
1

Hints and Principles for

Computer System Design

Butler Lampson
Microsoft Research

Heidelberg Laureate Forum
August 27, 2015

Overview

 A 32-year update of my 1983 Hints for Computer Systems

 These are mostly hints, often not consistent or precise
 Hints suggest—no nitpicking allowed

 STEADY by AID
 What: Simple, Timely, Efficient,Adaptable,Dependable,Yummy

 How: Approximate, Incremental, Divide & conquer, …

 The future: Engagement with the physical world

27 January 2016 Lampson: Hints and Principles 2

There are three rules for writing a novel. Unfortunately, no one knows what they are.

—Somerset Maugham

You got to be careful if you don’t know where you’re going, because you might not get there.

—Yogi Berra

The quest for precision, in words or concepts or meanings, is a wild goose chase.

—Karl Popper

What: Goals

3

STEADY

*More important today

[Data is not information,] Information is not knowledge, Knowledge is not wisdom,
Wisdom is not truth, Truth is not beauty, Beauty is not love, Love is not music and
Music is THE BEST” —Frank Zappa

Lampson: Hints and Principles

 Simple

 Timely (to market)*

 Efficient

 Adaptable*

 Dependable

 Yummy*

First ↔ Fast ↔ Frugal ↔ Flexible ↔ Faithful ↔ Fancy ↔ Fun

TTM ↔ speed ↔ cost ↔ change ↔ trust ↔ features ↔ coolness

27 January 2016

How: Methods

27 January 2016 4

AID

Lampson: Hints and Principles

 Approximate
 Good enough

 Loose specs

 Lazy/speculative

 Incremental
 Indirect

 Iterate

 Extend

 Divide & conquer
 Interfaces to abstractions

 Recursive

 Atomic

 Concurrent

 Replicated

Kinds of Software

27 January 2016 5Lampson: Hints and Principles

 Precise vs. approximate software
 Precise: Get it right

▬ avionics, banks, Office

 Approximate: Get it soon, make it cool
▬ search, shopping, Twitter

 Which kind is yours?
 One isn't better or worse than the other,

 but they are different.

Unless in communicating with it [a computer] one says exactly what one means,

trouble is bound to result. —Turing

There’s no sense being exact about something if you don’t even know what you’re

talking about.—von Neumann

27 January 2016 6

A point of view is worth 80 points of IQ. —Alan Kay

Science is not there to tell us about the Universe,

but to tell us how to talk about the Universe. —Niels Bohr

A good notation has a subtlety and suggestiveness which at times make it seem almost

like a live teacher… and a perfect notation would be a substitute for thought. —Russell

Lampson: Hints and Principles

Coordinate Systems and Notation

 Choose the right coordinate system
 Like center of mass for dynamics, or eigenvectors for matrices
 Ex: State as being vs. becoming, function as code vs. table vs. overlay

 Choose a good notation
 This is why domain specific languages succeed

 Relations cover most needs for design
▬ subsuming sets, functions, graphs, programs

▬ with composition, transitive closure , union, intersection as primitives

Coordinates: State

 State as being vs. becoming
 Being: map from names  values

 Becoming: initial state + log of updates

 Being is the usual form

 Becoming is good for undo, versions and recovery

27 January 2016 Lampson: Hints and Principles 7

Example Being Becoming

Image bitmap display list

Document sequence of characters sequence of inserts / deletes

Database table + buffer cache redo-undo log

Eventual consistency names  values read any subset of updates that are

commutative and associative

Don’t ask what it means, but rather how it is used. —Wittgenstein

No matter how far down the wrong road you have gone, turn back now. —Turkish Proverb

Coordinates: Functions

 Function as code vs. table vs. overlay
 Code: execute f(x) to get the result

 Table: lookup x in a set of (argument, result) pairs

 Overlay: try f1(x) , if undefined try f2(x), …

27 January 2016 Lampson: Hints and Principles 8

Example Code Table Overlay

Main memory — RAM write buffer

Database — data on disk buffer cache

bin for shell cmd — /bin directory search path

Function of

simple argument

run the code precomputed results saved old results

Database view run the query materialized view incremental updates

If all you have is a hammer, everything looks like a nail. —A. Maslow

Write a Spec: State

27 January 2016 Lampson: Hints and Principles 9

The purpose of abstracting is not to be vague,

but to create a new semantic level in which one can be absolutely precise. —Dijkstra

Beware of bugs in the above code; I have only proved it correct, not tried it. —Knuth

 At least, write down the abstract state

 Abstract state is real

 Example: File system state is PathNameByteArray

Write a Spec: Actions

27 January 2016 Lampson: Hints and Principles 10

The purpose of abstracting is not to be vague,

but to create a new semantic level in which one can be absolutely precise. —Dijkstra

 At least, write down the state—Abstract state is real

 Example: File system state is PathNameByteArray

 Then, write down the interface actions (APIs),

 which ones are external, and what each action π does

 Example: For failures, volatile vs. persistent state

 On crash, volatile := persistent

 On sync, persistent := volatile

Write a Spec: Abstraction Function

27 January 2016 Lampson: Hints and Principles 11

The purpose of abstracting is not to be vague,

but to create a new semantic level in which one can be absolutely precise. —Dijkstra

