
1

Formal Methods for Design:
How To Understand Your System

Before (Or After) You Build It

Butler Lampson
blampson@microsoft.com

12 November 2002

2

My Religion

Write specs as models, not axioms
Write down the state
Give the actions, both external and internal

“Implements” is refinement (external behavior a subset)
Safety proofs by abstraction function and simulation

This is complete: If Y implements X, there’s an
abstraction function under which Y simulates X
May need to add history and prophecy variables

Liveness isn’t important—time bounds are safety
Leave encoding and data structures as late as possible

3

Proving that Y implements X

Define an abstraction function f from Y’s state to X’s state.
Show that Y simulates X: For each Y-action and each state y
there is a sequence of X-actions that is the same externally,
such that the diagram commutes.

f (y)

y y '

f (y ')

Y - a c t i o n

X - a c t i o n s

f f

This always works!
Invariants describe the reachable states of Y; simulation
only needs to work from a reachable state.

4

Understanding A System: What Pays Off?

1. The specification: first the state, then the actions
Examples: File system, group communication

2. The implementation state and the abstraction function
Examples: redo recovery, Paxos, security

3. Invariants 3. Visible transitions
Examples:
cache, redo recovery

Examples:
Paxos, transactions

5

Hard Questions

What does the system really do?
File system, group communication

What should you abstract away?
File system, cache, redo recovery

What are the modules?
Fedex, group communication, security, Paxos

Can you do any useful proofs?
Yes: Paxos, cache. No: Fedex, file system

6

Mental Tools

Sets, functions, relations, graphs
State machines
Modules and composition—TLA, IOA, Z

These are just ways of writing down state machines

7

Example: File system

The tricky part is specifying happens when there’s a crash
before a write has made it to the disk.
type Dir = PathName → seq Byte
var dir : Dir

Write(p, x, data) =
if crashed then if crashed, write some prefix

choose i ≤ data.size do data := data.subSeq(1, i)
else skip fi;
dir(p) := NewFile(dir(p), x, data)

If there’s no ordering guarantee

if crashed then if crashed, write some subset
choose w ⊆ data.domain do data := data.restrict(w)

8

Buffered File System

With buffered writes, it’s even trickier:
any subset of the writes since the last Sync can be lost.
type Dir = PathName → seq Byte
var dir : Dir
 oldDirs : set Dir := {}

Write(p, x, byte) = var f := dir(p) |
dir(p) := NewFile(f, x, data);
oldDirs(p) := {f ′ :IN oldDirs(p), w ⊆ data.domain |
 NewFile(f ′, x, data.restrict(w))}

Sync() = oldDirs := {dir}

Crash() = choose d ∈ oldDirs do dir := d; Sync()

9

Example: FedEx Package Tracking

How to specify the FedEx package tracking system?
First try:

Packages, locations, transports, routes
Events: package is seen (scanned), transport moves
Queries: package history, projected route

Second try:
Packages, locations
Events: package is seen (scanned)
Queries: package history

Modularity: Separate tracking from routing.
An opposite example: specifying I/O hardware.

Often the clean module includes the driver.

10

Example: Transactions

The spec: Make a big atomic thing out of small ones.
var ps : S Persistent State
 vs : S Volatile State

Do(action) = vs := action(vs)
Commit() = ps := vs
Abort() = vs := ps

11

Implementing Transactions

Log the actions, commit by persisting the log, update
persistent state in background.

Need idempotent actions: s ⊕ log ⊕ log = s ⊕ log
var psI : S Persistent State

vsI : S Volatile State
pLog : seq Action Persistent Log
vLog : seq Action Volatile Log

abstract invariant
ps = psI ⊕ pLog
vs = vsI

vsI = psI ⊕ pLog ⊕ vLog

Do(action) = vsI := action(vsI); vLog := vLog + {action}
Commit() = pLog := vLog
Abort() = vs := ps ⊕ pLog; vLog := {}

12

Implementing Transactions (2)

abstract invariant
ps = psI ⊕ pLog
vs = vsI

vsI = psI ⊕ pLog ⊕ vLog

Persist() = await vLog = {a} + tail do psI := a(psI); vLog := tail

ps pLog vLog
ps0 ⊕ done ⊕ done + {a} + rest ⊕ {a} + rest
ps0 ⊕ done ⊕ {a} ⊕ done + {a} + rest ⊕ rest

