Curriculum Vitae

Butler W. Lampson

Short biography

Butler Lampson is a Technical Fellow at Microsoft Corporation and an Adjunct Professor at MIT. He has worked at Xerox PARC, Digital Equipment and Microsoft on computer architecture, local area networks, raster printers, page description languages, operating systems, remote procedure call, programming languages and their semantics, programming in the large, fault-tolerant computing, transaction processing, computer security, WYSIWYG editors, and tablet computers. He was one of the designers of the SDS 940 time-sharing system, the Alto personal distributed computing system, the Xerox 9700 laser printer, two-phase commit protocols, the Autonet LAN, the SPKI system for network security, the Microsoft Tablet PC software, the Microsoft Palladium high-assurance stack, and several programming languages. He received the ACM Software Systems Award in 1984 for his work on the Alto, the IEEE Computer Pioneer award in 1996 and von Neumann Medal in 2001, the Turing Award in 1992, and the NAE’s Draper Prize in 2004. He is a member of the National Academies of Sciences and of Engineering, and a Foreign Member of the Royal Society.
Employment

2005-
Technical Fellow, Microsoft Corporation

2000-2005
Distinguished Engineer, Microsoft Corporation

1995-1999
Architect, Microsoft Corporation

1993-1995
Senior Corporate Consulting Engineer
Systems Research Center, Digital Equipment Corporation

1987-
Adjunct Professor, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology

1986-1993
Corporate Consulting Engineer
Systems Research Center, Digital Equipment Corporation

1984-1986
Senior Consulting Engineer
Systems Research Center, Digital Equipment Corporation

1975-1983
Senior Research Fellow, Computer Science Laboratory
Xerox Palo Alto Research Center

1971-1975
Principal Scientist, Computer Science Laboratory
Xerox Palo Alto Research Center

1969-1971
Director of System Development
Berkeley Computer Corporation

1970-1971
Associate Professor, Computer Science Department
University of California, Berkeley

1967-1970
Assistant Professor, Computer Science Department
University of California, Berkeley

Education

1967
PhD in Electrical Engineering and Computer Science
University of California, Berkeley

1964
AB magna cum laude with highest honors in Physics
Harvard University

Honors

1984
ACM Software System Award (with R. Taylor and C. Thacker).

1984
Member, National Academy of Engineering

1986
Sc.D. (hon), Eidgenössische Technische Hochschule, Zürich.

1992
Distinguished Alumnus, Computer Science Department, UC Berkeley

1992
ACM Turing Award

1993
Fellow, American Academy of Arts and Sciences

1994
Fellow, Association for Computing Machinery

1996
ieee Computer Pioneer Award

1996
Sc.D. (hon), University of Bologna

1998
National Computer Systems Security Award, NIST/NSA

2001
ieee von Neumann Medal

2004
National Academy of Engineering Draper Prize

2005
Member, National Academy of Sciences

2005
ACM SigOps Hall of Fame award for “Hints for computer system design”

2006
IFIP TC11 Kristian Beckman Award for information security

2006
Fellow, Computer History Museum
2009
ACM SigOps Hall of Fame award for “Experience with processes and monitors in Mesa” (with Dave Redell)
2010
ACM SigOps Hall of Fame award for “Crash recovery in a distributed data storage system” (with Howard Sturgis)

2016
National Cybersecurity Hall of Fame

2018
Foreign Member, Royal Society

2019
IEEE Symposium on Security and Privacy, Test of Time Award for “Global authentication without global trust” (with Andrew Birrell, Roger Needham, and Michael Schroeder)
Memberships

1961-
Association for Computing Machinery

1982-
IFIP Working Group 2.3 on Programming Methodology

1993-2006
Computer Science and Telecommunications Board, National Academy of Science

2015-
Forum on Cyber Resilience, National Academies

Publications
Nearly all of these are available online from my web page at https://www.microsoft.com/en-us/research/people/blampson/. A number of slide decks from recent talks are also there.
1.
Interactive machine‑language programming. Proc. AFIPS Conf. 27 (1965), pp 473‑482.

2.
A user machine in a time‑sharing system. Proc. IEEE 54, 12 (Dec. 1966), pp 1766‑1774. Reprinted in Computer Structures, ed. Bell and Newell, McGraw‑Hill, 1971, pp 291‑300 (with M. Pirtle and W. Lichtenberger).

3.
A critique of ‘An exploratory investigation of programmer performance under on‑line and off‑line conditions’. IEEE Trans. Human Factors in Electronics HFE‑8, 1 (Mar. 1967), pp 48‑51.

4.
An on‑line editor. Comm. ACM 10, 12 (Dec. 1967), pp 793‑799 (with P. Deutsch).

5.
A scheduling philosophy for multi‑processing systems. Comm. ACM 11, 5 (May 1968), pp 347‑359.

6.
Dynamic protection structures. Proc. AFIPS Conf. 35 (1969), pp 27‑38.

7.
On reliable and extendible operating systems. Proc. 2nd NATO Conf. on Techniques in Software Engineering, Rome, 1969. Reprinted in The Fourth Generation, Infotech State of the Art Report 1, 1971, pp 421‑444.

8.
Protection. Proc. 5th Princeton Conf. on Information Sciences and Systems, Princeton, 1971. Reprinted in ACM Operating Systems Rev. 8, 1 (Jan. 1974), pp 18‑24.

9.
Protection and access control in operating systems. In Operating Systems, Infotech State of the Art Report 14, 1972, pp 309‑326.

10.
Remarks on the nature of programming. Guest editorial, Software—Practice and Experience 2, 3 (Jul. 1972), pp 195‑196.

10a.
The control structure of an operating system. IBM Research Report RC3949, July 1972 (with J. Gray, B. Lindsay, and H. Sturgis).