 At least, write down the state—Abstract state is real

 Example: File system state is PathNameByteArray

 Then, write down the interface actions (APIs),

 which ones are external, and what each action π does

 Next, write the abstraction function F from code to spec

F(s)

s

F

spec

code

Write a Spec: Proof

27 January 2016 Lampson: Hints and Principles 12

Newcombe et al, How Amazon Web Services uses formal methods, Comm ACM 58, 4

(March 2015), pp 66-73

 At least, write down the state—Abstract state is real

 Example: File system state is PathNameByteArray

 Then, write down the interface actions (APIs),

 which ones are external, and what each action π does

 Next, write the abstraction function F from code to spec

 Finally, show that each action π preserves F:

F(s) F(s')

s s'

π

π

FF

spec

code
pre-state post-state

How: Methods

 Approximate
 Good enough

 Lazy/speculative

 Loose specs

 Incremental
 Compose (indirect, virtualize)

 Iterate

 Extend

AID

 Divide & conquer
 Interfaces to abstractions

 Recursive

 Replicated

 Concurrent

27 January 2016 13Lampson: Hints and Principles

AID: Divide & Conquer

27 January 2016 14Lampson: Hints and Principles

Civilization advances by extending the number of important operations which we can
perform without thinking about them. Operations of thought are like cavalry charges
in a battle — they are strictly limited in number, they require fresh horses, and must
only be made at decisive moments. —Whitehead

Don’t tie the hands of the implementer. —Martin Rinard

 Interfaces to abstractions: Divide by difference

 Limit complexity, liberate parts. TCP/IP, file system, HTML

 Platform/layers. OS, browser, DB. X86, internet. Math library

▬ Need this to ship

 Declarative. HTML/XML, SQL queries, schemas

▬ The program you think about takes only a few steps

 Synthesize a program from a partial spec. Excel Flashfill

▬ Signal + Search → Program

AID: Divide & Conquer

 Interfaces: Divide by difference

 Recursive: Divide by structure. Part ~ whole

 Quicksort, DHTs, path names. IPV6, file systems

 Replicated: Divide for redundancy, in time or space

 Retry: End to end (TCP). Replicated state machines.

 Concurrent: Divide for performance

 Stripe, stream, or struggle: BitTorrent, MapReduce

27 January 2016 15Lampson: Hints and Principles

If you come to a fork in the road, take it. —Yogi Berra

To iterate is human, to recurse divine. —Peter Deutsch

AID: Incremental

27 January 2016 16

Any problem in computing can be solved by another level of indirection. —David Wheeler

Compatible, adj. Different. —The Devil’s Dictionary of Computing

Lampson: Hints and Principles

 Indirect: Control namevalue mapping

 Virtualize/shim: VMs, NAT, USB, app compat, format versions

 Network: Source routeIP addrDNS nameservicequery

 Symbolic links, register rename, virtual methods, copy on write

 Iterate design, actions, components

 Redo: Log, replicated state machines (state as becoming)

 Undo. File system snapshots, transaction abort

 Scale. Internet, clusters, I/O devices

 Extend. HTML, Ethernet

Name Value

Indirect

AID: Approximate

 Good enough. Web, search engines, IP packets

 Eventual consistency. DNS, Dynamo, file/email sync

 Loose coupling: springy flaky parts. Email, Fedwire

 Brute force. Overprovision, broadcast, scan, crash fast

 Strengthen (do more than is needed). Redo log, coarse locks

 Relax: small steps converge to desired result

 Routing protocols, daily builds, exponential backoff

 Hints: Trust, but verify

27 January 2016 17

I may be inconsistent. But not all the time.—Anonymous

Lampson: Hints and Principles

What: Goals

 Simple

 Timely (to market)*

 Efficient

 Adaptable*

 Dependable

 Yummy*

 First↔Fast↔Frugal↔Flexible↔Faithful↔Fancy↔Fun

 Need tradeoffs—You can’t get all these good things

STEADY

27 January 2016 Lampson: Hints and Principles 18

27 January 2016 19

Less is more. —Browning

Everything should be as simple as possible, but no simpler. —Einstein

I’m sorry I wrote you such a long letter; I didn’t have time to write a short one. —Pascal

The best is the enemy of the good. —Voltaire

If you don’t think too good, don’t think too much. —Ted Williams

And the users exclaimed with a laugh and a taunt,
“It's just what we asked for but not what we want.” —Anonymous

Lampson: Hints and Principles

STEADY: Simple, Timely

 Simple is important because we can’t do much
 Simple enough? I can still understand it

▬ But when it evolves, only abstraction and interfaces can save me

 Simple is hard, often not rewarded—“That’s obvious.”
▬ Why didn’t computer scientists invent the web?

 Timely: Good enough is good enough
 The web is successful because it doesn’t have to work.

