Formal Methodsfor Design:
How To Understand Your System
Before (Or After) You Build It

Butler Lampson
blampson@microsoft.com

12 November 2002

My Religion

Write specs as models, not axioms

Write down the state

Give the actions, both external and internal
“Implements’ is refinement (external behavior a subset)

Safety proofs by abstraction function and simulation

Thisiscomplete: If Y implements X, there’s an
abstraction function under which Y smulates X

May need to add history and prophecy variables
Liveness isn't important—time bounds are safety
L eave encoding and data structures as late as possible

Proving that Y implements X

Define an abstraction function f from Y’ s state to X' s state.

Show that Y ssimulates X: For each Y-action and each state 'y
there Is a sequence of X-actions that isthe same externally,

such that the diagram commties.
X-actions

T(y) —1(y')

f 1 f
Y-action

y y
This always works!

Invariants describe the reachable states of Y ; simulation
only needs to work from areachabl e state.

Understanding A System: What Pays Off?

1. The specification: first the state, then the actions
Examples: File system, group communication

2. The implementation state and the abstraction function
Examples: redo recovery, Paxos, security

3. Invariants 3. Visible transitions
Examples: Examples:
cache, redo recovery Paxos, transactions

Hard Questions

What does the system really do?
File system, group communication

What should you abstract away?
File system, cache, redo recovery

What are the modules?
Fedex, group communication, security, Paxos

Can you do any useful proofs?
Y es:. Paxos, cache. No: Fedex, file system

Mental Tools

Sets, functions, relations, graphs
State machines

Modules and composition—TLA, IOA, Z
These are just ways of writing down state machines

Example: File system

The tricky part is specifying happens when there’ s a crash
before awrite has made it to the disk.

type Dir =PathName - seq Byte
var dir : Dir

Write(p, X, data) =
If crashed then if crashed, write some prefix
choosei < data.size do data := data.subSeq(1, 1)
else skip fi;

dir(p) := NewFile(dir(p), X, data)

If there' s no ordering guarantee
If crashed then if crashed, write some subset
choose w [] data.domain do data := data.restrict(w) >

Buffered File System

With buffered writes, it’s even trickier:
any subset of the writes since the last Sync can be |ost.
type Dir = PathName - seq Byte
var dir . Dir
oldDirs : set Dir :={}

Wkite(p, X, byte) = var f :=dir(p) |

dir(p) := NewFile(f, x, data);

oldDirs(p) :={f " :IN oldDirs(p), w L1 data.domain |

NewFile(f ', x, datarestrict(w))}

Sync() =oldDirs:={dir}

Crash() = choosed [oldDirs do dir := d; Sync()

Example: FedEx Package Tracking

How to specify the FedEx package tracking system?

First try:
Packages, locations, transports, routes
Events: package Is seen (scanned), transport moves
Queries. package history, projected route

Second try:
Packages, locations
Events: package Is seen (scanned)
Queries. package history

Modularity: Separate tracking from routing.

An opposite example: specifying I/O hardware.
Often the clean module includes the driver.

Example: Transactions

The spec: Make a big atomic thing out of small ones.

var pPS . S Persistent Sate
VS S Volatile Sate

Do(action) = vs := action(vs)
Commit() =ps:=vs
Abort() =vs:=ps

10

| mplementing Transactions

L og the actions, commit by persisting the log, update
persistent state in background.

Need idempotent actions. s log LI log =s [log

var psl . S PesisentSate PLOQ: seq Action Persistent Log
vsl : S Volatile Sate vLog: seq Action VolatileLog

abstract Invariant
ps=psl L1 pLog vsl = psl LI pLog LI vLog
vsS=vsl

Do(action) = vsl := action(vsl); vLog := vLog + { action}
Commit() =plLog:=vLog
Abort() =vs:=psl pLog;vLog:={}

11

|mplementing Transactions (2)

abstract Invariant
ps=psl L1 pLog vsl = psl LI pLog L] vLog
VS =vsl

Persist() =await vLog={a} +tail dopsl :=a(psl); vLog := tall

PS pLog vLog
PS LI done [1done +{a} +rest [{a} +rest
P L doneld {a} [ldone +{a} +rest [] rest

Cleanup() =await vLog ={} dopLog:={}
Crash() =vsl:=psl pLog;vLog:=pLog

12

Example: Redo Recovery
(Lomet and Tuttle)

After Commit, we update persistent state in background.

