; it’s easy to make mistakes in coding crypto 

algorithms, managing keys, and blocking side channels. 

» Outrunning a bear. Two hunters run into a grizzly bear in the woods. One says, “We’d better run!” The other objects, 

“You can’t outrun a grizzly.” The first replies, “But I only need to outrun you.” Lesson: Be a harder target than 

someone else who’s just as rich. 

3.7 Yummy 

The Mac is the first personal computer good enough to be criticized. —Alan KayQ27 

A system is much easier to sell if it’s yummy, that is, if customers are enthusiastic about it. There 

are some good examples: 

• Apple makes consumer products that people love to use, sacrificing functionality for complete-

ness, coherence and elegance. The Macintosh, the iPod and the iPhone are well known. 

• Amazon’s mission statement is, “To be Earth’s most customer-centric company,” and they 

approach a project by “working backwards”: first write the press release, then the FAQ.R71  
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• People use and love the web as soon as they see it. Writing for it is less yummy, though. 

• Spreadsheets are loved (especially by accountants and list-makers); VisiCalc is what made PCs 

take off. 

• Porsches, Corvettes and Teslas are yummy. 

By contrast, Microsoft Word,  and the Honda Accord are good products, but not yummy. Linux is 

yummy for developers, but not for users. 

So what—is it important for your system to be yummy? If it’s a consumer product it certainly 

helps a lot, and it might be crucial. For an enterprise product, staying power is more important. 

Clearly there’s a lot of noise, but to cheaply boost your chances of making a yummy system, Am-

azon’s approach is best. Much more expensive, but even better, is to study the users deeply. This 

is much easier if the designers are also users; this isn’t always possible, but when it is the resulting 

system is much more likely to succeed. Unix, Bravo and the Internet are obvious examples. 

3.7.1 User interfaces  

And the users exclaimed with a snarl and a taunt, “It’s just what we asked for but not what we 

want.” —AnonymousQ63 

People think that good user interfaces are all about dialog boxes, animations, pretty colors and so 

forth. Two things are much more important: 

• The user model of the system: is there a way for the user to think about what the system is 

doing that makes sense, is faithful to what it actually does, and is easy to remember?  

• Completeness and coherence of the interface: can the user see clearly how to get their whole 

job done, rather than just some piece of it? Are there generic operations like copy and paste 

that tell the user what operations are possible? Do the parts look and feel like a coherent design?  

User models and coherence are hard because it’s hard to find out what the users really need. You 

can’t just ask them, because they are paid to do their jobs, not to explain them—no user would 

have asked for the iPhone. The only way is to watch them at their work or play for a long time. A 

much cheaper substitute is to make up scenarios or use cases, but it’s hard to ensure that they are 

both common and complete.  

Here are some examples of good user models: 

− Files and folders on the desktop. 

− The web, with links that you click on to navigate. 

− Web search, which pretty often finds what you’re looking for. 

− Spreadsheets, which can do complex calculations without any notion of successive steps. 

And here are some less good examples: 

− Microsoft Word, with styles, sections, pages, and other things interacting confusingly. 

− The user interface to security—there’s no intelligible story about what’s going on. 

− System administration, where the sound idea that the user should describe the desired state 

by a few parameters is badly compromised by poor engineering of the components. 
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»Bravo and Gypsy. The most successful application on the Alto was the Bravo editor, the first What You See Is What 

You Get editor. When Charles Simonyi and I designed it, we made a deliberate decision not to work seriously on the 

user interface, because we knew it was hard and we didn’t have the resources to both build an editing engine and 

invent a new UI. Larry Tesler and Tim Mott came along with their Gypsy system for the book editors at Ginn. Their 

first step was to spend several weeks watching their customers at their daily work. They completely replaced our UI, 

and they invented modeless commands and copy/paste, the basis of all modern UIs.R67 

3.8 Incremental 

There are three aspects to incremental:  

− small steps—otherwise it wouldn’t be incremental, 

− useful steps—you make some progress each time, and 

− steps proportionate to the size of the change—you don’t have to start over. 

Incremental steps are easier than big steps to understand, easier to get right, less disruptive, and 

more likely to be useful building blocks. But it’s important to start with a good idea; Alan Kay 

says, “It’s hard to tinker a great sculpture from malleable clay just by debugging.”Q28 

Increments can be qualitative or quantitative. Qualitative ones are being and becoming, indi-

rection, subclassing, path names and many other techniques. Quantitative ones add elements: 

− Nodes to the Internet or a LAN (and you don’t even have to take it down). 