 Learn what customers really want—Iterative development

STEADY: Efficient, Adaptable

 Efficient has two faces: for the implementer, for the client
 Not unrelated: the client wants it fast and cheap enough

 Efficient enough, not optimal

 Adaptable–Plan for success

 Evolution/scaling: Successful systems live a long time

▬ 2015 PC = 100,000  Xerox Alto, Web grew from 100 users to 109

 Incremental update: Big things change a little at a time

27 January 2016 20

An efficient program is an exercise in logical brinkmanship. —Dijkstra

I see how it [the phone] works. It rings, and you have to get up. —Degas

That, Sir, is the good of counting. It brings everything to a certainty, which before
floated in the mind indefinitely.—Samuel Johnson

Success is never final. —Churchill (attributed)

APL is like a diamond; Lisp is like a ball of mud. —Joel Moses

Lampson: Hints and Principles

STEADY: Dependable, Yummy

 Dependable: Reliable, Available, Secure
 Reliable: Gives the right answer (safe)

 Available: Gives the answer promptly (live)

 Secure: Works in spite of bad guys

 Often dependable undo is the most important thing

 Yummy: Users really want it
 Function: Spreadsheets, the web, smartphones

 Design: Apple’s forté

27 January 2016 21

But who will watch the watchers? She'll just begin with them and buy their silence. —Juvenal

The unavoidable price of reliability is simplicity. It is a price which the very rich find most
hard to pay. —Tony Hoare

Lampson: Hints and Principles

The Future: What Do Computers Do?

Simulate 1950-

ongoing

nuclear weapons, payroll,

protein folding,

games, virtual reality

Connect
(and store)

1980-

ongoing

email, airline tickets,

books, movies, Bing,

Virtual Earth

Engage (with

physical world)

2010-... factories, cars,

robots, smart dust:

Embodiment

27 January 2016 Lampson: Hints and Principles 22

The future ain’t what it used to be.—Yogi Berra

Reality is that which, when you stop believing in it, doesn’t go away.—Philip K. Dick

Big Trends

 Connectivity—cloud and data everywhere

 Ubiquity, invisibility: systems everywhere

 Scaling—billions of users, billions of gigabytes

 Approximation—good enough is good enough

 AI and systems are converging

 Reusable components are finally catching on

 Uncertainty—fundamental to engagement

 Dependability—critical systems have to work

27 January 2016 Lampson: Hints and Principles 23

They always say time changes things, but you actually have to change them yourself.
—Andy Warhol

You see things; and you say, ‘Why?’ But I dream of things that never were; and I say ‘Why not?’

—Shaw

Grand Challenge: Zero Traffic Deaths

 Cars have to drive themselves

 A pure computer science problem

 Needs
 Computer vision

 World models for roads and vehicles

 Dealing with uncertainty about sensor inputs, vehicle

performance, changing environment

 Dependability

 DARPA Challenges, Google cars a start

 Huge economic impact

 Safety trumps liability

27 January 2016 Lampson: Hints and Principles 24

Problems worthy of attack prove their worth by hitting back.—Piet Hein

Dealing with Uncertainty

 Unavoidable in the physical world

 Need good models of what’s possible, and their limits

 Unavoidable for “natural” user interfaces: speech,

writing, language

 The machine must guess; what if it guesses wrong?

 Paradigm?: Probability distributions

 Distributions as a standard data type?

▬ Parameterized over the domain (like lists). What are the operations?

 A start: Microsoft Infer.Net, probabilistic programming

27 January 2016 Lampson: Hints and Principles 25

Logic, like whiskey, loses its beneficial effect when taken in too large quantities.—Lord Dunsany

Do I contradict myself? Very well then I contradict myself. (I am large, I contain multitudes.)
—Whitman

Dependable  No Catastrophes

 A realistic way to reduce aspirations
 Focus on what’s really important

 What’s a catastrophe? It has to be very serious
 USS Yorktown: database failure → can’t run engines

 Terac 25 and other medical equipment: Patients die

 Architecture: Normal vs. catastrophe mode
 Catastrophe mode  high assurance CCB

 Catastrophe mode requires limited goals = limited function

 And strict bounds on complexity
▬ Less than 50k lines of code? Can verify? Examples: Ironclad, FSCQ

27 January 2016 Lampson: Hints and Principles 26

If you can’t make it fast and correct, make it fast.—Luca Cardelli

As a rule, software systems do not work well until they have been used, and have failed
repeatedly, in real applications.—David Parnas

Summary

27 January 2016 27

If I have seen further than others, it is because I have stood on the shoulders of giants.
—Schoolmen of Chartres, via Newton

The only thing new in the world is the history you don’t know. —Harry Truman

History doesn’t repeat, but it rhymes. —Mark Twain

Lampson: Hints and Principles

 STEADY by AID

 What: Simple, Timely, Efficient, Adaptable, Dependable, Yummy

 How: Approximate, Incremental, Divide & conquer

 If you only remember three things:
 Keep it simple

 Interfaces to abstractions

 Write a spec

 The future: Engagement with the physical world