Cleanup() = await vLog = {} do pLog := {}
Crash() = vsI := ps ⊕ pLog; vLog := pLog

13

Example: Redo Recovery

After Commit, we update persistent state in background.
These updates must not change the abstract state.
var sI : S State log : seq Action
abstract s = sI ⊕ log

Install() = choose a ∋ sI ⊕ log = a(sI) ⊕ log do sI := a(sI)
Cleanup() = choose hd, tail ∋ log = hd + tail do
 await sI ⊕ log = sI ⊕ tail do log := tail

But a(sI) ⊕ log = sI ⊕ ({a} + log).
So in Install, a suitable a must be idle if prefixed to log;
it makes no difference to the final state.

(Lomet and Tuttle)

14

Redo Recovery (2)

abstract s = sI ⊕ log

Install() = choose a ∋ sI ⊕ log = sI ⊕ ({a} + log) do sI := a(sI)

In Install, a must be idle if prefixed to log.
How can this happen? Easy case: all actions are v := const.

Then any a already in log will be idle if prefixed.
In a database system, we install actions v := cv, where cv
is the current value of v in vs, the DB’s buffer cache.

If actions read some variables, it’s harder to find idle ones.
b is final if no busy action later in log reads its writes.
 b not final a: v:=3 ... v:=5 ... b: x:=v+2 ... y:=x+4

Appending a final b’s writes to log makes b idle, so installable.
 b made idle a: v:=3 ... v:=5 ... b: x:=v+2 ... x not read ... x:=7

15

Example: Replicated State Machines

The spec, good for arbitrary deterministic computations.
var s : S State
Do(action) = (s, v) := action(s); return v

The implementation:
var log : seq Action sp : S State
 np : Nat last action applied
abstract sp = sinitial ⊕ log
invariant sp = sinitial ⊕ log.subSeq(1, np) states agree with log

Do(action) =
log := log + {action};
choose p ∋ np = log.size − 1 do np := np + 1; (sp,v) := action (sp);
return v

Catchupp() = await np < log.size do np := np + 1; sp := log(np)(sp).s
Transferp,q() = await np < nq do np := nq; sp := sq

16

Example: Consensus

How do we implement the global log of RSM?
As a sequence of consensus problems, one per log action.
Consensus is tricky, but it’s much easier when separated
from RSM and from configuration changes.
The spec, good for arbitrary deterministic computations.
var v : (V or nil)
 allowed : set V

Allow(w) = allowed := allowed ∪ {w}
Decision() = return v or return nil

Decide() = choose w ∈ allowed do v := w

17

Implementing Consensus: Paxos

The idea: do try for consensus on v until get a majority
The implementation:
var rp,t : V or no or nil once non-nil, cannot changez
abstract v = (choose t, v ∋ a majority of rp,t = v do v)

A majority must agree with any previous one.
So, try the v of the most recent trial that isn’t dead.
Force trials to die by getting processes to set rp,t to no.
When does it decide? When process p does rp,t and forms a
majority. But no one knows this at the time!
Modularity: Use the RSM to change the set of processes.
Paxos is the best algorithm for asynchronous consensus

By Lamport and Liskov/Oki; Byzantine version by Castro/Liskov.

18

Example: Group Communication

The idea: lots of copies of RSM that form a DAG.
Each copy is called a view. It has an initial state and a set of
processes that do RSM in the view.
A process is in a sequence of views that’s a path in the DAG.
A view change forms new views from existing ones.

If v has only one parent u, v’s initial state is u’s final state
(perhaps with some suffix of actions dropped).
Virtual synchrony ensures that all processes moving to v
see the same actions in u, hence have the same final state.

If v has more than one parent, must merge their final states
to get v’s initial state.

Modularity: Application-dependent. Easy if actions commute.

u
vw

v
uw

19

Example: Security

Principals: abstraction of “who says?” or “who is trusted?”
P says “read file foo”

Speaks for: abstraction of trust or responsibility
P speaks for Q — if P says something, so does Q

Examples
Key 743891743 speaks for blampson@microsoft.com
blampson@microsoft speaks for researchers@microsoft
blampson@microsoft speaks forread/write research.microsoft.com/lampson

This logic abstracts crypto, physical security, encoding, etc.
The soundness of the abstraction is the hardest part.