− Peripherals to a computer. 

− Applications to an OS installation or extensions to a browser. 

3.8.1 Being and becoming 

This is an opposition: being is a map that tells you the values of the variables, becoming a log of 

the actions that got you here. Some examples: 

• A bitmap can represent an image directly, but a “display list” of drawing commands can pro-

duce the image; this generalizes to an arbitrary program, as in PostScript. 

• A log-structured file system uses the log to store the data bytes, with an index just like the one 

in an ordinary file system except that the leaf nodes are in the log, which is enough to recon-

struct the index. Amazon’s Aurora pushes this to a limit. 

• Checkpoints and deltas can compress a long sequence of states, such as the frames of a video 

or successive versions of a file. The checkpoints are a few complete states (called key frames 

for MPEG videos), and the deltas are actions that take one state to the next. 

• Becoming lets you do time travel, since you can recover any previous state by replaying the 

log. Checkpoints make this faster. 

• The standard way to recover from failures in a data storage system is to apply a redo log that 

produces the current state from a persistent state that reflects only some prefix of the actions.  

• A more general approach to fault tolerance uses a replicated state machine, which applies the 

same log to several identical copies of the state. 

How do you find the value of a variable 𝑣 (that is, construct a bit of the map) from the log? Read the log backward, 

asking for each logged action 𝑢 how it relates to the action 𝑟 that reads 𝑣.  If 𝑢 is a blind write 𝑚(𝑣′) ≔ 𝑥  then either 

𝑢 and 𝑟 commute (if 𝑣 ≠ 𝑣′) or 𝑢 determines that 𝑣 = 𝑥 and you don’t need to look farther back in the log. Other 
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kinds of 𝑢 need ad hoc treatment.»Bravo undo. How do you undo some actions to get back to a previous version 𝑣? 

Simply replay the log up through the last action that made 𝑣. We did this in Bravo, logging the user commands, 

although our original motivation was not undo but reproducing bugs, so the replay command was called BravoBug. 

I’ve never understood why later systems didn’t copy this; perhaps they didn’t want to admit that they had bugs.R42 

Optimizations 

There are many variations on these ideas. To keep a log from growing indefinitely you can 

take a checkpoint, which is a map as of some point in the log. You can share parts that don’t change 

among multiple versions; a copy-on-write file system does this, as does a library for immutable 

data like immutablejs.  

There’s a common idea behind these optimizations: deconstruct the map, moving it closer to a 

log, by putting it together out of independent parts. The base case that the hardware provides is a 

fixed-size finite array of bytes in RAM, pages on disk or whatever; here the variables are integers 

called addresses 𝐴. Call this a store 𝑆: 𝐴𝑆 → 𝑉 and represent it abstractly by a hierarchical structure 

𝑆 = 𝐴𝑆 → (𝑉 or  (𝑇, 𝐴𝑇)), where 𝐴𝑇 is an address in a lower level store 𝑇. Each level takes an 

address and either produces the desired value or returns a lower level store and address. Index 

blocks in file systems are an obvious example, but often you can think of this as a way to compress 

or index a log of updates, as in log structured memory or copy on write file systems. 

To efficiently build a store 𝑆 on top of lower-level stores 𝑇1, 𝑇2, …, build an index from (ranges 

of) 𝑆 addresses [𝑎𝑆, 𝑎𝑆 + Δ] to pairs (𝑇𝑖, 𝑎𝑇𝑖
); each entry in this index is a piece. A write changes 

the index for the range of addresses being written (fig. 2a). There are many data structures that can 

hold the index: a sorted array, a hash table, a balanced tree of some kind. 

Since the 𝑇𝑖 are stores themselves, this idea works recursively. And the indexes can be partial 

overlays, with a sequence of stores 𝑆𝑛, 𝑆𝑛−1, … 𝑆0; if 𝑎 is undefined in 𝑆𝑛, … , 𝑆𝑖 then you look in 

𝑆𝑖−1. Several successive writes can appear explicitly or you can collapse them to a single level 

(fig. 2b, with just 𝑆2 and 𝑆0, like CPU write buffers), or all the way to an index that maps every 

address (fig. 2c, like a copy-on-write file system). 
   

 
 

 

Fig. 2a: Writing “his” in place Fig. 2b: A single discontinu-

ous write 

Fig. 2c: Back to a full index for 𝑆2 

   

Amazon Aurora applies many of these techniques to a cloud database, separating storage com-

pletely from the database code. It treats the redo records that contain database writes as the truth; 

when the database reads a page, storage reconstructs it from the redo records. If there are many of 

them, it takes a checkpoint just for that page. This drastically reduces write bandwidth.R70 
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3.8.2 Indirection—Take a detour, see the world. 