11.
A note on the confinement problem. Comm. ACM 16, 10 (Oct. 1973), pp 613-615.

12.
Redundancy and robustness in memory protection. Invited paper, Proc. IFIP Cong., North‑Holland, 1974, pp 128‑132.

13.
On the transfer of control between contexts. Lecture Notes in Computer Science 19, Springer, 1974, pp 181‑203 (with J. Mitchell and E. Satterthwaite).

14.
An open operating system for a single‑user machine. Rev. Francaise d'Automatique, Informatique et Recherche Operationnelle 9, B‑3 (Sept. 1975), pp 8‑15. Substantially revised as [22].

15.
Reflections on an operating system design. Comm. ACM 19, 5 (May 1976), pp 251‑265 (with H. Sturgis).

16.
Storage allocation in typed languages. Proc. 5th Ann. III Conf: Implementation and Design of Algorithmic Languages, Guidel, France, 1977, pp 315‑322.

17.
Report on the programming language Euclid. ACM Sigplan Notices 12, 2 (Feb. 1977), pp 1‑85 (with J. Horning, R. London, J. Mitchell, and G. Popek). Revised as Technical Report CSL‑81‑12, Xerox Palo Alto Research Center.

18.
Notes on the design of Euclid. ACM Sigplan Notices 12, 3 (Mar. 1977), pp 11‑18 (with J. Horning, R. London, J. Mitchell, and G. Popek).

19.
A terminal‑oriented communication system. Comm. ACM 20, 7 (Jul. 1977), pp 486‑494 (with P. Heckel).

20.
Proof rules for the programming language Euclid. Acta Informatica 10, 1 (Jan. 1978), pp 1‑26 (with J. Guttag, H. Horning, R. London, J. Mitchell, and G. Popek).

21.
Crash recovery in a distributed data storage system. Unpublished technical report, Xerox Palo Alto Research Center, June, 1979, 25 pp (with H. Sturgis).
22.
An open operating system for a single‑user machine. ACM Operating Systems Rev. 11, 5 (Dec. 1979), pp 98‑105 (with R. Sproull). Substantially revised version of [14].

23.
Experience with processes and monitors in Mesa. Comm. ACM 23, 2 (Feb. 1980), pp 106‑117 (with D. Redell).

24.
A processor for a high‑performance personal computer. Proc. 7th IEEE Symposium on Computer Architecture, La Baule, France, 1980, pp 146‑160 (with K. Pier). Also in Technical Report CSL‑81‑1, Xerox Palo Alto Research Center. Reprinted in 25 Years of the International Symposia on Computer Architecture (Selected Papers), ACM, 1998, pp 180-194
25.
Alto: A personal computer. In Computer Structures: Principles and Examples, ed. Siewiorek, Bell and Newell, McGraw‑Hill, 1981 (with C. Thacker, E. McCreight, R. Sproull, and D. Boggs).

26.
Distributed Systems—Architecture and Implementation, Lecture Notes in Computer Science 105, Springer, 1981 (editor, with M. Paul and H. Siegert).

27.
Atomic transactions. In [26], pp 246‑265 (with H. Sturgis).

28.
Remote procedure calls. In [26], pp 357‑370.

29.
The memory system of a high‑performance personal computer. IEEE Trans. Computers C‑30, 10 (Oct. 1981), pp 715‑732 (with D. Clark and K. Pier).

30.
Fast procedure calls. ACM Sigplan Notices 17, 4 (Apr. 1982), pp 66‑75.

31.
Practical use of a polymorphic applicative language. Proc. 10th ACM Symposium on Principles of Programming Languages, Austin, 1983, pp 237‑255 (with E. Schmidt).

32.
Organizing software in a distributed environment. ACM Sigplan Notices 18, 6 (Jun. 1983), pp 1‑13 (with E. Schmidt).

32a.
A description of the Cedar language. Technical Report CSL-83-15, Xerox Palo Alto Research Center, December 1983.

33.
Hints on computer system design. ACM Operating Systems Rev. 17, 5 (Oct. 1983), pp 33‑48. Reprinted in IEEE Software 1, 1 (Jan. 1984), pp 11‑28.

34.
An instruction fetch unit for a high‑performance personal computer. IEEE Trans. Computers C‑33, 8 (Aug. 1984), pp 712‑730 (with G. McDaniel and S. Ornstein).

35.
A kernel language for modules and abstract data types. In Semantics of Data Types, Lecture Notes in Computer Science 173, Springer, 1984, pp 1‑50 (with R. Burstall). Revised version appeared as [39].

36.
Designing a global name service. Proc. 4th ACM Symposium on Principles of Distributed Computing, Minaki, Ontario, 1986, pp 1‑10.

37.
A global authentication service without global trust. Proc. IEEE Symposium on Security and Privacy, Oakland, 1986, pp 223‑230 (with A. Birrell, R. Needham, and M. Schroeder).

38.
Personal distributed computing: The Alto and Ethernet software. In A History of Personal Workstations, ed. A. Goldberg, Addison-Wesley, 1988, pp 293-335.

39.
A kernel language for modules and abstract data types. Information and Computation 76, 2/3 (Feb./Mar. 1988), pp 278-346 (with R. Burstall). Revision of [35].

40.
Specifying distributed systems. In Constructive Methods in Computer Science, ed. M. Broy, NATO ASI Series F: Computer and Systems Sciences 55, Springer, 1989, pp 367-396.

41.
The Digital distributed system security architecture. Proc. 12th National Computer Security Conf., NIST/NCSC, Baltimore, 1989, pp 305-319 (with M. Gasser, A. Goldstein, and C. Kaufman).

42.
Authentication and delegation with smart-cards. Science of Computer Programming 21, 2 (Oct. 1993), pp 91-113 (with M. Abadi, M. Burrows, and C. Kaufman).

43.
Technology to achieve secure computer systems. In Computers at Risk, National Academy Press, Washington, 1991, pp 74-101.