These updates must not change the abstract state.

var sl:S Sate log . seg Action
abstract s =sl [J log

Install() = chooseallsl [log=a(sl)logdosl :=a(sl)
Cleanup() = choose hd, tail Llog = hd + tail do
await sl Jlog=sl [tal dolog:=tall

But a(sl) L log=4dl U ({a} + log).

So in Install, asuitable a must beidle if prefixed to log;
It makes no difference to the final state.

13

Redo Recovery (2)

abstract s =sl [J log

Install() = choosea sl [J log=sl [I ({a} +1og) dosdl :=a(sl)
In Install, a must beidleif prefixed to log.

How can this happen? Easy case: all actions are v .= const.
Then any a already inlog will beidleif prefixed.

In a database system, we install actionsv := ¢,, where c,
IS the current value of vin vs, the DB’ s buffer cache.

If actions read some variables, it’s harder to find 1dle ones.

b isfinal iIf no busy action later in log reads its writes.
bnotfina a:v:=3..v:=5..D0b:x:=v+2...y:=x+4
\/

Appending afinal b’swritesto log makesb idle, so installable.
bmadeidle a:v:=3..v:=5..D0b:x:=v+2.. xnot read

14

Example: Replicated State M achines

The spec, good for arbitrary deterministic computations.
var s .S Sate
Do(action) = (s, v) .= action(s); return v

The implementation:
var log : seq Action S S Sate

n, : Nat last action applied

abstract s =s""* 0 log
invariant s, = s"" 7 |og.subSeq(1, Np) statesagreewith log

Do(action) =
log :=1log + { action} ;
choosep On,=log.size—1 don,:=n,+1; (s,V):=action (s,);
returnv
Catchup,() =await n,<log.size don,:=n,+1; 55, :=log(ny)(s).S
Transfer,4() = await n, < nq don,:=ng S, =

15

Example: Consensus

How do we implement the global log of RSM?

As a sequence of consensus problems, one per log action.

Consensus istricky, but it’s much easier when separated
from RSM and from configuration changes.

The spec, good for arbitrary deterministic computations.

var v . (Vornil)
alowed : setV

Allow(w) = allowed :=allowed [0 {w}
Decision() =return v or return nil

Decide() =choosew L] aloweddov :=w

16

| mplementing Consensus. Paxos

Theidea: do try for consensus on v until get amajority

The implementation:
var Ipy -V or noor nil once non-nil, cannot change
abstract v = (chooset, v Uamajority of r,; = v do V)

A majority must agree with any previous one.
S0, try the v of the most recent trial that 1sn’t dead.

Force trials to die by getting processes to set rp,; to no.

When does it decide? When process p does r,; and forms a
majority. But no one knowsthis at the time!

Modularity: Use the RSM to change the set of processes.

Paxos is the best algorithm for asynchronous consensus

By Lamport and Liskov/Oki; Byzantine version by Castro/Liskov.

17

Example: Group Communication

Theidea: lots of copies of RSM that form a DAG.

Each copy iscalled aview. It has an initial state and a set of
processes that do RSM in the view.

A processisin asequence of viewsthat's apath in the DAG.

A view change forms new views from existing ones.

@‘@ If v has only one parent u, V' sinitial stateisu’sfinal state
@l (perhaps with some suffix of actions dropped).

Virtual synchrony ensuresthat all processes moving to v
see the same actions in u, hence have the same final state.