Indirection is in opposition to inlining, but there are many other examples, often having to do with 

binding a client resource less tightly to the code or objects that implement it. Indirection replaces 

the direct connection between a variable and its value, 𝑣 → 𝑥, with an indirect connection or link, 

𝑣 → 𝑢 → 𝑥. This means that you go through 𝑢 to get to the object, and 𝑢 can do all kinds of things. 

It can multiplex 𝑥 onto some bigger object or federate it with 𝑦 so that its own identity becomes 

invisible. It can encapsulate 𝑥, giving it a different interface to make it more portable or more 

secure. It can virtualize 𝑥, giving it properties its creators never dreamt of. It can interpose between 

𝑣 and 𝑥 to instrument the connection. It can act as a name for 𝑥, decoupling 𝑥 from its clients and 

making it easy to switch 𝑣 to a different 𝑥.  

Multiplexing divides up a resource into parts. The classic example is dividing a communica-

tion channel into subchannels, either statically by time, frequency, or code division multiplexing, 

or dynamically by packet switching. An OS multiplexes files onto a disk or processes onto a CPU. 

Routing does this repeatedly; Internet packets, email messages and web page requests all go 

through several indirections. 

Federation is almost the opposite, combining several resources into a single one: several disks 

into one volume, several filesystems into a bigger one by mounting, a sea of networks into the 

Internet. Load-balancing federates servers: each client sees a single resource, but there are many 

clients and the balancer spreads the load across many servers. 

Encapsulation isolates a resource from its host, as a secure enclave that keeps the resource 

safe from the host or a sandbox that keeps the host safe from an app.  

Virtualization converts a “physical” host resource into a “logical” guest one that is less limited 

(virtual memory much bigger than physical memory, missing instructions trapped and done in 

software) and easier to move (virtual machines not bound to hardware). It can also change the 

interface, for example with a different ISA on the guest so you can run old programs (emulation) 

or for portability, as with the Java Virtual Machine (JVM). An interpreter can run the guest ISA 

by executing instructions of the host, or a compiler can translate guest programs to the host ISA 

either statically, or dynamically using JIT. Other examples: virtual hard disks, overlay networks, 

the C library. An adapter can handle a smaller interface change. 

Interposing splices more or less arbitrary code between a client and a service, often to log 

audit records or to collect information about performance. It’s easy to do this for a class, but it’s 

always possible by patching, even at the level of machine instructions. Proxies and content distri-

bution networks such as Akamai do this on a larger scale to distribute load and improve locality. 

Naming decouples a service such as Twitter from the physical machines that implement it. 

Such a service uses several levels of indirection: DNS maps twitter.com to an IP address, and 

the Internet delivers packets with that address to a machine. You can name a group: a style in a 

word processor names a group of character or paragraph properties, decoupling the markup from 

the appearance, and a mailing list, security group or role names a group of people, decoupling the 
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structure of an organization from the current membership. An index makes name lookup or search 

cheaper. Indirection makes it easier to have aliasing: several different 𝑣’s that map to the same 𝑥. 

Certificates use indirection to establish trust. 

4. Process 

The most important single aspect of software development is to be clear about what you are trying 

to build. —Bjarne StroustrupQ52 

Systems resemble the organizations that produce them (paraphrased). —Melvin ConwayQ9 

If you can’t be a good example, then you’ll just have to be a horrible warning. —Catherine AirdQ1 

SOFTWARE IS HARD. … Good software … requires a longer attention span than other intellec-

tual tasks. —Donald KnuthQ29 

The summary is STEADY by AID with ART: Architecture, Automation, Review, Techniques, 

and Testing are the essentials of process. I don’t have much personal experience with this. But I 

have watched a lot of systems being developed, with teams that range in size from six to several 

thousand people. If you find yourself working on a team that breaks the rules in this section, look 

for another job. 

You can build a small system with willpower: one person keeps the whole design in their head 

and controls all the changes. You can even do without a spec. But a system that’s bigger (or lives 

for a long time) needs process. Otherwise it’s broken code and broken schedules. Process means: 

− Architecture: Design that really gets done, and documented so that everyone can learn it. 

− Automation: Code analysis tools (very cheap for the errors they can catch) and build tools. 

− Review: Design review—manual, but a much cheaper way to catch errors than testing. 

− Review: Code review—manual, but still cheaper than testing. 