44.
A calculus for access control in distributed systems. ACM Trans. Programming Languages and Systems, 15, 4 (Oct. 1993), pp 706-734 (with M. Abadi, M. Burrows, and G. Plotkin).

45.
On-line data compression in a log-structured file system. ACM Sigplan Notices 27, 9 (Sept. 1992), pp 2-9 (with M. Burrows, C. Jerian, and T. Mann).

46.
Authentication in distributed systems: Theory and practice. ACM Trans. Computer Systems 10, 4 (Nov. 1992), pp 265-310 (with M. Abadi, M. Burrows, and E. Wobber).

47.
Reliable messages and connection establishment. In Distributed Systems, ed. S. Mullender, 2nd ed., Addison-Wesley, 1993, pp 251-281.

48.
Principles of Computer Systems. Lecture notes for 6.826, MIT/LCS/RSS-22, Laboratory for Computer Science, MIT, July 1993 (with W. Weihl).

49.
A new presumed commit optimization for two phase commit. Proc. 19th VLDB Conference, Dublin, 1993, pp 630-640 (with D. Lomet).

50.
Correctness of at-most-once message delivery protocols. Proc. 6th International Conference on Formal Description Techniques, Boston, 1993, pp 387-402 (with N. Lynch and J. Søgaard-Andersen).

51.
Authentication in the Taos operating system. ACM Trans. Computer Systems 12, 1 (Feb. 1994), pp 3-32 (with E. Wobber, M. Abadi, and M. Burrows).

52.
Implementing coherent memory. In A Classical Mind: Essays in Honour of C.A.R. Hoare, ed. A. Roscoe, Prentice-Hall, 1994, pp 259-274.

53.
Putting Telecommunications on the Technology Curve: Architecture and Economics. Lecture notes for 6.892, MIT/LCS/RSS-23, Laboratory for Computer Science, MIT, February 1994 (with S. Gillett and D. Tennenhouse).

54.
Interconnecting computers: Architecture, technology, and economics. Proc. Conference on Programming Languages and System Architectures, Lecture Notes in Computer Science 782, Springer, 1994, pp 1-20.

55.
Executive summary. In Evolving the High Performance Computing and Communications Initiative to Support the Nation’s Information Infrastructure, National Academy Press, Washington, 1995, pp 1-12 (with I. Sutherland, E. Lazowska, and others).

56. Analysis and caching of dependencies. ACM SigPlan International Conference on Functional Programming, Philadelphia, May 1996, pp 83-91 (with M. Abadi and J. Levy).

57. Virtual infrastructure: Putting information infrastructure on the technology curve. Computer Networks and ISDN Systems >>28, 13 (Oct. 1996), pp. 1769 – 1790 (with D. Tennenhouse, S. Gillett, and J. Klein).
58. How to build a highly available system using consensus. In Distributed Algorithms, ed. Babaoglu and Marzullo, Lecture Notes in Computer Science 1151, Springer, 1996, pp 1-17.

59. SDSI - A Simple Distributed Security Infrastructure. http://theory.lcs.mit.edu/~cis/sdsi.html, 1996 (with R. Rivest).

60. Revisiting the Paxos algorithm. Proc. WDAG'97, Lecture Notes in Computer Science 1320, Springer, 1997, pp 111-125. (with R de Prisco and N. Lynch). Expanded version: Theoretical Computer Science 243, 1-2 (July 2000), pp 35-91.
61. IP lookup using multiway and multicolumn binary search. IEEE/ACM Transactions on Networking 7, 3 (June 1999), pp 324-334 (also in Infocom 98, April 1998) (with V. Srinivasan and G. Varghese).

62. SPKI Certificate Theory. Internet RFC 2693, http://www.cis.ohio-state.edu/htbin/rfc/rfc2693.html (Sept. 1999) (with C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, T. Ylonen).
63. Information systems security. In Realizing the Potential of C4I: Fundamental Challenges, National Academy Press, 1999 (with T. Berson and R. Kemmerer).
63a.
Revisiting the Paxos Algorithm. Theoretical Computer Science 243, 1-2 (July 2000), pp 35-91 (for shorter version see [60]) (with R. de Prisco and N. Lynch).
64. Computer security in the real world. IEEE Computer 37, 6 (June 2004), pp 37-46.

65. The ABCDs of Paxos. Presented at Principles of Distributed Computing, 2001, as one of the papers celebrating Leslie Lamport’s 60th birthday.
66. Getting computers to understand. J. ACM 50, 1 (Jan. 2003), pp 70-72.

67. Computing meets the physical world. The Bridge, 33, 1 (Spring 2003), National Academy of Engineering, pp 4-7.

68. A trusted open platform. IEEE Computer, 36, 7 (July 2003), pp 55-62 (with P. England, J. Manferdelli, M. Peinado, and B. Willman).

69. Computer security in the real world. IEEE Computer 37, 6 (June 2004), pp 37-46.
70. Software Components: Only the Giants Survive. In Computer Systems: Theory, Technology, and Applications, K. Sparck-Jones and A. Herbert (editors), Springer, 2004, pp 137-146.
71. A conceptual authorization model for web services. In Computer Systems: Theory, Technology, and Applications, K. Spark-Jones and A. Herbert (editors), Springer, 2004, pp 165-172 (with P. Leach et al.).
72. Getting Up to Speed: The Future of Supercomputing, National Academy Press, 2004 (contributor).
73. The ongoing computer revolution. The Bridge, 34, 2 (Summer 2004), National Academy of Engineering, pp 39-40.
74. Security. Lectures at Tata Consulting Services Excellence in Computer Science Week, 2005, Pune, India.
75. Practical Principles for Computer Security, In Software System Reliability and Security, NATO Security through Science Series D: Information and Communication Security, vol. 9, IOS Press, 2007, pp 151-195.