@@Pﬁ v has more than one parent, must merge their final states
to get v'sinitia state.
Modularity: Application-dependent. Easy if actions commute.
18

Example: Security

Principals: abstraction of “who says?’ or “who is trusted?”
P says“read filef 0o”

Speaks for: abstraction of trust or responsibility

P speaksfor Q — if P says something, so does Q
Examples

Key 743891743 speaksfor blampson@microsoft.com

blampson@microsoft speaks for researchers@microsoft
blampson@microsoft speaks for reamwrite Fesearch.microsoft.com/lampson

Thislogic abstracts crypto, physical security, encoding, etc.
The soundness of the abstraction is the hardest part.

Can do positive proofsin thelogic,
negative ones by simulation or model checking.

19

Example: Cache

varm: A -V
Read(a) = return m(a) Write(a, v) = m(a) :=v

| mplementation:
varml: A -V
c : A (Vornil)
def alive =c(a) #nil
adirty =aliveldc(a) #Z m(a)

abstract m(a) = if alivethen c(a) else mi(a)
invariant {a|c(a) # nil}.size< N

Read(a) = await allivedo return c(a)
Write(a, v) =await alivedoc(a) :=v
MtoC(a) = if alivethen skip

else choose @ do CtoM(d) od; c(a) .= m(a)
CtoM(a) = if adirty then m(a) .= c(a) else skip fi; c(a@) := nil

Multiprocessor Cache

var mi AV locked, : A - Bool
Co . A - (Vornil) dirty, . A - Bool

def aclean= (Up | ~ adirtyp) alive, =cy(a) #nil
afree =(Up|~alocked,) acurrent, = (cy(a) = m(a))
aonly, =(Uqzp]|~alivey)

abstract m(a) = (if acleanthen mi(a)
else choose p Ua.dirty, then c,(a))
invariant adirty, = alive, = acurrent,
adirty, = alocked, = ~ alive, [~ alocked,

Read(a) =awaitalive, doreturn cya)
Write(a, v) = await alocked, do c,(a) :=v; adirty, := true

21

Multiprocessor Cache (2)

def aclean= (Up |~ adirtyp) alive, =cy(a) #nil
afree =(Up|~alocked,) acurrent,=(cy(a) = m(a))
aonly, =(Uqzp]|~alivey)
invariant adirty, = alive, = acurrent,
adirty, = alocked, = ~ alive, L1~ alocked,

Read(a) =awaitalive, doreturn c,(a)
Write(a, v) = await alocked, do c,(a) :=v; adirty, := true

MtoC,(a) = await ~adirty, LI(alocked, Llafree) do cy(a) := m(a)
CtoMy(a) =await adirty, dom(a) := c,(a); adirty, :=false
Drop,(@) = await ~adirty, do c,(a) :=nil

Acquire,(a) = await a.free La.only, do alocked, := true
Releasg,(a) = await ~ adirty, do alocked, :=false

CtoC,4(a) =await afreeJalive, do cy(a) := cy(a)

22

Marketing

To sdll, you must have “metal” tools that help the devel oper
Type-checking and other kinds of abstract execution
Model-checking of important properties
Proofs (usually only for hardware)

Test coverage analysis

A crisis helps—floating divide bug, buffer overruns

Sometimes afad will do—the internet sold type-checking
and GC in Java. But it must be automated.

Why so hard? Willpower is best aslong as it works.
But often you find out only later that it’s not working.

23

Proofs?

Many things are possi ble—cost-benefit i1s the issue

Some things that have worked:

Simple properties of software: type-correct, no races,
device driver follows OS protocol

Proofs of tricky algorithms, especially concurrent ones
Hardware, esp. model checking

Sound and complete? No.
“Sorry, | can’t find any more bugs.”

24

Acknowledgements

| learned alot about this from
Leslie Lamport
Nancy Lynch
Tony Hoare
Martin Abad

Further reading:

Principles of Computer Systems

~or security, Computer Security in the Real World
~or consensus, ABCD’ s of Paxos

All are at research.microsoft.com/lampson.

25