− Testing: Unit and component tests; stress and performance tests; end-to-end scenarios.R11 

None of this will help, though, if the goal is badly conceived. If your system isn’t going to be 

yummy, it had better at least be useful. If it’s entering a crowded field, it needs to be a lot better 

than the market leaders. If there’s a strong ecosystem of languages and applications in place, build 

on it rather than fighting it. And usually simplicity is key: if your system does one thing well, it’s 

easier to sell and easier to build. If it’s successful it will expand later. Some well- known examples: 

− Dropbox just syncs a subtree of the file system. 

− The C language stays as close to the machine as possible. 

− The original HTML gives you links, text with simple formatting, and bitmap images. 

− Twitter gives you short tweets that can go to millions of followers. 

The symbiotic relationship between a platform and its applications can take one of two forms: 

• Controlled: The platform only accepts applications that fit its self-image, with the goal of 

coherence and predictability for the whole ecosystem. Apple does it this way. 
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• Wild and free: The platform accepts anything, and it’s up to the market to provide whatever 

coherence there is. Windows does it this way. Android is in the middle. 

Successful systems last, and you want your system to succeed, right? You don’t get to rewrite 

it from scratch; that’s not compatible with agile development and shipping frequently. And the 

shipping code reflects lots of hard-won knowledge, much of which isn’t written down and has 

slipped out of the team’s heads (or the team has changed). This is why it pays to think through the 

initial design, and to put as much code as possible into modules with clean interfaces, especially 

performance-critical code. It also pays to clean up messy code when you need to change it; IDE 

tools can help. If the system is too slow, first measure and then work on the few modules need to 

be fast and predictable. Your system doesn’t have that structure? Then you have incurred technical 

debt.R44 The solution is to change it until it does; those changes are expensive, but they have en-

during value. Then keep it that way. And keep shipping.R63 

»Intel Itanium. When Intel made a big bet on a VLIW (Very Long Instruction Word) design for its 64 bit Itanium 

architecture to replace the x86, the performance predictions were apparently based on a single hand-coded inner loop, 

30 instructions long, since they didn’t have the optimizing compiler working.R18 Most real programs turned out to be 

much less amenable. Usually chip designs are based on extensive simulation of real workloads. 

5. Oppositions 

Finally, here is a brief discussion of each opposition. These are not alternatives but extremes; the 

text explores the range of possibilities between the extremes. The brackets refer to relevant goals. 

Simple ↔ rich, fine ↔ features, general ↔ specialized [S Y] 

—KISS: Keep It Simple, Stupid. Do one thing well. Don’t generalize. 

—Don’t hide power. Leave it to the client. Make it fast. Use brute force. 

If in doubt, leave it out. —Anonymous 

The cost of adding a feature isn’t just the time it takes to code it, [it’s the] obstacle to future 

expansion. … Pick the features that don’t fight each other. —John CarmackQ6 

Systems are complicated because it’s hard work to make them simple, and because people want 

them to do many different things. You can read a lot about software bloat, the proliferation of 

features in browsers and in rich applications like Word and Excel. But almost every feature has 

hundreds of thousands of users at least. The tension between keeping things simple and doing a 

lot is real, and there is no single right answer, especially for applications that interact with users. 

Still, it’s best to add features and generality slowly, because: 

− You’re assuming that you know the customers’ long-term needs, and you’re probably 

wrong. It’s hard enough to learn and meet their immediate needs. 

− It takes time to get it right, but once it’s shipped legacy customers make it hard to change. 

− More features mean more to test, and more for a bad guy to attack. 
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So why do systems get overambitious? Because there are no clear boundaries,Q5 as there are with 

bridges for example, and programmers are creative and eager to tackle the next challenge.  

But features that have a lot in common can add power without adding too much complexity; 

the best design is a single mechanism that takes different parameters for the different features. So 

a search engine can index many different data types, a webpage can include text, images and video, 

or an email program can keep a calendar. A user interface feature that just invokes a sequence of 

existing features is less dangerous because it only complicates the UI, not the rest of the system. 

For software whose clients are other programs, the solution is building programs on compo-

nents. A single component should do one thing, and its code should do it well and predictably so 

that clients can confidently treat it as a primitive building block; beware of components that don’t 

have these properties. Building one of these components is a lot of work. It’s worth doing if the 

component is critical for your system, or if it’s part of a platform like an operating system, a 

browser or a library where it will have lots of clients.  