76. Principles for computer system design. In ACM Turing Award Lectures, ACM, 2007.
77. Lazy and speculative execution in computer systems. Proc. 13th ACM Sigplan International Conference on Functional Programming (ICFP ’08), Sigplan Notices 43, 9 (Sept. 2008), pp 1-2.
78. Viewpoint: Usable security—how to get it. Comm. ACM 52, 11 (Nov. 2009), pp 25-27.

79. Declarative programming: The light at the end of the tunnel. In Points of View: A Tribute to Alan Kay, Viewpoints Research Institute, 2010, pp 151-164.
80. Technical perspective: Making untrusted code useful. Comm. ACM 54, 11 (Nov. 2011), p 92.
81. What computers do: model, connect, engage. In Proc. 9th Annual International Conference on Theory and Applications of Models of Computation (TAMC ’12), Springer, 2012.
82. Textual features for programming by example. CoRR abs/1209.3811 (Sept, 2012) (with Menon, Tamuz, Gulwani, Kalai). Early version of 83.
83. A machine learning framework for programming by example. Proc. 30th Int’l Conf. Machine Learning (ICML), J. Machine Learning Research, Workshop and Conference Proceedings 28, 1 (June 2013), pp 187-195 (with Menon, Tamuz, Gulwani, Kalai).

84. A colorful approach to text processing by example, Proc. 26th ACM Symposium on User Interface Software and Technology (UIST 2013) Oct. 2013, pp 495-504 (with Yessenov, Tulsiani, Menon, Miller, Gulwani, and Kalai)
85. Bulk Collection of Signals Intelligence: Technical Options, National Academy Press, 2015 (contributor).

86. Verifying concurrent software using movers in CSPEC, 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2018), Oct. 2018, pp 306-322. (with Tej Chajed, M. Frans Kaashoek, and Nickolai Zeldovich)
87. Hints and principles for computer system design, Nov. 2020. https://arxiv.org/abs/2011.02455v1
88. There’s plenty of room at the Top: What will drive computer performance after Moore’s law? Science 368, 1079, June 2020. (with Charles E. Leiserson, Neil C. Thompson, Joel S. Emer, Bradley C. Kuszmaul, Daniel Sanchez, Tao B. Schardl).
Patents

3,911,419
Controller for cursor positioning on a display medium (with R. Bates).

3,911,420
Display system including a high-resolution character generator (with R. Bates).

4,063,220
Multipoint data communication system with collision detection (with R. Metcalfe, D. Boggs, C. Thacker) [Ethernet].

4,079,458
High resolution character generator (with R. Rider).

4,152,697
Parallel run-length decoder (with R. Rider).

4,203,054
Electronic image processing system (with S. Ornstein, R. Sproull and J. Leung).

4,558,413
Software version management system (with E. Schmidt).
5,161,193
Pipelined cryptography processor and method for its use in communication networks (with W. Hawe, A. Gupta, and B. Spinney).

5,210,795
Secure user authentication from personal computer (with S. Lipner and M. Gasser).

5,224,163
Method of delegating authorization from one entity to another through the use of session encryption keys (with M. Gasser, A. Goldstein, and C. Kaufman).

5,235,642
Access control subsystem and method for distributed computer system using locally cached authentication credentials (with E. Wobber, M. Abadi, and A. Birrell).

5,235,644
Probabilistic cryptographic processing method (with A. Gupta et al.).

5,268,962
Computer network with modified host-to-host encryption keys (with M. Abadi and M. Burrows).

5,315,657
Compound principals in access control lists (with M. Abadi and A. Goldstein).

5,335,343
Distributed transaction processing using two-phase commit protocol with presumed-commit without log force (with D. Lomet).

5,339,313
Method and apparatus for traffic congestion control in a communication network bridge device (with W. Hawe et al.).

5,418,854
Method and apparatus for protecting the confidentiality of passwords in a distributed data processing system (with C. Kaufman et al.).

5,475,819
Distributed configuration profile for computing system (with S. Miller).

5,488,716
Fault tolerant computer system with shadow virtual processor (with F. Schneider et al.).

5,497,421
Method and apparatus for protecting the confidentiality of passwords in a distributed data processing system (with C. Kaufman et al.).

5,594,869
Method and apparatus for end-to-end encryption of a data packet in a computer network (with W. Hawe and A. Gupta).
5,940,619
Dynamic fine-grained dependency analysis for a functional language (with M. Abadi et al.).
6,145,056
Method and apparatus for caching the results of function applications with dynamic, fine-grained dependencies (with C. Heydon and R. Levin).
6,327,652
Loading and identifying a digital rights management operating system (with P. England and J. DeTreville).

6,330,670
Digital rights management operating system (with P. England and J. DeTreville).
6,651,171
Secure execution of program code (with P. England).
6,775,779
Hierarchical trusted code for content protection in computers (with P. England).
6,788,815
System and method for accepting disparate types of user input (C. Lui, C. Thacker, J. Mathews, L. Keely, D. Switzer, and W. Vong).
6,820,063
Controlling access to content based on certificates and access predicates (with P. England and J. DeTreville).

6,976,175
Hierarchical trusted code for content protection in computers (with P. England).

6,986,059
Hierarchical trusted code for content protection in computers (with P. England).

7,020,772
Secure execution of program code (with P. England).
7,174,457
System and method for authenticating an operating system to a central processing unit, providing the CPU/OS with secure storage, and authenticating the CPU/OS to a third party (with J. DeTreville, P. England).
7,194,092
Key-based secure storage (with J. DeTreville, P. England).

7,248,248
Pointing system for pen-based computer.

7,302,709
Key-based secure storage (with J. DeTreville, P. England).

7,319,454
Two-button mouse input using a stylus (with C Thacker, J. Mathews, L Huapaya).

7,356,682
Attesting to a value of a register and/or memory region (with J. DeTreville, P. England).

7,415,620
System and method for authenticating an operating system to a central processing unit, providing the CPU/OS with secure storage, and authenticating the CPU/OS to a third party (with J. DeTreville, P. England).
7,418,137
System and method for accepting disparate types of user input (with C. Lui et al).

