Resilient Cyber Security and
Privacy

Butler Lampson
Microsoft Research
Cyberforum
April 7, 2015

Security: What we know how to do

Secure something simple very well

Protect complexity by isolation and sanitization
Stage security theatre

What we don’t know how to do
Make something complex secure
Make something big secure

Keep something secure when It changes

“When it comes to security, a change is unlikely to be an
Improvement.” —Doug Mcllroy

Get users to make judgments about security

Lots of hype

Not much hard evidence of actual harm
As opposed to scare stories and uneasiness
Ex: Scale of identity theft, losses from cybercrime

Most numbers come from interested parties
who are in business to sell you security stuff

Rarely, we see business decisions backed by data
Verifying credit card transactions

Most costs are In prevention, not in harm

Approaches to rational security

Limited aspirations
In the real world, good security means a bank vault

There’s nothing like this in most computer systems

Requires setting priorities—what’s really important

Retroactive security
React, don’t anticipate—work on actual problems

Deterrence and undo rather than prevention
Deterrence needs punishment
Punishment needs accountability

Deterrence, punishment, accountability

Real world security Is retroactive, about

deterrence, not about locks
On the net, can’t find bad guys, so can’t deter

them

Fix? End nodes enforce accountability

Refuse messages that aren’t accountable enough
or strongly isolate those messages

Senders are accountable if you can punish them
With dollars, ostracism, firing, jail, ...

All trust is local

29 February 2016 Lampson: Retroactive Security

Partition world Into two parts:
Green: More safe/accountable
Red : Less safe/unaccountable
Green world needs professional management

ore trustworth
More accountable
entities

N attacks/yr m attacks/yr

N attacks/year on less m attacks/year on more
valuable assets valuable assets

What about bugs? Control inputs

Bugs will always subvert security

Can’t get rid of bugs in full-function systems
There’s too much code, changing too fast
Timeliness and functionality trump security

A bug is only dangerous If it gets tickled
So keep the bugs from getting tickled
Bugs get tickled by inputs to the program

So refuse dangerous inputs
or strongly isolate or sanitize those inputs

To control possible inputs, isolate the program
Airgap, VM, process isolation, sandbox

Privacy: Personal control of data

You are empowered to control your data
Find it, limit its use, claim it
Everywhere—Across the whole internet
Anytime, not just when it’s collected
Consistently for all data handlers and devices
Remaining anonymous If you wish

Personal control of data: Mechanisms

Ideal: All your data is in a vault you control

| bring you a query

If you like the query, you return a result
Otherwise you tell me to go away

Practical: Data has metadata tag: link to policy
Two Kinds of players:

Agents you choose—Ilike an email provider
Personal Agent on your device
Policy Service online

Data handlers, subject to regulation

Anyone who handles your data and follows the rules
Must fetch and obey your current policy

How 1t works

metadata
NID—

Your agent
Identity: NID

l(l) Set policy

@Jr policy service

(3) Get policy

Policy:

<type, handler>—Y/N

«handler,type,N

data, NID+— NID+ is the
]‘ (4) Claim data

«data items

‘Handler h ™

ID Data items:

Y/N—

N

You are

In control

$<NID +, type, bytes>

Reqgulator
makes rules

Policy

Data-centric, not device or service centric
Metadata stays with the data, points to data’s policy
Standard policy Is very simple

7 + 2 types of data: contact, location, transaction, ...
Can extend a type with an optional tree of subtypes

Basic policy: handler h can/can’t use data type t
One screen shows most policies (in big type)
Templates (from 3" parties) + your exceptions

Encode complex policy in apps
An app is a handler that tags its output suitably

Conclusions

Rational security
Limited aspirations
Red | Green

Retroactive security
React—work on actual problems
Deterrence and undo over prevention

Personal control of data
Data tagged with metadata:
a link to your policy

Your agent

[Identity: NID__|] |, (4) Claim data NID—
)

Handlers must obey policy

\ 4

(1) Set policy

(3) Get policy
<handler,type,NID
Y/N—

“You are Regulator
in control makes rules

Backup

Access Control

1. Isolation boundary limits attacks to channels (no bugs)
2. Access Control for channel traffic
3. Policy management

I
Agent / Resource/| |
gy Request :

Principal Object :
Source i Sink :
- , E INN ENN BN BN S . I
1. Isolation# : ! I

I I
boundary I

| I
2. Access control [L
| I 1 |
3. Policy [o o o e o a |
L B B F 08 B B B § § | mll

29 February 2016

Host (CLR, kernel, hardware, VMM, ...)

Lampson: Retroactive Security 14

Incentives

Perceived threat of harm, or regulation
Harm: loss of money or reputation
For vendors, customer demand, which Is weak

Perception is based on past experience
not on possible futures
because too many things might go wrong
and you’ll have a different job by then

Regulation Is a blunt instrument
slow, behind changing technology and threats
expensive
prone to unintended consequences.
But it can work. Ex: US state laws on PII disclosure

Are people Irrational? No

Goals are unrealistic, ignoring:
What is technically possible
What users will actually do
Conflicting desires for
security, anonymity, convenience, features

Actual damage is small
Evidence of damage Is weak
Hence not much customer demand

Incentives are lacking
Experience trumps imagination
Convenience trumps security
Externalites: who benefits # who pays

What is technically possible?

Security requires simplicity
Most processes add complexity
SSL/TLS recently discovered bugs
EMYV chip-and-PIN system
Windows printing system
SET “standard” for internet credit card transactions
“Too complex” 1s a judgment call
Why? No good metrics for complexity or security
So desire outruns performance

What will users actually do?

What gets the job done
Disabling or evading security in the process

What Is easy

2-factor auth for banking — password + device
But in Norway, one time passwords for banking

What works everywhere
For security, that’s nothing
So “educating” users doesn’t work
What solves a problem they (or a friend) actually had

“If you want security, you must be prepared for inconvenience.”
—Gen. Benjamin W. Chidlaw, 1954