Even better is a complete set of such components, with both the functionality and the perfor-

mance you need to write programs for a significant application domain. Then a client can do a lot 

without writing much code and without much cleverness. Some examples:  

− key-value stores;  

− Unix shell programming on top of primitives like diff, sort, grep;  

− graphics on top of BitBlt, spline curves, and compositing;  

− mathematics systems like Mathematica and Julia.  

This takes both lots of work and deep insight into the application domain, but the payoff is big. 

Perfect ↔ adequate, exact ↔ tolerant [S T D] —Good enough. Flaky, springy parts. 

Worse is better. —Richard GabrielQ18 

The best is the enemy of the good. —VoltaireQ56 

This is not about whether there is a precise spec, but about how close the answer needs to be to an 

ideal result. “Close” can take different forms: a tolerance or a probability of being right, results 

that may just be wrong in some difficult cases, or a system that behaves well as long as its envi-

ronment does. Some examples: 

Tolerance or probability: 

− Available 99.5% of the time (down no more than one hour per week), rather than 100%. 

− Response time less than 200 ms with 99% probability, rather than always. 

− A 98% hit rate in the cache on the Spec benchmark, rather than 100%. 

Such properties usually come as statistics derived from measuring a running system, or from a 

randomized algorithm.  

Wrong in difficult cases: 

− Words are hyphenated if they appear in a hyphenation dictionary, rather than always. 
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− Internet packets are discardedwhen there’s too much congestion.  

− Changes to DNS may not appear immediately (because it uses eventual consistency). 

− A database system may fail, but it recovers without losing any committed work. 

Friendly environment: 

Every system at least depends on its host to execute its instructions correctly, but often the system 

can be simpler or cheaper by assuming more about its environment: 

− Data is not lost as long as the power doesn’t fail. 

− Your files are available if you have a connection to the Internet. 

− Faces are recognized reliably if the lighting is good enough. 

The environment is not just the host you depend on; it’s also your clients. If they are not too de-

manding, your system may be adequate even if it doesn’t satisfy an ideal spec. 

Spec ↔ code [P S] 

—Keep secrets. Good fences make good neighbors. Free the implementer. 

—Embrace nondeterminism. Abstractions leak.  

Don’t tie the hands of the implementer. —Martin RinardQ46 

Writing is nature’s way of letting you know how sloppy your thinking is. —Richard GuindonQ19 

A spec tells you what a system is supposed to do, and the code tells you how. Both are described 

by actions; how do they differ? A spec constrains the visible behavior of the system by saying 

what behaviors (sequences of steps) are acceptable or required. A spec is not a program, and the 

right language for writing it is either English (if the design ideas are still too vague to be expressed 

precisely) or mathematics. 

The code is executable, but it still may not be a program you can run; it may be an algorithm 

such as Quicksort or Paxos, described in pseudocode that abstracts from the details of how the 

machine represents and acts on data. Pseudocode can have a precise definition and a toolchain.R37 

Imperative ↔ functional ↔ declarative [S E] —Make it atomic. Use math. Say what you want.  

The many styles of programming can be grouped into three broad classes: imperative, functional 

and declarative. 

An imperative program (for example, one written in Java or C) has a sequence of steps and a 

program counter, as well as named variables that the program can read or write. Interesting pro-

grams take lots of steps thanks to loops or recursion. Most computing hardware is imperative. 

A functional program (perhaps written in the functional subset of Haskell) has function calls 

instead of steps, and immutable values bound to function parameters or returned from the calls 

instead of state variables. Interesting programs have recursive functions, so they can make lots of 

calls. Real languages aren’t purely functional because small changes to big values are too expen-

sive, but you can embed immutable data structures in an imperative language, and a library like 
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immutablejs can make this efficient. The most widely used programming languages are func-

tional: spreadsheets and database query systems. However, they are special-purpose.  

The literature doesn’t say what a declarative program is, but I think it’s a program with few 

steps; people are not very good at understanding long sequences of steps. Often it’s also easier to 

optimize, since it doesn’t commit to the sequence of steps the machine should take. Powerful prim-

itives help to make a program declarative; for example, code to compute a transitive closure has 

lots of steps, but a transitive closure primitive is a single easy step. The SQL query language for 

relational databases has many such primitives, as does HTML as an abstract description of a de-

sired webpage.  

Precise ↔ approximate software [T D] —Get it right. Make it cool. Shipping is a feature.Q38 

Unless in communicating with [a computer] one says exactly what one means, trouble is bound to 

result. —Alan TuringQ55 

It is better to be vaguely right than precisely wrong. —Leonard LodishQ32 

Broadly speaking, there are two kinds of software, precise and approximate, with the contrasting 

goals “Get it right” and “Get it soon and make it cool.” 