7,424,606
System and method for authenticating an operating system (with J. DeTreville, P. England).

7,434,263
System and method for secure storage data using a key (with J. DeTreville, P. England).

7,457,412
System and method for authenticating an operating system to a central processing unit, providing the CPU/OS with secure storage, and authenticating the CPU/OS to a third party (with J. DeTreville, P. England).
7,496,769
Hierarchical trusted code for content protection in computers (with P. England).

7,529,919
Boot blocks for software (with J. DeTreville, P. England).

7,543,336
System and method for secure storage of data using public and private keys (with J. DeTreville, P. England).
7,752,431
Virtual distributed security system (with G. Della-Libera et al).

7,809,938
Virtual distributed security system (with G. Della-Libera et al).
7,900,248
Access control negation using negative groups (with C. Ellison et al).

8,006,295
Domain ID service (with C. Ellison et al).

8,302,149
Virtual distributed security system (with G. Della-Libera et al).

9,253,195
Transformation of sequential access control lists utilizing certificates (with Carl M. Ellison, Paul J. Leach, Melissa W. Dunn, Ravindra Nath Pandya, Charles William Kaufman).
9,940,106
Generating programs using context-free compositions and probability of determined transformation rules (with Adam Kalai, Sumit Gulwani, Aditya Krishna Menon, Omer Tamuz).
Other

1971
Program co-chairman, 3rd ACM Symposium on Operating Systems Principles

1972-
Editorial board, Software—Practice and Experience (see [10]).

1972-1978
Chairman, steering committee for ARPA research in computer security.

1973
Program committee, 4th ACM Symposium on Operating Systems Principles.

1975
Program committee, 5th ACM Symposium on Operating Systems Principles.

1977
Program committee, 6th ACM Symposium on Operating Systems Principles.

1979
Program committee, 7th ACM Symposium on Operating Systems Principles.

1980
Program committee, ACM Workshop on Fundamentals of Distributed Computing.

1981
Program committee, 8th ACM Symposium on Operating Systems Principles.

1982-1985
Associate editor, ACM Transactions on Computer Systems.
1984
Invited speaker, CRAI Conference on Advanced Personal Computing Technology, Capri.

1984
Program committee, International Symposium on Data Types.

1985
Invited speaker, 3rd ACM Conference on Principles of Distributed Computing (see [36]).

1985-1989
Editorial board, Annual Review of Computer Science.
1986
Program committee, 4th ACM Conference on Principles of Distributed Computing.

1988
Invited lecturer, Summer School on Program Construction, Marktoberdorf (see [40]).

1988
Program committee, 13th ACM Conference on Principles of Programming Languages.

1989-1990
System Security Study Committee, Computer Science and Telecommunications Board, National Academy of Sciences (see [43]).

1989-1995
Visiting committee, Division of Applied Science, Harvard University.

1990-1993
Lecturer, Advanced Course in Distributed Systems, Bologna, Karuizawa, Lisbon, Seattle (see [47]).

1991-
Distinguished Lecturer at MIT, University of Utah, University of Illinois, University of Texas, UCLA, USC, Carnegie-Mellon, Oxford, Edinburgh

1991
Keynote speaker, 12th International Conference on Software Engineering, Austin, TX.

1992
Invited lecturer, 25th Newcastle Symposium on the Teaching of Computer Science, Newcastle-upon-Tyne, UK.

1992
Keynote speaker, 5th ACM Symposium on Architectural Support for Programming Languages and Operating Systems, Boston, MA.

1993
Program committee, 14th ACM Symposium on Operating System Principles.

1994
Invited speaker, Conference on Programming Languages and System Architectures, Zürich (see [54]).

1994-1995
High Performance Computing and Communications Initiative study committee, Computer Science and Telecommunications Board, National Academy of Sciences (see [55]).

1996
Invited speaker, DIMACS workshop on network security, New Jersey.

1996
Invited speaker, NSF workshop on research directions in computer systems, St. Louis.

1996
Invited speaker, 10th International Workshop on Distributed Algorithms (WDAG), Bologna (see [57]).

1996-1999
Information Science and Technology (ISAT) committee, DARPA.

1997-8
Command, Control, Communications, Computing, and Intelligence study committee, Computer Science and Telecommunications Board, National Academy of Science (see [63]).

1997
Invited speaker, Microsoft/University of Washington Conference on Computing Research and Windows NT, Seattle.

1999
Keynote speaker, 17th ACM Symposium on Operating Systems Principles

1999
Keynote speaker, 21st International Conference on Software Engineering

2000
Program committee, Usenix Conference on Operating Systems Design and Implementation

2000
Keynote speaker, 9th ACM Symposium on Architectural Support for Programming Languages and Operating Systems, Cambridge, MA

2000
Invited speaker, Annual Computer Security Applications Conference, New Orleans, LA
2001
Program committee, 18th ACM Symposium on Operating Systems Principles

2001
Invited speaker, 19th ACM Conference on Principles of Distributed Systems, Newport, RI
2002
Keynote speaker, FORTE 2002 (International Conference on Formal Techniques for Networked and Distributed Systems), Houston, TX
2002-5
Information Science and Technology (ISAT) committee, DARPA, red team.
2003
Keynote speaker, 21st ACM Conference on Principles of Distributed Computing, Boston, MA
2003-4
Future of Supercomputing study committee, Computer Science and Telecommunications Board, National Academy of Sciences.

2004
Program committee, First Symposium on Networked Systems Design and Implementation, San Francisco.
2005
Invited lecturer, TCS Excellence in Computer Science Week, Pune, India.
2005
Program committee, Tenth Workshop on Hot Topics in Operating Systems, Santa Fe.

