
Resilient Cyber Security and

Privacy

Butler Lampson

Microsoft Research

Cyberforum

April 7, 2015

Security: What we know how to do

 Secure something simple very well

 Protect complexity by isolation and sanitization

 Stage security theatre

What we don’t know how to do
 Make something complex secure

 Make something big secure

 Keep something secure when it changes
 “When it comes to security, a change is unlikely to be an

improvement.” —Doug McIlroy

 Get users to make judgments about security

Lots of hype

 Not much hard evidence of actual harm

 As opposed to scare stories and uneasiness

 Ex: Scale of identity theft, losses from cybercrime

 Most numbers come from interested parties

 who are in business to sell you security stuff

 Rarely, we see business decisions backed by data

 Verifying credit card transactions

 Most costs are in prevention, not in harm

Approaches to rational security

 Limited aspirations

 In the real world, good security means a bank vault

▬ There’s nothing like this in most computer systems

 Requires setting priorities—what’s really important

 Retroactive security

 React, don’t anticipate—work on actual problems

 Deterrence and undo rather than prevention

▬ Deterrence needs punishment

▬ Punishment needs accountability

Deterrence, punishment, accountability

 Real world security is retroactive, about

deterrence, not about locks

 On the net, can’t find bad guys, so can’t deter

them

 Fix? End nodes enforce accountability
 Refuse messages that aren’t accountable enough

▬ or strongly isolate those messages

 Senders are accountable if you can punish them
▬ With dollars, ostracism, firing, jail, ...

 All trust is local

529 February 2016 Lampson: Retroactive Security

 Partition world into two parts:

 Green: More safe/accountable

 Red : Less safe/unaccountable

 Green world needs professional management

Limiting aspirations: Red | Green

Less

valuable

assets

My Red Computer

N attacks/year on less

valuable assets

More

valuable

assets

My Green Computer
More

valuable

assets

m attacks/year on more

valuable assets

N attacks/yr m attacks/yr(N >> m)

Less trustworthy
Less accountable

entities

More trustworthy
More accountable

entities

What about bugs? Control inputs

 Bugs will always subvert security

 Can’t get rid of bugs in full-function systems

▬ There’s too much code, changing too fast

▬ Timeliness and functionality trump security

 A bug is only dangerous if it gets tickled

 So keep the bugs from getting tickled

 Bugs get tickled by inputs to the program

 So refuse dangerous inputs

▬ or strongly isolate or sanitize those inputs

 To control possible inputs, isolate the program

 Airgap, VM, process isolation, sandbox

Privacy: Personal control of data

 You are empowered to control your data

 Find it, limit its use, claim it

 Everywhere—Across the whole internet

 Anytime, not just when it’s collected

 Consistently for all data handlers and devices

 Remaining anonymous if you wish

Personal control of data: Mechanisms

 Ideal: All your data is in a vault you control

 I bring you a query

 If you like the query, you return a result

▬ Otherwise you tell me to go away

 Practical: Data has metadata tag: link to policy

 Two kinds of players:

▬ Agents you choose—like an email provider

 Personal Agent on your device

 Policy Service online

▬ Data handlers, subject to regulation

 Anyone who handles your data and follows the rules

 Must fetch and obey your current policy

How it works

NID+ is the

metadata

You are
in control

Regulator
makes rules

Data items:
<NID +, type, bytes>

...

Handler h

Your agent

Identity: NID

data, NID+→

(3) Get policy

NID→
data items

(4) Claim data

(2) Provide data

handler,type,NID

Y/N→

(1) Set policy

Policy:
<type, handler>→Y/N

...

Your policy service

Policy

 Data-centric, not device or service centric
 Metadata stays with the data, points to data’s policy

 Standard policy is very simple
 7 ± 2 types of data: contact, location, transaction, ...

▬ Can extend a type with an optional tree of subtypes

 Basic policy: handler h can/can’t use data type t

 One screen shows most policies (in big type)
 Templates (from 3rd parties) + your exceptions

 Encode complex policy in apps
 An app is a handler that tags its output suitably

Conclusions

 Rational security
 Limited aspirations

▬ Red | Green

 Retroactive security
▬ React—work on actual problems

▬ Deterrence and undo over prevention

 Personal control of data
 Data tagged with metadata:

a link to your policy

 Handlers must obey policy

Less

valuable

assets

My Red Computer

N attacks/year on less

valuable assets

More

valuable

assets

My Green Computer
More

valuable

assets

m attacks/year on more

valuable assets

N attacks/yr m attacks/yr(N >> m)

Less trustworthy
Less accountable

entities

More trustworthy
More accountable

entities

You are
in control

Regulator
makes rules

Data items:
<NID +, type, bytes>

...

Handler h

Your agent

Identity: NID

data, NID+→

(3) Get policy

NID→

data items

(4) Claim data

(2) Provide data

handler,type,NID

Y/N→

(1) Set policy

Policy:
<type, handler>→Y/N

...

Your policy service

Backup

Access Control

1. Isolation boundary limits attacks to channels (no bugs)

2. Access Control for channel traffic

3. Policy management

Resource /

Object

Guard /
Reference

monitor
Request

Agent /

Principal

Authorization

Audit
log

Authentication

1. Isolation

boundary
2. Access control

Policy

3. Policy

SinkSource

Host (CLR, kernel, hardware, VMM, ...)

14
29 February 2016 Lampson: Retroactive Security

Incentives

 Perceived threat of harm, or regulation
 Harm: loss of money or reputation

 For vendors, customer demand, which is weak

 Perception is based on past experience
 not on possible futures

 because too many things might go wrong

 and you’ll have a different job by then

 Regulation is a blunt instrument
 slow, behind changing technology and threats

 expensive

 prone to unintended consequences.

 But it can work. Ex: US state laws on PII disclosure

Are people irrational? No

 Goals are unrealistic, ignoring:
 What is technically possible

 What users will actually do

 Conflicting desires for

▬ security, anonymity, convenience, features

 Actual damage is small
 Evidence of damage is weak

 Hence not much customer demand

 Incentives are lacking
 Experience trumps imagination

 Convenience trumps security

 Externalites: who benefits ≠ who pays

What is technically possible?

 Security requires simplicity

 Most processes add complexity

 SSL/TLS recently discovered bugs

 EMV chip-and-PIN system

 Windows printing system

 SET “standard” for internet credit card transactions

 “Too complex” is a judgment call

 Why? No good metrics for complexity or security

 So desire outruns performance

What will users actually do?

 What gets the job done

 Disabling or evading security in the process

 What is easy

 2-factor auth for banking → password + device

▬ But in Norway, one time passwords for banking

 What works everywhere

 For security, that’s nothing

 So “educating” users doesn’t work

 What solves a problem they (or a friend) actually had

 “If you want security, you must be prepared for inconvenience.”

—Gen. Benjamin W. Chidlaw, 1954