Precise software has a specification (even if it’s not written down very precisely), and the cus-

tomer is unhappy if the software doesn’t satisfy its spec. Obviously software for controlling air-

planes or nuclear reactors is precise, but so are word processors, spreadsheets, software for han-

dling money, and the Internet packet protocol. The spec might be nondeterministic (the Internet 

might drop packets), partial (Excel should evaluate its formulas correctly) or opaque (Word should 

generate the same paragraph numbers today that it did 10 years ago), but that doesn’t make it 

imprecise. 

Approximate software, on the other hand, has a very loose spec, or none at all; the slogan is 

“Good enough.” Web search, retail shopping, face recognition, and social media are approximate.  

Approximate software is not better or worse than precise, but they are very different, and it’s 

important to know which kind you are writing. If you wrongly think it’s precise, you’ll do extra 

work that the customers won’t value and it will take too long. If you wrongly think it’s approxi-

mate, the customers will be angry when code doesn’t satisfy the (unwritten) spec they counted on. 

Dynamic ↔ static [E A] —Stay loose. Pin it down. Shed load. Split resources. 

A computer is infinitely flexible, but a program is not; both what it does (the spec) and how (the 

code) are more specialized. Yet the code can be more or less able to adapt to changes in itself or 

in the environment. Flexibility costs because you have to check more things at runtime, but it can 

save if the checks let you skip some work. Code that takes advantage of things that stay constant 

is more efficient if they really are constant, and static checking automatically proves theorems 

about your code before you ship it. To some extent you can have both with just-in-time (JIT): make 

a static system based on the current code and environment, and remake it if there are changes.  
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There are (at least) four aspects of this opposition: interpret vs. compile, indirect vs. inline, 

scalable vs. fixed, and online vs. preplanned resource allocation.  

Compiling commits the code to running on a host that is usually closer to the hardware. The 

compiler chooses how data is represented, and often it infers properties of the code (example: at 

this point 𝑣 = 3 always) and uses them to optimize. It may do trace scheduling, using information 

from past runs or heuristics to predict code properties (in this JavaScript program, 𝑖 is usually an 

integer).R26 These predictions must be treated as hints and checked at runtime, with fallback to 

slower code when they are wrong. Together with JIT, trace scheduling can adapt a very general 

program to run efficiently in common cases. 

A different aspect of the dynamic-static opposition is resource allocation, and scheduling in 

particular. CPUs and operating systems can allocate resources online to a sequence of tasks that’s 

not known in advance (using caches, branch prediction, asynchronous concurrency, etc.), but if 

you know the sequence you can do this work just once. Examples: resources reserved for a real-

time application, and a systolic array in which work items pass through a sequence of processors 

with no queuing.R35 Storage allocation is similar; static allocation (splitting up the storage) is 

cheaper if you know the sizes in advance or can guess them well. And when it fails, it’s much 

easier to figure out why. 

Indirect ↔ inline [E I] —Take a detour, see the world. Use what you know. 

Any problem in computing can be solved by another level of indirection. —David WheelerQ57 

Indirection is a special case of abstraction that replaces the direct connection between a variable 

and its value, 𝑣 → 𝑥, with an indirect connection 𝑣 → 𝑢 → 𝑥, often called a link; the idea is that 

ordinary lookups to find the value of 𝑣 don’t see 𝑢, so that clients of 𝑣 don’t see the indirection. 

You can change the value of 𝑣 by changing 𝑢, without changing 𝑥. Often 𝑢 is some sort of service, 

for example the code of a function, reached indirectly by jumping to the code for the function; this 

gives the most flexibility, since you can run arbitrary code in the service. The link doesn’t have to 

be explicit; it could be an overlay that maps only some of the possible 𝑣’s, like a TLB or a cache.  

Inlining replaces a variable 𝑣 with its value 𝑥. This saves the cost of looking up 𝑣, and the 

code can exploit knowing 𝑥. For example, if 𝑥 = 3 then 𝑥 + 1 = 4; this saves an addition at 

runtime. If 𝑣 is a function you can inline its code, avoiding the control transfer and argument 

passing, and now you can specialize to this particular argument. But inlining takes more space and 

makes it hard to change the function’s code.  

Lazy ↔ eager ↔ speculative [E] —Put it off. Take a flyer. 