2005
Invited talk, 14th Usenix Security Symposium, Baltimore.

2005
Invited talk, NSF Cyber Trust Principal Investigators Meeting, Newport Beach, CA.

2006
Invited talk, Usenix annual meeting, Boston, MA

2006
Invited lecturer, summer school on Software System Reliability and Security, Marktoberdorf

2008
Invited lecturer, Nobel Winners Beijing Forum, Beijing, China.

2009
Invited talk, Usability, Security and Privacy Workshop, Computer Science and Telecommunications Board, Washington, DC.

2011
Invited talk, Usable Security through Isolation, Collège de France, Paris.

2012
Invited talk, Embodiment: The Third Great Wave of Computing Applications, ACM Turing Centenary Celebration, San Francisco.

2012
Invited talk, Retroactive Security, Computer Security Foundations Symposium, Cambridge, MA.

2013
End of RSA Workshop, DARPA ISAT, Menlo Park, CA.

2015
Program committee, 20th Workshop on Hot Topics in Operating Systems, Ittingen, Switzerland.

2015-
National Academies Forum on Cyber Resilience

2015
Invited talk, Perspectives on Security, 25th Symposium on Operating Systems Principles History Day, Monterey, CA.

2020-1
Future of Encryption study committee, National Academies.
Systems

In addition to the formal publications listed above, I have done a large amount of system design and implementation. Many of these systems are described in papers, but much of the work is embodied in the functioning result rather than the paper, Also, the work is often documented in papers written by other participants in the design, or in patents.

Hardware

MAXC (1971-3): I designed and implemented the micro-programmed processor for a machine which emulated a PDP-10 [E. R. Fiala, The MAXC systems, IEEE Computer 11, 5 (May 1978), pp 57-67]. It ran somewhat faster than a KA-10, and much more reliably, more than once attaining an interval of 2000 hours between crashes while running the Tenex time-sharing system. Two of these machines were built; each operated for about 9 years before being decommissioned.

Video terminal system (1971-72): With Roger Bates (who implemented it) I designed a multi-font high-resolution character generator for a 1023-line raster-scan display system [US patents 3,911,419 and 3,911,420]. About 50 were built and used at PARC.

Alto (1972-75): With Chuck Thacker (the principal designer), Ed McCreight and Bob Metcalfe, I worked on the design of the Alto personal computer [25]. About two thousand of these machines were built for use within Xerox and limited sale. The Alto was the prototype for the workstations of the mid 1980s and the windowed personal computers of the late 1980s.

Ethernet (1973-75): I worked with Bob Metcalfe (the principal designer) and others on the design of the Ethernet, a high-bandwidth local network [Boggs and Metcalfe, Ethernet: Distributed packet switching for local computer networks. Comm. ACM 19, 7 (Jul. 1976), pp 395-407; US patent 4,063,220].

Ears (1973-75): With Ron Rider (who implemented it) I designed a high-performance character generator for a one-page-per-second, 500 dpi raster printing system [US patent 4,079,458]. A modification of this design is used in the Xerox 9700 computer printer; I designed the basic digital architecture of the 9700.

Mesa architecture (1975-78): With Chuck Geschke and later John Wick, I designed the byte-coded instruction set for the Mesa system implementation language [Johnsson et al., An overview of the Mesa processor architecture. ACM Sigplan Notices 7, 4 (Apr. 1982), pp 20-29].

Orbit (1975): With Severo Ornstein and Bob Sproull (who implemented it), I designed this highly flexible, low cost scan converter which allows an Alto to drive a 384 dpi, 1 page/sec raster printer [US patent 4,203,154]. About 50 were built and used within Xerox, in some universities, and in a few test marketing sites.

Dorado (1976-79): I had principal design responsibility for this fairly powerful new personal computer. For non-numeric computation it has about the power of a 370-168, but it is implemented in about 2500 DIPS and packaged to fit (rather uncomfortably) in an office. I also did the detailed design and implementation of the cache memory system [24, 29, 34]. About 75 of these machines were built, though they were not put in offices.

Wildflower (1978): I designed a fast and economical processor for a high-performance office workstation. It includes a micro-programmed engine suitable for emulating byte-coded instruction sets for Mesa and Lisp, as well as input/output controllers for high-resolution display, hard disk and Ethernet. A modification of this design became the Dandelion processor, used in many Xerox 8000 series products.

Dragon (1980-83): With Chuck Thacker (the principal designer) and Bob Sproull, I worked on the pipeline, instruction set, procedure call mechanism and memory architecture of this high-speed LSI multi-processor [Monier and Sindhu, The architecture of the Dragon. Proc. 30th IEEE Int. Conf., 1985, pp 118-121]. A much evolved version became the basis for Sun’s multiprocessors in 1993.

Stable storage (1982-83): With Severo Ornstein (who implemented it) I designed a very reliable device which provides low-latency stable storage to a computer system, to speed up transactional data storage systems and high-reliability distributed systems.

Autonet (1987-89): With Mike Schroeder, Roger Needham, Chuck Thacker and others, I designed a high-speed mesh network with 100 Mbit/sec link data rates, 1-2 usec switch transit times, and 150 ms reconfiguration time after a failure, as well as adapters that can deliver these data rates to host computer memory [M. Schroeder et al., Autonet: A high-speed, self-configuring local area network using point-to-point links, IEEE J. Selected Areas in Communications, 9, 8 (Oct. 1991), pp 1318-1335].

Ethernet encryption (1988-90): With Bill Hawe, Pini Lozowick, and others, I designed an Ethernet bridge that can encrypt and decrypt packets flowing through it. The bridge has been implemented in a single chip with one auxiliary RAM [U.S. patents 5,161,193 and 5,235,644].

AN2 (1990-93): With Chuck Thacker, Mike Schroeder, and others, I designed an Asynchronous Transfer Mode switch and host adapter with 155 Mbit and 1 Gbit links, constant and variable bit rate traffic, flow controlled circuits, and very fast circuit setup [T. Anderson et al., High-speed switch scheduling for local-area networks. ACM Trans. Computer Systems 11, 4 (Nov 1993), pp 319-352].