Can do positive proofs in the logic,
negative ones by simulation or model checking.

20

Example: Cache

var m : A → V
Read(a) = return m(a) Write(a, v) = m(a) := v

Implementation:
var mI : A → V
 c : A → (V or nil)

def a.live ≡ c(a) ≠ nil
 a.dirty ≡ a.live ∧ c(a) ≠ m(a)

abstract m(a) = if a.live then c(a) else mI(a)
invariant {a | c(a) ≠ nil}.size ≤ N

Read(a) = await a.live do return c(a)
Write(a, v) = await a.live do c(a) := v

MtoC(a) = if a.live then skip
 else choose a′ do CtoM(a′) od; c(a) := m(a)
CtoM(a) = if a.dirty then m(a) := c(a) else skip fi; c(a) := nil

21

Multiprocessor Cache
var mI : A → V
 cp : A → (V or nil)

lockedp : A → Bool
dirtyp : A → Bool

def a.clean ≡ (∀ p | ~ a.dirtyp) a.livep ≡ cp(a) ≠ nil
 a.free ≡ (∀ p | ~ a.lockedp) a.currentp ≡ (cp(a) = m(a))
 a.onlyp ≡ (∀ q ≠ p | ~ a.liveq)

abstract m(a) = (if a.clean then mI(a)
 else choose p ∋ a.dirtyp then cp(a))
invariant a.dirtyp ⇒ a.livep ⇒ a.currentp
 a.dirtyp ⇒ a.lockedp ⇒ ~ a.liveq ∧ ~ a.lockedq

Read(a) = await a.livep do return cp(a)
Write(a, v) = await a.lockedp do cp(a) := v; a.dirtyp := true

22

Multiprocessor Cache (2)

def a.clean ≡ (∀ p | ~ a.dirtyp) a.livep ≡ cp(a) ≠ nil
 a.free ≡ (∀ p | ~ a.lockedp) a.currentp ≡ (cp(a) = m(a))
 a.onlyp ≡ (∀ q ≠ p | ~ a.liveq)
invariant a.dirtyp ⇒ a.livep ⇒ a.currentp
 a.dirtyp ⇒ a.lockedp ⇒ ~ a.liveq ∧ ~ a.lockedq

Read(a) = await a.livep do return cp(a)
Write(a, v) = await a.lockedp do cp(a) := v; a.dirtyp := true

MtoCp(a) = await ~ a.dirtyp ∧ (a.lockedp ∨ a.free) do cp(a) := m(a)
CtoMp(a) = await a.dirtyp do m(a) := cp(a); a.dirtyp := false
Dropq(a) = await ~ a.dirtyp do cp(a) := nil

Acquirep(a) = await a.free ∧ a.onlyp do a.lockedp := true
Releasep(a) = await ~ a.dirtyp do a.lockedp := false

CtoCp,q(a) = await a.free ∧ a.livep do cq(a) := cp(a)

23

Marketing

To sell, you must have “metal” tools that help the developer
Type-checking and other kinds of abstract execution
Model-checking of important properties
Proofs (usually only for hardware)
Test coverage analysis

A crisis helps—floating divide bug, buffer overruns
Sometimes a fad will do—the internet sold type-checking
and GC in Java. But it must be automated.
Why so hard? Willpower is best as long as it works.

But often you find out only later that it’s not working.

24

Proofs?

Many things are possible—cost-benefit is the issue
Some things that have worked:

Simple properties of software: type-correct, no races,
device driver follows OS protocol
Proofs of tricky algorithms, especially concurrent ones
Hardware, esp. model checking

Sound and complete? No.
“Sorry, I can’t find any more bugs.”

25

Acknowledgements

I learned a lot about this from
Leslie Lamport
Nancy Lynch
Tony Hoare
Martín Abadi

Further reading:

Principles of Computer Systems
For security, Computer Security in the Real World
For consensus, ABCD’s of Paxos
All are at research.microsoft.com/lampson.