When you come to a fork in the road, take it. —Fort Gibson New EraQ62 

The common theme is to improve efficiency by reordering work. The base case is eager execution, 

which does work just when the sequential flow of the program demands it; this is the simplest to 

program. Lazy execution defers work until it must be done to produce an output, gambling that it 
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will never be needed. It can pay off in lower latency because it first does the work that produces 

output, and in less work if a result turns out not to be needed at all. 

Indirection is lazy as well as dynamic—if you never need the value of the name, you never pay 

the cost of following the link. Other examples of laziness are write buffers, which defer writes 

from a cache to its backing store; redo logging, which replays the log only after a crash; eventual 

consistency, which applies updates lazily and in an arbitrary order until there’s a need for a con-

sistent result. 

More generally, it’s lazy to represent a function by code rather than as a set of ordered pairs. 

Of course if the set is infinite then code is the only option. Pushing this idea farther, to defer the 

execution of some code, wrap it in a function and don’t invoke it until the result is needed.  

Speculative execution does work in advance, gambling that it will be useful. This makes sense 

if you have resources that are otherwise idle, or to reduce latency in the future. Prediction is the 

most common form of speculation, for example when a storage system prefetches data from mem-

ory to cache, or when a CPU predicts which way a branch instruction will go. Caching speculates 

that an entry will be used before it has to be replaced. Exponential backoff in networks and opti-

mistic concurrency control in databases speculate that there will be little contention.  

Usually laziness or speculation keeps the program’s results unchanged. This is simplest if the 

parts being reordered commute. They do in a functional program, but code with side effects may 

not. Sometimes you settle for sloppy results, for example with eventual consistency. 

Centralized ↔ distributed, share ↔ copy [E D] —Do it again. Make copies. Reach consensus. 

A distributed system is one in which the failure of a computer you didn’t even know existed can 

render your own computer unusable. —Leslie LamportQ31 

If you have a choice, it’s better to be centralized. Distributed systems are more complicated be-

cause they have inherent concurrency and partial failures, and they have to pay for communication. 

But they are essential for serious fault tolerance, and for scaling beyond what you can get in a 

single box. A distributed system needs fault tolerance because it has to deal with partial failures; 

you don’t want to crash the whole system when one part fails. But even a very large system can 

be centrally managed (in a fault-tolerant way) because management doesn’t require that much 

computing or data; this is how big cloud systems like AWS and Azure work.  

Fixed ↔ evolving, monolithic ↔ extensible [A I] 

—The only constant is change. Make it extensible. Flaky, springy parts. 

No matter how far down the wrong road you have gone, turn back now. —Turkish proverb 

Always design your program as a member of a whole family of programs, including those that are 

likely to succeed it. —Edsger DijkstraQ13 

It’s cheaper to replace software than to change it. —Phil NechesQ37 
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 Often the customer’s needs are unclear, and successful systems live for a long time, during which 

needs change. Just thinking hard is usually not enough to make unclear needs clear, because you 

aren’t smart enough and don’t know enough about the customer. It’s better to follow the agile 

model: build a prototype, try it out, improve it.R25 

A successful system must do more—it must adapt and evolve, because needs change as people 

see ways to make it do more, as the number of users grows, as the underlying technology changes, 

and as it works with other systems that perhaps didn’t even exist originally. Evolution requires 

modularity, so that you can change parts of the system without having to rebuild it completely. 

Interfaces allow clients and code to evolve independently. These are aspects of divide and conquer. 

Evolution is easier with extensibility, a well-defined way to add certain kinds of functionality. 

This is a special form of modularity, and it needs a lot of care to keep from exposing secrets of the 

code that you might want to change. Examples: 

• You can add new tags to HTML, even complicated ones, and old code will just ignore them.  

• Most operating systems can incorporate any number of I/O drivers that know about the details 

of a particular scanner, printer, disk, or network.  

• Inheritance in programming languages like Smalltalk and Python makes it convenient (if dan-

gerous) to add functionality to an existing abstraction.  

Another way to extend a component is to let the client pass in a (suitably constrained) program 

as an argument; for example, a search engine can take a parser for an unfamiliar format. You can 

do this without pre-planning by patching, but it’s tricky to maintain all the code’s invariants. 

Policy ↔ mechanism [A] —Change your mind. 

When the facts change, I change my mind. What do you do, sir? —Paul SamuelsonQ48 

The mechanism is what the system can do, determined by its specs and code, and the policy is 

what the system should do: the control system for the mechanism. Policy is different for each 

installation and typically changes much faster than the code. Administrators, rather than engineers, 

set policy, and they think of it as part of the spec. It should give them as much control over the 

mechanism as possible. 