Virtual book (1994-5): With Mark Hayter, Jay Kistler, and Chuck Thacker, I designed a hand-held device (sometimes called Lectrice) meant to be a comfortable alternative to paper for reading documents that are formatted to print on 8.5 x 11 or smaller paper. Andrew Birrell wrote the Lectern software.
Palladium (1997-2003): With Paul England, John DeTreville, Bryan Willman, John Manferdelli and others, I designed the architecture for secure program authentication and execution on a machine that is simultaneously running an arbitrary operating system [U.S. patents 6,327,652 and 6,330,670].
Operating systems

SDS 940 (1964-67): With Mel Pirtle, Wayne Lichtenberger and Peter Deutsch, I designed and implemented this system at Berkeley [2]. It was subsequently marketed by SDS as the first commercial time-sharing which allowed user programming in machine language. About 60 machines were sold, and they were the initial hardware base for many time-sharing service companies, including Tymshare. This system was copied directly in the design of the Tenex system for the PDP-10, except for the memory management. Tenex later evolved into TOPS-20, the standard operating system for the DecSystem 20. Some of the 940 system's ideas are also embodied in Unix, whose designer Ken Thompson worked on the 940 while at Berkeley.

Cal TSS (1968-71): This was the first working capability based operating system, and for many years the only one done for a large computer [7, 15]. With Howard Sturgis and others I did the design, though I did not write any code. Many of the ideas in the Hydra system for C.mmp and its descendants are identical to those in Cal, though usually derived independently several years later. This system ran successfully at Berkeley for about a year, and then was abandoned for a combination of technical and political reasons.

Berkeley Computer Corporation (1969-71): With the SDS 940 group from Berkeley, I founded a computer company to make large time-sharing systems. I did the overall design of the operating system, including the functions of the three specialized micro-coded processors which do most of the overhead work [6]. I also implemented the scheduling micro-processor and parts of the terminal-handling micro-processor [19]. One machine was built and ran successfully at the University of Hawaii for a number of years, though the company was a commercial failure.

Alto OS (1973-76): I designed (and, with Gene McDaniel and Bob Sproull, implemented) a single-user operating system, based on Stoy and Strachey's OS6, for the Alto personal computer built at PARC [14, 22, 38]. The system is written in BCPL and was used in about two thousand installations.

Juniper (1974-78): With Howard Sturgis and others, I designed a system for reliable distributed storage of data [27; Sturgis et al., Issues in the design and use of a distributed file system. ACM Operating Systems Rev. 4, 3 (Jul. 1980), pp 55-69; Mitchell and Dion, A comparison of two network-based file systems, Comm. ACM 25, 4 (Apr. 1982), pp 233-245].

Mesa monitors and processes (1978): With Dave Redell and others, I designed the concurrency facilities for Mesa [23]. These have been used in a large number of concurrent and distributed systems built in Mesa and Cedar. The Posix standard for threads is a direct descendant.

Cedar nucleus (1983): With Roy Levin and Andrew Birrell (who implemented it), I planned the overall architecture for the Cedar nucleus. This system provides the basic operating facilities for the Cedar programming environment [Swinehart et al., A structural view of the Cedar programming environment. ACM Trans. Programming Languages and Systems 8, 4 (Oct. 1986), 419-490].

Name service (1985-86): With Andrew Birrell, Roger Needham and Mike Schroeder, I designed a successor to the Grapevine name service which is intended to be usable in a world-wide network involving billions of entities [36]. We designed a new authentication scheme for this service, which formally addresses the problems of global mistrust [37]. The OSF/DCE name service is derived from this design.

Fast remote procedure call (1987-88): With Mike Schroeder and Mike Burrows (who did the implementation) I designed a high performance implementation of remote procedure call which can do a complete null call from a user process over the Ethernet in 2.7 ms on a multiprocessor with 4 1 MIPS processors [M. Schroeder and M. Burrows, Performance of Firefly RPC, ACM Trans. Computer Systems 8, 1 (Feb. 1990), pp 1-17].

Distributed systems security (1988-89): With Charlie Kaufman, Morrie Gasser and Andy Goldstein, I designed a security architecture for distributed systems which provides authentication of users and systems without global trust, secure bootstrapping and loading of programs, and authenticated delegation of authority from one system to another [41, 42, 44, 46].

Taos authentication (1990-91): With Martin Abadi, Mike Burrows, and Ted Wobber, I designed a theory of authentication derived from the security architecture [44, 46]. The theory underlies the implementation of security in the Taos operating system for the Firefly [51].

Compressed file system (1992): With Mike Burrows, Chuck Jerian, and Tim Mann (who did the implementation) I designed an extension to the Sprite log structured file system that uses compression to store more data on the disk and speed up transfers [45].

Tablet PC (1999-2001): With Chuck Thacker, Bert Keely, Alex Loeb and others, I designed the architecture for extending Windows to run on a tablet PC, using a pen for input instead of a keyboard and mouse. This system has been shipping since November 2002.
Programming languages and compilers

Cal (1965-68): This language was a derivative of Joss, but used statement-level incremental compilation. I designed it and did all the implementation. It was widely used on the SDS 940, and many of its techniques were adopted by Tymshare for their interactive SuperBasic system.

Snobol (1965-69): I designed two Snobol systems for the SDS 940, one for Snobol 3 (which I implemented), and the other for Snobol 4 without user data types (implemented by two students). Both were interactive and received considerable use at various 940 installations. Snobol 4 had a large (slow) workspace and did incremental compilation at the statement level.

QSPL (1967-68): Peter Deutsch and I designed and implemented this system implementation language, which is contemporary and comparable with BCPL; it has better data structuring facilities and worse control structures. It was used for a great deal of systems programming on the SDS 940 at a number of research institutions.