The most elaborate example of the distinction is in security, where the mechanism is access 

control and the policy is what principals should have access to what resources. Other examples: 

policy establishes quotas, says how much replication there should be, or decides what software 

updates should be applied. Policy is an aspect of system configuration, which also includes the 

hardware and software elements that make up the system and the way they are interconnected. 

Historically all these things were managed by hand, but cloud computing has forced automation. 

Consistent ↔ available ↔ partition-tolerant [D] —Safety first. Always ready. Good enough. 

If you want a system to be consistent (that is, all the parts of it see the same state; not the same as 

ACID consistency) and highly available (very unlikely to fail, because it’s replicated in different 
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places), then the replicas need to communicate. But if the replicas are partitioned then they can’t 

communicate. So you can’t have all three; this is the CAP “theorem”. The way to get around it in 

practice is to make partitioning very unlikely. A partial mitigation is leases, which are locks that 

time out, using the passage of real time for uninterruptible communication. 

Generate ↔ check [D] —Trust but verify. 

A problem is in complexity class NP if finding a solution is hard (takes work 𝑂(2𝑛)), but checking 

it is easy (work 𝑂(𝑛𝑘)). In code most checks are in an assert—the code has done something 

complicated, and the check confirms that it hasn’t gone too far off the rails. But other examples 

are closer to the NP paradigm, such as randomized algorithms or proof-carrying code. The general 

idea, however, is much broader: keep a hint that might be wrong, but is easy to check. This is a 

narrower meaning of “hints” than in the title of this paper. The end-to-end principle is closely 

related. 

Being ↔ becoming [I] —How did we get here? Don’t copy, share. 

There are two ways to represent the state of a system: 

− Being: the values of the variables—a map 𝑣 → 𝑥 

− Becoming: a sequence of actions that gets the state to where it is—a log of actions. 

Different operations are efficient in different representations. If you’re only interested in a single 

point in time, you want the map. If you care about several different versions (to recover the current 

state from a checkpoint, undo some actions, or merge several versions), you want the log. There 

are ways to convert one representation into the other, and points between the extremes: applying 

the actions gets you the values, a diff produces a delta (a sequence of actions that gets you from 

one state to another), checkpoints shorten the log. Ordinary programs use being; fault-tolerant pro-

grams use both. More on this in § 3.8.1. 

Iterative ↔ recursive, array ↔ tree [I] — Keep doing it. A part is like the whole. 

To iterate is human, to recurse divine. —Peter DeutschQ11 

The basic principle of recursive design is to make the parts have the same power as the whole. —

Bob BartonQ3 

Iteration and recursion are both Turing-complete. You can write an iteration recursively using tail-

recursion (which is easy: the last step in the loop is the only recursive call), and you can write a 

recursion iteratively using a data structure to simulate a call stack (which is a pain).But iteration is 

more natural when there’s a list or array of unstructured items to process, and recursion is more 

natural when the items have subparts, especially when the parts can be as general as the whole. 

Thus recursion is what you want to process a tree or a graph where the description of the 

structure is itself recursive. You don’t need recursion to treat a sequence of different items 
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differently, though, because you can make them into objects that carry their own methods. Here 

are examples that illustrate both points: 

• A hierarchical file system can have different code at each directory node. Some nodes can be 

local, others on the Internet, yet others the result of a search: bwl/docs/?author=smith.R27 

• Internet routing is hierarchical, using BGP at the top level, other protocols locally in an AS. 

These examples also show how a path name (a sequence of simple names) identifies a path in 

a graph with labeled edges and provides decentralized naming. Just as any tree node can be the 

root of an entire subtree, a path name can grow longer without conflicting with any other names.  

6. Conclusion 

I don’t know how to sum up this paper briefly, but here are the most important points: 

− Keep it simple. Complexity kills. 

− Write a spec. At least, write down the abstract state. 

− Build with modules, parts of the system that people can work on independently 

− Exploit the ABCs of efficiency: algorithms, approximate, batch, cache, concurrency. 

− Treat the state as both being and becoming: map vs. log, pieces, checkpoints, indexes. 

− Use eventual consistency to keep data available locally. 

In addition to the papers I’ve referenced, there are some good books about building systems: 

LamportR36,R37 and OusterhoutR53 on how to write specs, Hennessy and PattersonR30 on hardware 

architecture, Cormen, Leiserson, Rivest and SteinR19 on algorithms, BentleyR8 on efficiency, Hel-

lerstein, Stonebraker and HamiltonR29 on databases, Tanenbaum and WetherallR66 on networking, 

and AndersonR6 and SchneierR60 on security. 
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