SPL (1969-71): Deutsch and I also designed this implementation language and programming system; it included an editor and source-language debugger. I implemented the parser, and four other people worked on the system. It was used to implement all the system software at Berkeley Computer Corporation, including the entire operating system, which had no machine language. This was rather unusual at the time.

Micro (1971-72): Together with Peter Deutsch (who implemented it) and Ed Fiala, I designed this macro-assembler for microprogrammed processors [E. R. Fiala, The MAXC systems, IEEE Computer 11, 5 (May 1978), pp 57-67]. It has a high degree of machine independence and has been used to make widely-used microassemblers for three very different machines.

Mesa (1972-79): With Jim Mitchell, Chuck Geschke and Ed Satterthwaite, I designed this programming language [13, 23; Geschke et al., Early experience with Mesa, Comm. ACM 20, 8 (Aug. 1977), pp 540-553; Mitchell et al., Mesa Language Manual, Technical Report CSL-79-5, Xerox PARC, 1975]. It is based on Pascal, but has unified facilities for coroutines and parallel processes, and for specifying interfaces among many modules in a large system. I designed much of this.

Euclid (1976-79): With Horning, Mitchell, London and Popek I designed this language for writing verifiable system software [17, 18, 20]. It has been implemented at the University of Toronto, and has had several descendants (Concurrent Euclid, Turing, and less directly, Ada).

Cedar (1979-82): With Jim Horning, Paul Rovner and others, I designed the extensions which produced Cedar by adding a safe subset, automatic storage deallocation, and runtime types to Mesa. I wrote a definition of Cedar semantics in terms of a much simpler kernel language, and a language manual [32a].

Modula 2+ (1984-86): With Paul Rovner and others, I designed extensions to Modula 2 which provide a safe subset, automatic storage deallocation, runtime types, exceptions, and concurrency. The language has been used at SRC and several universities to write more than a million lines of code [P. Rovner, Extending Modula 2 to build large, integrated systems. IEEE Software 3, 6 (Nov. 1986)].

Other

QED (1965-66): Peter Deutsch and I designed this editor for the SDS 940, which he and Dana Angluin implemented [4]. It is the ancestor of Ken Thompson's family of qed and ed editors for CTSS, Multics and Unix.

Bravo (1973-79): Charles Simonyi and I designed this display-oriented text editor and formatter, which he and others implemented. It allows what-you-see-is-what-you-get editing of nearly publication-quality documents with multiple fonts, leading, justification, etc., displaying them continuously on the screen in their final form. Later versions had a style sheet facility. Bravo was the first system with these capabilities. It was very widely used within Xerox as well as at a number of customer sites. The capabilities and implementation techniques in Bravo were a major influence on the design and implementation of the Xerox Star product and especially of Microsoft Word [B. Lampson, Bravo Manual. In Alto User's Handbook, Xerox PARC, Oct. 1976, pp 27-58].

Interpress (1980-82): With Bob Sproull, I designed this standard for describing a document to be electronically printed. It includes a programming language with careful control of side-effects, so that portions of several Interpress documents can be easily assembled into another document. It is implemented in the Xerox computer printer product line, and was a major influence on Adobe's Postscript language [Interpress Electronic Printing Standard, version 3.0, XNSS 048601, Xerox Corporation, Jan. 1986].

Interscript (1982-83): With Bob Ayers, Jim Horning and Jim Mitchell, I designed this standard for describing editable documents. The main innovations are semantics which allow editing of parts of the document by an editor which doesn't understand other parts (e.g., captions within figures), provision for what-you-see-is-what-you-get editing, a fully integrated mechanism for style sheets, and a layout model based on regular expressions.

System modeling (1978-83): I designed this scheme for describing the assembly of modules into a complete system, which Eric Schmidt and Ed Satterthwaite implemented part [30, 31]. By mid-1983, it had been used for development of about 70,000 lines of Cedar code.

Vesta (1988-91): With Roy Levin, Chris Hanna, and others, I designed this second generation implementation of system modeling. It has been used to develop about 1.5 million lines of Modula 2+ code at SRC [R. Levin and P. McJones, The Vesta approach to precise configuration of large software systems. SRC Research Report 105, June 1993].

Vesta 2 (1993-95): With Roy Levin, Jim Horning, Alan Heydon, and Tim Mann, I designed this third generation implementation of system modeling. It has much better modularity for tools, a language that can be used to program tool interfaces, server-based caching of derived objects that greatly improves performance [56; U.S. patents 5,940,619 and 6,145,056], and a multi-site repository. It is highly portable and should scale to systems with a million components [Allan Heydon, Roy Levin, Timothy Mann, and Yuan Yu, Software Configuration Management Using Vesta, Springer, 2006].
SDSI/SPKI (1995-): With Ron Rivest, I designed this Simple Distributed Security Infrastructure for distributing public keys on the Internet and easily establishing a wide variety of access control schemes. It has been partially implemented by Wei Dai at Microsoft [59, 62].

Paxos (1990-2001): I worked to understand and popularize Leslie Lamport’s Paxos algorithm for distributed consensus and the Byzantine variant designed by Miguel Castro and Barbara Liskov [63a, 65].
Web Services Security (2000-2002). With Chris Kaler, John Shewchuk, and others I designed an architecture for authentication and authorization in heterogeneous distributed systems. This work builds on DSSA, Taos authentication, and SDSI/SPKI work described above.
National Academies reports (1990-2005): I served on panels of the National Academies that studied computer security [43], the nation’s computing research program in the context of the High Performance Computing and Communications Initiative [55], the military command and control system [63], and supercomputing [72].
Excel FlashFill (2005-2013): In 2005 I came up the idea of using program synthesis to make it possible for ordinary users to program rich applications such as the ones in Microsoft Office. Several years later Sumit Gulwani, who actually knows a lot about program synthesis, made this idea real. The Excel product team picked it up immediately, and the first result was the FlashFill feature in Excel 2013.

B.W. Lampson
May 21, 2019

